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Abstract

Spatially explicit population genetic models have long been developed, yet have rarely
been used to test hypotheses about the spatial distribution of genetic diversity or the
genetic divergence between populations. Here, we use spatially explicit coalescence
simulations to explore the properties of the island and the two-dimensional stepping
stone models under a wide range of scenarios with spatio-temporal variation in deme
size. We avoid the simulation of genetic data, using the fact that under the studied
models, summary statistics of genetic diversity and divergence can be approximated
from coalescence times. We perform the simulations using gridCoal, a flexible spatial
wrapper for the software msprime (Kelleher et al., 2016, Theoretical Population
Biology, 95, 13) developed herein. In gridCoal, deme sizes can change arbitrarily across
space and time, as well as migration rates between individual demes. We identify
different factors that can cause a deviation from theoretical expectations, such as
the simulation time in comparison to the effective deme size and the spatio-temporal
autocorrelation across the grid. Our results highlight that F¢;, a measure of the
strength of population structure, principally depends on recent demography, which
makes it robust to temporal variation in deme size. In contrast, the amount of genetic
diversity is dependent on the distant past when N, is large, therefore longer run times
are needed to estimate N, than F.. Finally, we illustrate the use of gridCoal on a real-
world example, the range expansion of silver fir (Abies alba Mill.) since the last glacial

maximum, using different degrees of spatio-temporal variation in deme size.
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1 | INTRODUCTION

The distribution and dynamics of genetic diversity within species
are shaped by a myriad of evolutionary and ecological processes
acting across different spatial and temporal scales (Ellegren &
Galtier, 2016). Although the role of space and, in particular, spatial
autocorrelation in allele frequencies have been recognized since
the dawn of population genetics (Felsenstein, 1976; Malécot, 1948;
Sokal & Wartenberg, 1983; Wright, 1943), disproportionately more
theoretical and methodological developments have been focused
on understanding the effect of temporal changes in population size
and gene flow among populations without spatial structure (e.g. Hey
& Nielsen, 2007). Further, most statistical tools have been devel-
oped to detect past population size changes, either by testing dif-
ferent hypotheses such as exponential growth and bottlenecks (e.g.
Excoffier et al., 2013), or by using Bayesian methods to detect arbi-
trary population size changes from whole genome sequences (e.g.
Drummond et al., 2005). Researchers in landscape genetics have
aimed to overcome the limitation imposed by population genetics
methods that rely on the assumption of non-spatial and discrete
populations (Manel et al., 2003). However, the field has been mostly
influenced by meta-population models (Hanski & Gilpin, 1991) and
by spatial statistics and geo-statistics (e.g. Forester et al., 2016;
Guillot et al., 2005; Smouse et al., 2008), rather than by population
genetic theory.

There is increasing evidence that ignoring space can lead to bi-
ases and erroneous inferences (Bradburd & Ralph, 2019). Indeed,
simulation studies have shown that ignoring isolation by distance
can lead to false positives in efforts to detect hierarchical popula-
tion structure and loci under selection (Meirmans, 2012). Similarly,
ignoring space can severely bias common population genetics
summary statistics, especially when the local effective popula-
tion size (i.e. neighbourhood size) is small (Battey et al., 2020).
However, spatially explicit models are often mathematically in-
tractable and theoretical predictions are valid only under limited
conditions (Barton et al., 2002; Bradburd & Ralph, 2019; Kelleher
et al., 2014, Slatkin, 1985). This is particularly true for spatially con-
tinuous models. For example, the coalescence process under the
continuous space isolation-by-distance (IBD) model (Malécot, 1948;
Wright, 1943) can be approximated using the Lambda-Fleming-
Viot algorithm (Barton, Etheridge, & Véber, 2010; Barton, Kelleher,
& Etheridge, 2010). However, results are inconsistent with large-
scale patterns and often predict lower diversity than expected
from census numbers (Barton, Etheridge, & Véber, 2010), although
some of these issues have been solved by the subsequently intro-
duced model of extinction and recolonization (Kelleher et al., 2014).
Discrete spatial models are worse at capturing reality but are math-
ematically more tractable (Cox & Durrett, 2002), and several equiva-
lences have been shown across island models, two-dimensional (2D)
stepping stone models (Kimura, 1953) and IBD models assuming
infinite or finite populations and the absence or presence of muta-
tions (Felsenstein, 1976; Malécot, 1975; Slatkin, 1985). In particular,
a 2D stepping stone model can approximate the decrease in genetic

correlation with increasing distance of continuous space (Kimura &
Weiss, 1964; Malécot, 1955), and when a sufficiently large lattice is
used, it can produce summary statistics similar to those from a con-
tinuous space model (Battey et al., 2020).

Efficient spatially explicit simulators have recently been devel-
oped, both those using a forward in time approach, such as SLiM
(Haller & Messer, 2019), and those using a mixture of forward and
coalescent approaches, such as SPLATCHE 3 (Currat et al., 2019).
These developments have increasingly enabled the inclusion of
space in population genetics applications (e.g. Battey et al., 2020;
Gonzalez-Serna et al., 2019; Ortego & Knowles, 2020; Quilodran
et al., 2019). However, these spatial simulators can be challenging to
parametrize. This is particularly true for forward simulations, as they
require background knowledge on the demography, mating system
and dispersal patterns. Furthermore, forward simulations need to
track large numbers of individuals, which is memory intensive and
thus not practical, or even feasible, for long timescales. Backward,
coalescent simulations have the advantage of allowing likelihood
calculations while only tracing back the genealogy of sampled in-
dividuals (Felsenstein, 1992). Nevertheless, they still also require
that past population size changes are known or follow a predictable
pattern, such as constant size, expansion, decline or bottleneck.
Ecological models, such as species distribution models coupled with
recently developed paleo-climatic databases (e.g. Cook et al., 2015;
Karger et al., 2021; Lima-Ribeiro et al., 2015), may be used to pre-
dict past species distributions in a spatially and temporally explicit
manner (e.g. Lima-Rezende et al., 2019; Tallavaara et al., 2015; Wang
et al., 2017). Such time series of species distribution maps can pro-
vide potential input parameters for spatially explicit coalescent sim-
ulations (He et al., 2013).

The aim of this work is to explore the properties of island mod-
els and 2D stepping stone models under a wide range of scenarios
with spatio-temporal variation in population size. To this end, we
first develop a spatially explicit coalescent wrapper, gridCoal, for
the most efficient coalescent simulator currently available, msprime
(Kelleher et al., 2016). In gridCoal, we implement the 2D stepping
stone model with population sizes that may vary in space and time,
and with migration rates that may differ between demes. gridCoal
is different in several ways from SPLATCHE 3, the spatially explicit
coalescent simulator that is currently used most frequently. Most
importantly, in gridCoal (i) there is no forward simulation phase; and
(ii) demes do not follow a logistic growth model (as in SPLATCHE
3), instead instantly increasing or decreasing to user-defined deme
sizes. Further, unlike SPLATCHE 3, gridCoal does not simulate genetic
marker data. Instead, we exploit the fact that under the 2D stepping
stone model, summary statistics of genetic diversity and divergence
between populations can be approximated from the coalescence
times (Ralph et al., 2020; Slatkin, 1991). After developing the co-
alescent wrapper, we use gridCoal to simulate various scenarios of
spatial and temporal changes in population size and compare their
outcome with theoretical expectations of the island models and 2D
stepping stone models. In particular, we compare simulations with
expectations for the mean coalescence time, which is proportional
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to the effective population size N, and the amount of genetic diver-
sity, for a measure of the strength of population structure F;, and
for isolation-by-distance patterns. Our simulated scenarios include
simplified and biologically realistic cases of population movement
and expansion, where the spatial and temporal autocorrelation are
decoupled. Finally, we illustrate the use of gridCoal on a real-world
example, the range expansion of silver fir (Abies alba Mill.) since the
last glacial maximum, using different degrees of spatio-temporal

variation in deme size.

2 | MATERIALS AND METHODS
2.1 | The simulation tool: gridCoal

We developed a 2D stepping stone coalescent simulation tool, grid-
Coal (Appendix A), based on msprime (Kelleher et al., 2016). Space is
represented by a rectangular grid (size L x L in most of our simula-
tions). Each grid cell contains a single panmictic population, here-
after referred to as a deme, whose size (N) can change in time at
equally spaced time points comprising a given number of genera-
tions. A forward migration matrix defines the fraction of individuals
that migrate from one deme to its four neighbouring demes. Forward
migration rates (m) are independent from deme sizes, and they can
be symmetric or asymmetric between demes, and homo- or hetero-
geneous across space. The backward migration matrix, required for
the coalescent process, contains elements that specify the fraction
of individuals in a given deme that have a parent in another deme.
Backward migration rates are calculated for each time point based
on the deme sizes and the forward migration matrix.

TABLE 1 Symbols and terms and their
Symbol Term

definitions
d Deme
Map
L Grid size
N Deme size
N,
T

Neighbourhood size

Number of time points
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The coalescent process consists of two phases: a scattering
phase in the recent past with the fully defined demographic history
of individual demes, and a collecting phase in the more distant past
assuming panmictic population(s). While spatial structure is import-
ant in the scattering phase, its effect becomes smaller and even neg-
ligible in the collecting phase, which can be thus approximated by
the standard coalescent process (Wakeley, 1998, 1999). This implies
that it is unnecessary to run the spatially explicit simulations until
all lineages coalesce; before that point, the lineages can instead be
combined to a single or a few spatially non-explicit panmictic pop-
ulations. It is, nevertheless, possible to specify multiple ancestral
populations with low migration among them, and thus account for
the spatial aspect of the collecting phase.

Time is managed in gridCoal using three parameters: (1) the
number of time points T when the deme sizes are defined, (2) the
time period that elapses between two time steps dt (in years, or
other suitable time units), and (3) the generation time gt (in years
or other time units, compatible with dt; see also Table 1). Thus,
T x dt determines the length of the spatially explicit phase. To
achieve the highest efficiency, this time should be equal to the
scattering phase. After this phase, all lineages are combined into
one or more panmictic, spatially non-explicit, so-called ancestral
population(s). This non-spatial phase ensures that all lineages co-
alesce even when the product of the effective population size and
migration rate (Nm) is small, and it facilitates the simulation of dif-
ferent refugial populations that may colonize different parts of
the grid. Note that gridCoal does not explicitly model mutations.
The coalescent approximations of genetic diversity and diver-
gence provided by gridCoal assume that mutation is a weak force
(Slatkin, 1991).

Definition

Panmictic population in a single grid cell

Grid with a defined distribution of deme sizes
Number of rows (columns) in a square grid
Number of individuals in a deme

Size of a focal deme and its four neighbours

Number of time points with the defined
demographic history

gt Generation time The interval between the birth of an individual
and the birth of its offspring

dt Time step Time between two defined time points, in
years

m Migration rate Fraction of population moving from the
ancestral cell to a neighbouring cell

Tw Within-deme coalescence time Coalescence time between two lineages
drawn from the same deme

Tg Between-deme coalescence time ~ Coalescence time between two lineages
drawn from different demes

T, Average coalescence time Average coalescence time of any two lineages

drawn from the grid
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2.2 | Simulated scenarios

Here, we provide a brief summary of the simulated scenarios,
while more details can be found in Appendix B. Across all sce-
narios, we used a forward migration rate that is constant in time
and homogeneous across the grid. Simulations were run with an
average deme size of N € (10, 50, 100, 250, 500), with migration
rate m € (107, 1072, 1072, 1074, 10°) between neighbouring cells
(see Table 1 for explanations of terms and symbols). To analyse the
effect of spatial heterogeneity, we simulated various maps differ-
ing in the amount of spatial variation and autocorrelation in deme
size (Figure 1). Our simulated scenarios ranged from a homoge-
neous map, where all demes have the same size, to a map with
large variance in deme size, with deme sizes drawn from a uni-
form distribution. To investigate the effect of temporal changes,
we simulated scenarios with various demographic histories: static
scenarios with fixed deme sizes in time; simple demographics,
where all demes changed in the same manner on average, such
as undergoing an expansion, decline or bottleneck; and more bio-
logically realistic scenarios of colonization from one side or from
“seeds” (such as refugia), or range expansion and shift (Figure 1).
For each scenario and combination of N and m in a factorial design,
we ran 1000 replicates.

We sampled lineages across the grid in two different ways. In
order to estimate the within-deme coalescence time, we sampled
two lineages from each deme. In contrast, for studying between-
deme coalescence times, we sampled lineages along a row of L
demes in the middle of the grid (see Figure 1, Static scenarios). Since
the calculation of between-deme coalescence times would have
been computationally expensive, this solution assured that all dis-
tance classes are represented in each replicate. Further, our chang-
ing demographic scenarios were designed such that using demes
of the middle row provided a representative sample of demes with
different demographic histories (see e.g. side colonization or range
expansion and shift, Figure 1).

2.3 | Summary statistics

Hudson (1990) and Slatkin (1991) noted the close relationship be-
tween the probabilities of identity by descent and coalescence
times, which makes it possible to bypass the simulation of genetic
data, instead estimating diversity and divergence statistics directly
from coalescence times (Ralph et al., 2020). Additionally, for such
calculations, it is sufficient to simulate the genealogies of two line-

ages per deme.

2.3.1 | Coalescence times

For low and high Nm, the individual demes and the grid as a whole,
respectively, are nearly panmictic, the distribution of coalescence
times is close to exponential, and most lineages coalesce within
the scattering phase. Under these conditions, the maximum likeli-
hood estimate of the mean coalescence time is the sample mean.
In contrast, for intermediate Nm, the probability that lineages
migrate away from their present-time demes before coalescing is
high, but the probability that they meet again and coalesce within
the spatially explicit phase of the simulation is low. As a result, the
distribution of coalescent times is no longer exponential and the
sample mean is an incorrect estimate of the coalescent time. In
order to still consider these intermediate Nm values, we use the
sample median, which is expected to be less sensitive to the miss-
ing tail values (Figure S1).

We calculated the expected within-deme coalescence time
(T,,) as the coalescence time of two lineages from the same deme.
Assuming a mutation model, measures of within-population genetic
diversity can be calculated from T,,. Here, we simply used T, as a
proxy for within-deme diversity and plotted it as a heatmap across
the grid. T, is the coalescence time between any two lineages from
two different demes, and T is the coalescence time of any two lin-
eages across the grid.

2.3.2 | Population structure (F¢;)

Fsr was introduced by Wright (1951) and provides a measure of
population structure. Under the infinite island model, the ex-
tent of population structure can be described as in Whitlock and
McCauley (1999):

1

Form — = 1
ST™ 4Nm+1 @

Under Kimura's 2D stepping stone model, given a homogeneous mi-
gration rate and equal sized demes, F,; can be defined as follows (Cox
& Durrett, 2002; Maruyama, 1977):

2]ogl
— 2nvo? (2)

F
ST 2 ’
L2logl + 2NL2
2nvo?

where ¢ = 1/2 is the average axial parent-offspring distance, v = 4 m
and L is the grid size. The value 27162 is the neighbourhood size, which
is the local panmictic unit that determines the amount of variation

between populations at the migration-drift equilibrium; thus, it is

FIGURE 1 The three different groups of scenarios simulated. Static scenarios: Demes had a constant size across the spatially explicit
phase of the simulations. Simple changing scenarios: The size of all demes changed in a correlated manner. In the present time step, all
scenarios were identical to the deme sizes drawn from a uniform distribution. Realistic changing scenarios: Deme sizes changed in space and
time to model a colonization event. The grid size was 30 across all scenarios. To estimate T,, two lineages were sampled in each deme, and to
estimate T, two lineages were sampled from 30 demes in a row in the middle of the grid
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equivalent to Nm in the island model. Note that when '°3L < < 2N,
Equation (2) simplifies to Fgr = OgL - (Cox & Durrett, 2002)
Slatkin (1991) |ntroduced an estlmate of F¢; based on coales-

cence times:

T =Ty

T (3)

Fsr =

where T is the average total coalescence time and T, is the within-
deme coalescence time averaged across demes. The advantage of this
approximation is that it depends on purely demographic processes,
such as genetic drift and migration, when mutation is a weak force.
In this work, we refer to Equation (3) as the global (population-wide)
Fs7. which measures the strength of the population structure and can
be compared across different simulated scenarios, and we use this
definition throughout the manuscript. Note that approximating sum-
mary statistics of genetic diversity and F; from coalescence times
holds only when migration is only possible among neighbouring demes
(Slatkin, 1985).

2.3.3 | Genetic distance (F*)

While Fg; can be computed for pairs of populations, we note that
Wright actually rejected Fy; as a genetic distance measure be-
cause it fails to satisfy the triangle inequality (Wright, 1978; p. 89).
Nevertheless, it is widely accepted that F,; leads to a useful meas-
ure of genetic similarity if the goal is to infer patterns of gene flow
(Slatkin, 1991). Here, we used a measure of genetic distance based
on coalescence times in order to investigate the genetic differen-
tiation between pairs of demes and its relationship with physical
distance following Slatkin (1993). If only two demes are considered,

Equation 3 transforms into:

Ts—Tw

Fr=22__W
Tg+Tw

(4)

where Ty is the mean coalescence time for two lineages sampled from
different demes, and T,, is the mean within-deme coalescence time.
Slatkin (1993) pointed out that this equation is not appropriate to asses
the strength of population structure in general, but it is a useful mea-
sure of the genetic distances between demes. We used F* between
all pairs of sampled demes against the physical (Euclidean) distance
between demes to assess isolation-by-distance patterns across the
grid. Note that if T, = Ty (which is the case for large Nm), F* = FS;_ and
F* thus does not provide any more information about the populatlon

structure than Fg.

2.34 | Effective population size (N,)

Under the island model, N, is

2
N, = Ns(i 4 %)
4Nvs (5)

where v = 4 m (the total migration rate for each grid cell), and s is the
number of demes in the island model. While, N, under two dimensional

stepping stone model can be calculated as Cox and Durrett (2002):

_ Lzlog(L). ©)

¢ 4no?v

Effective population sizes predicted from simulations were obtained

by halving the coalescence time of lineages from the same deme.

3 | RESULTS
3.1 | Coalescence times

We used our simulations to explore the effect of spatial heterogene-
ity in deme size on theoretical expectations, so we first recall the
predictions of the island and 2D stepping stone models. The ex-
pected coalescence time of two samples drawn from the same deme
is T, =2N, where N is the total number of diploid individuals in the
deme. This result is independent of the migration matrix if all demes
are connected by migration. Under the island model with d demes
each containing N individuals, the expected coalescence time for
two samples from the same deme is 2Nd (Strobeck, 1987), which is
higher than 2N as a result of lineages escaping before coalescence
occurs. Under the 2D stepping stone model, the expected coales-
cence time is 2NL? (Cox & Durrett, 2002). However, in a 2D stepping
stone model, where only the four neighbours are connected, strong
local differentiation across demes occurs when Nm <1 (Kimura &
Maruyama, 1971). Nevertheless, when Nm >1, local differentiation
is less pronounced, and when Nm 24, the whole grid behaves like a
single panmictic population (Kimura & Maruyama, 1971).

Our simulations showed that spatial heterogeneity can be ig-
nored when m = O and thus each individual deme behaves like a
panmictic population. In these cases, the expected coalescence time
for two samples taken from the same deme is independent of the
spatial heterogeneity of the grid, and thus our simulations confirmed
the expected value of 2 N (Figure 2a and d). At the other extreme,
when m was one, the whole grid behaved like a single panmictic
population. Here, T,, was decoupled from the local deme size and
was, on average, equal to 2NL? (Figure 2c). Additionally, when there
was large spatial variance in deme size across the grid, as in the uni-
form map, the coalescence time was systematically underestimated
(Figure 2f). This was because the spatial heterogeneity decreased
the total effective population size across the grid.

For low migration rates, the expected coalescence time of two
samples from the same deme is expected to be T, =2NL?, indepen-
dent of m (Maruyama, 1971). When m is very small, lineages coalesce
mostly within demes, on average, in time 2 N. However, very rarely,
they escape and coalesce only in time 2 NL?/m, which results in a
mean coalescence time of T, =2NL% The spatially explicit phase of
our simulations was not long enough for these samples to coalesce
after they escaped from the deme. Since we forced these lineages
to coalesce sooner by pulling them to an ancestral population, we
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observed that the average coalescence time was underestimated
(Figure 2b,e). The problem of escaping lineages matters the most in
the transition phase from low to high Nm. Recall that in this part of
the parameter space we could not estimate the theoretical mean of
the coalescence time of the samples; therefore, we show the median
T, instead (Figure 2). Note that these results should be treated with
caution and cannot be compared with any theoretical expectations.
We found that for Nm <0.05, T, was best predicted by 2N (Figure 2b;
m = 0.001 and N = 50). Then, for Nm = 0.1, our simulations showed
that the median coalescence time was best predicted by twice the
neighbourhood size, that is, the size of the deme plus that of its four
neighbours (Figure 2e; m = 0.001 and N = 100). However, we found
that already at Nm = 0.5 the coalescence time was best predicted by
2NL? (Figure 2; see also Figure S1b,e), suggesting that the transition
phase is fast, which is in agreement with previous observations by

Kimura and Maruyama (1971).

3.2 | Global F;

The island (Equation 1) and 2D stepping stone models (Equation 2)
provide expectations for the strength of population structure (F¢;) in
subdivided populations. Here, we explored the robustness of these
predictions with respect to the spatio-temporal heterogeneity in
deme size. We found that all simulated scenarios deviated the most
from theoretical predictions for intermediate migration rates (or
Nm), where the predictions of the two models also differed the most
(Figure 3a, b and c). Not surprisingly, the island model provided, on
average, a better approximation than the spatially explicit 2D step-
ping stone model when the deme sizes were drawn from a uniform
distribution across the grid, thus when there was no spatial autocor-
relation in deme size (Figure 3a). In contrast, when deme sizes were
homogeneous across space, and thus the spatial autocorrelation was
maximized, Fs; was closer to the 2D stepping stone model predic-
tions (Figure 3a). F¢; of the clustered and low variance maps were
in between the two model predictions. F ; also varied considerably
across replicates, with the largest variation occurring for the uniform
map among all static scenarios considered (Figure 3d).

Under realistic scenarios of change, we observed a consistent
bias: scenarios where the mean deme size decreased over time
(declining population) gave a lower Fg;, while scenarios where the
mean deme size increased (expanding population) gave a higher F.
in comparison to the static equivalent scenarios (Figure 3b,c). Similar
to the uniform static map, F; was relatively close to the predictions
of the island model under realistic scenarios of change that ended
in a uniform map (Figure 3b). More unexpectedly, under realistic
scenarios of change, where we decoupled the spatial and temporal
autocorrelation, on average, F; did not deviate more from the island
model prediction than the simple changing scenarios for the studied
parameter combinations (Figure 3c). These realistic changing scenar-
ios also provided a relatively close match to their static equivalents
(Figure 3c). An exception is the range expansion and shift scenario.
This is because here the theoretical expectation is shown for the

average N across the grid, which is lower than the row of sampled
demes situated in the middle of the grid (Figure 1). Finally, the vari-
ation in F¢; across replicates was important, and F¢; for different re-
alizations of the same map overlapped between values of Nm that
were one order of magnitude different, especially for low and inter-
mediate values (Figure 3d, e and f). The sampling variance in F; also
increased with spatial variance in deme size across the grid, with the
highest values corresponding to the two clustered maps (Figure 3d
and f).

3.3 | Genetic distance (F*)

Varying N and m across a homogeneous map showed that increas-
ing the deme size and/or the migration rate led, as expected from
Equation (1), to weaker differentiation between demes (Figure S2).
The degree of spatial variance in deme size affected both the aver-
age genetic distance between demes and the shape of the isolation
by distance curves (Figure 3g). Maps with homogeneous deme size
had the lowest and flattest isolation by distance curves. Note that
these can be treated as a baseline expectation under the 2D stepping
stone model (Slatkin, 1993). The uniform map gave higher F* values
across all the distance classes, that is, the isolation by distance curve
was shifted upwards, because the compared pairs of demes had,
on average, a different size. The clustered map resulted in a lower
mean F* for small distance classes and a higher F* for larger distance
classes, meaning that the isolation by distance curve was steeper.
This was because pairs of demes located close to each other tended
to have similar sizes, and those for large distance classes often had
different sizes. Varying deme classes also caused a large variance in
the genetic distance across replicates (Figure 3g-i).

Demographic, that is temporal, changes introduced a bias in the
same direction as in F: scenarios where the mean deme size de-
creased over time had a lower F*, while scenarios with increasing
average deme size had a larger F* value in comparison to a static
uniform map. However, the shape of the isolation by distance curve
did not change (Figure 3h). The realistic scenarios of change had all
increasing deme sizes, so we observed the same upward bias as be-
fore (Figure 3i). The fact that the population sizes were changing had
the strongest influence on F* when the spatial and temporal auto-
correlation was the most decoupled, that is for the side colonization
scenario, and for large distance classes (Figure 3i).

3.4 | Effect of spatial and temporal resolution

Our simulations were carried out on a finite square grid of L x L (not a
torus), which implies a finite number of demes and that demes on the
edge of the grid had only two or three neighbours. Not surprisingly,
we found that F¢; estimated from a larger grid provided a better fit
to the predictions of the island model and the 2D stepping stone
model (Figure 4a). Further, we found that there was an edge effect,
which led to the overestimation of F* for demes that were L or nearly
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L steps away from each other (Figure 4b). Analyzing F* against dis-
tance from samples in the middle the grid allowed us to disentangle
the effect of grid size from the edge effect. We found that close to
the edges the genetic distance is overestimated between the demes,
mainly due to edge effects, while grid size principally influences the
precision of the estimates, that is, larger grids provide more precise
estimates of F* for a given distance class (Figure 4c).

We investigated the effect of temporal resolution in the case of
a simple changing scenario where all demes increased linearly in size
(Figure 1). The coarser time resolution (T = 5) did not have a notice-
able effect on the estimation of the mean coalescence time within
demes, but the between-deme coalescence times were systemati-
cally overestimated (not shown). As a result, the genetic distances
between demes were also overestimated (Figure 4e). This is because
when T = 5, the population size at any time is larger than in the finer
time-resolution scenario (T = 25). Time resolution is also important
in more complex setting such as range expansion and shift (Figure 1).

The time necessary for lineages to coalesce during the spatially
explicit phase of the simulations may become a limitation in practical
applications. When the spatially explicit phase is too short compared
with the deme sizes, the coalescence time between lineages is de-
termined by the non-spatial coalescence process of the panmictic
ancestral population. Extremely long simulations may be required
to reliably estimate the coalescence time when the deme sizes are
large. Figure 4(e) shows estimates of N, calculated as half of the
mean total coalescence time. In contrast, Figure 4(f) demonstrates
that it is possible to obtain relatively precise estimates of F.; with
much shorter simulation times. This is because Fg; is defined as a
ratio of coalescence times and the biases cancel out. Indeed, both

the estimation of within-deme and total coalescence times are bi-
ased because of the same process, that is the limited length of the
spatially explicit phase, which means that their distributions are
missing the same amount from the tails on the right side. This re-
sult also highlights that F; is dependent only on recent demographic
events and is independent of the deeper ancestry, which makes it a

useful measure.

3.5 | Application example: Abies alba post-glacial
colonization history

Silver fir (Abies alba Mill.) is a coniferous tree species that has pro-
gressively colonized the mountainous regions of Europe from differ-
ent refugia since the last glacial maximum (LGM, 21 kyrs BP). While
the exact location of the refugia are debated, it is generally agreed
that the Central and/or Northern Apennines hosted the largest
populations in pre-LGM times, with other important populations oc-
curring on the Balkan Peninsula (Tinner et al., 2013). Mitochondrial
DNA variation clearly suggests the presence of two haplotypes cor-
responding to the Italian and Balkan Peninsulas (Liepelt et al., 2009;
Ziegenhagen et al., 2005; Figure S3a).

The demographic history of silver fir over the past 22 kyrs BP
was obtained from the LPX-Bern dynamic global vegetation model
with a resolution of 1° by 1° Lat/Lon (Ruosch et al., 2016; Sitch
et al., 2003). The model was forced with climate anomalies and in-
cluded competition between common tree species and plant func-
tional types. The output of LPX-Bern is the Foliar Projective Cover
(FPC), which is the fraction of a grid cell that is covered by silver
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fir. We estimated the number of trees (N) in each deme from FPC,
assuming that a mature tree occupies 40 m?, and that N/N,=0.001
(an arbitrary but realistic value [Waples et al., 2011]). The full input
data consisted 221 time points spaced at 100vyear (i.e. four gener-
ations) intervals on a 53x 24 grid. In the following we shall refer to
one grid cell of LPX-Bern as one deme. While the population size of
the whole species (i.e. all demes) showed an overall increasing trend
with time (post-LGM colonization), the size fluctuations of individual
demes were highly variable (see Figure 5a). We used the expected
coalescence time for two samples taken from the same deme as an
approximation for the genetic diversity in a deme, thus assumed that
mutations can be neglected. Finally, we note that LPX-Bern has sev-
eral shortcomings and does not predict the current distribution of
silver fir accurately. However, the objective of this example was not
to make predictions for the expected levels of genetic diversity in
silver fir, but to study the effect of spatio-temporal heterogeneity in
population size in a biologically realistic scenario.

We performed four simulated scenarios. First, we used a homo-
geneous deme size (i.e. N ) in space and time, which represented our
null model. We fixed the deme size to its average size based on the
last step of the LPX-Bern data. Second, we included the spatial vari-
ation in deme size, represented by the last step of the LPX-Bern data,
but kept deme sizes constant in time. Third, we used the full LPX-
Bern input data, thus considering realistic deme sizes changing both
in space and in time. Fourth, we explored the effect of having two
ancestral populations, that is using pre-LGM historical information.
For this, we used simulations identical to the third scenario, but at
the oldest time point (i.e. 22 kyrs BP), we combined the demes into
one of the two most plausible ancestral populations based on the
spatial distribution of mtDNA haplotypes in contemporary samples
(Figure S3a). We achieved this by simply assigning each deme with
mtDNA data to the dominant haplotype (i.e. more than 50% Balkan
or Italian type) or to the origin of the nearest deme of known origin,
in case of missing data (Figure S3b).

(a) Input: Demographic history from the Bern-LPX data
77 22 kyrs BP. 77 11 krys BP~ 7 Today
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FIGURE 5 Real-world example: Range expansion of silver fir (Abies alba mill.) since the last glacial maximum (LGM, 22 kyrs BP). (a) Raw
input data for gridCoal: The demographic history from the global dynamic vegetation model LPX-Bern. Three time points are shown out

of the 220: The LGM, the beginning of the Holocene, and today. (b) Mean coalescence time from the simulated scenarios with increasing
complexity in terms of spatio-temporal variation in deme size from the top left to the bottom right panel. Note that the colour scale differs

between maps
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We found that both space and time had an effect on the coales-
cence times, and thus on the distribution of genetic diversity in space
(Figure 5b). As expected, when the deme size was constant in space
and time, the distribution of genetic diversity only reflected stochas-
tic effects of the coalescence process (Figure 5b, Scenario 1). Spatial
variation in deme size introduced variation in the expected levels
of genetic diversity, which was also proportional to the deme size
(Figure 5a and b, Scenario 2). When deme size varied both in space
and time, the spatial variation in the mean coalescence time became
even stronger. In particular, the recently colonized areas of Northern
Europe had a lower expected level of genetic diversity (Figure 5b,
Scenario 3). Finally, when we assumed two ancestral populations,
their contact zone had much higher levels of expected genetic diver-
sity (Figure 5b, Scenario 4). This is because there was a much longer
waiting time for the two ancestral populations to coalesce, which is
determined by the size of these populations and also by the migra-
tion rate between them. For a real data application, calibration of
these two parameters would be necessary to match the observed
genetic diversity data. Alternatively, the match between simulated
and observed data could be used to estimate the divergence time

between the two mtDNA haplotypes (e.g. Hickerson et al., 2007).

4 | DISCUSSION

4.1 | The role of spatial and temporal
autocorrelation

Using a wide range of simplified and biologically realistic simulations,
we have identified several factors that may cause a deviation from
theoretical expectations of the island model and the 2D stepping
stone model. We found that non-spatial null models, such as the is-
land model, are inappropriate in the presence of spatial autocorrela-
tion in deme size (Figure 3). Most real-life situations involve some
degree of spatial autocorrelation. Previous studies have already
demonstrated the limitations of non-spatial null models, for exam-
ple in the presence of isolation by distance (Meirmans, 2012; Wang
& Whitlock, 2003), due to population structure or biased sampling
schemes (Chikhi et al., 2010), or to local variation in deme size or
barriers to gene flow across the landscape (Duforet-Frebourg &
Blum, 2014). Here, we show that the 2D stepping stone model can
account for spatial autocorrelation, at least when it is homogene-
ous across the landscape, and to some extent when there is local
variation in deme size (clustered scenario) (Figure 3). Thus far, the
2D stepping stone model has rarely been used as a null model (but
see Duforet-Frebourg & Blum, 2014 and Battey et al., 2020), partly
due to the lack of a simulation tool. gridCoal could facilitate more
widespread use of the 2D stepping stone model to generate the null
distributions of neutral statistics, such as genetic diversity (assuming
a non-zero mutation rate) or F¢, in the presence of spatial autocor-
relation in population size.

Demography, or temporal change in population size, is well
known to contribute to deviations from theoretical expectations of
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the island model, and can limit the validity of statistical procedures
that are based on this model, such as F -outlier tests used to detect
loci under selection (e.g. Bierne et al., 2013; Chikhi et al., 2010; De
Mita et al., 2013; Lotterhos & Whitlock, 2014). Here, we simulated
realistic scenarios with the presence of both spatial and temporal
heterogeneity in deme size, and observed that deviations from the
theoretical expectations are strongest when the spatial and tempo-
ral autocorrelation in deme size are decoupled (Figure 3c, Range ex-
pansion and shift). Our simulations also demonstrate that neutral F;
is well below the theoretical expectations for such a range expan-
sion and shift (Figure 3c). This result is in agreement with previous
findings. Wegmann et al. (2006) also studied a range expansion and
shift scenario and found that spatial heterogeneity in the carrying
capacity of demes leads to an increased population differentiation.
Further, Lotterhos and Whitlock (2014) showed that spatial autocor-
relation in deme size or recent range expansion resulted in the larg-
est number of false positives for most methods in efforts to detect
spatially divergent selection. Spatio-temporal trends in population
size are expected to be common in nature, especially in the Northern
hemisphere, where the demographic history is often dominated by
expansion from glacial refugia and a shift towards the north (e.g.
Excoffier et al., 2009). Our example application also illustrates such
a case (Figure 5).

F¢; and F* are based on the same information, but F¢; is a more
integrative and therefore more robust measure, while F* is more sen-
sitive to local differentiation patterns (Figure 3g-i). Note that our F*
is closely related to M of Slatkin (1993), which has the advantage of
being independent of the mutation rates when they are small across
loci. Based on a wide range of scenarios, we found that spatial and
temporal variation in deme size can influence the steepness of the
isolation-by-distance curve. In agreement with Duforet-Frebourg
and Blum (2014), we found that local variation in population size, as
inour clustered map, caused large variance in local F* (Figure 3g). The
most complex range expansion and shift scenario led to a relatively
flat isolation-by-distance curve (Figure 3i). Indeed, Slatkin (1993)
already proposed that the lack of an isolation-by-distance pattern
in a natural population can indicate non-equilibrium populations or
recent colonization, a pattern that has been confirmed through em-
pirical studies (e.g. De Kort et al., 2014; Leblois et al., 2000).

4.2 | gridCoal: Guidelines for future users

gridCoal is a wrapper for the most efficient algorithm to simulate ge-
nealogies, msprime (Kelleher et al., 2016). It complements the existing
arsenal of spatially explicit simulators (Becheler et al., 2019; Currat
et al., 2019; Dellicour et al., 2014; Guillaume & Rougemont, 2006;
Haller & Messer, 2019; Landguth & Cushman, 2010). The main merit
of gridCoal is that it facilitates the use of spatial null models for em-
pirical biologists and/or for users, who are less familiar with msprime.
gridCoal generates the fairly complex input data needed for msprime
simulations (multiple backward matrices and demographic events)
from simple inputs with clear biological meaning, such as generation
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time, population size, or migration rates. Therefore, we hope that it
will make spatially and temporally explicit coalescence simulations
available for a wide range of audience. Nevertheless, the choice of
parameters and model calibration are essential for using gridCoal;
thus, here we provide some guidelines for future users.

The spatially explicit phase (given by the number of steps T and
the time step dt) should be long enough so that lineages coalesce
during this phase, but also short enough to avoid wasting compu-
tational time. The choice of dt should be driven by the particular
biological question. For example, throughout this paper we used a
combination of parameter values (number of steps T, time step dt
and generation time gt) such that most lineages coalesced in the spa-
tially explicit phase across all combinations of N and m (Figure 4d-f).
Note that the largest dt was necessary for intermediate values of
Nm, where lineages can escape and take a long time to coalesce. We
suggest that users perform test simulations with the required values
of N and m to choose an appropriate dt. This is particularly important
if it is necessary that all lineages coalesce during the spatially explicit
phase, e.g. for estimating genetic diversity maps such as those shown
in the example of post-glacial colonization of silver fir (Figure 5). In
contrast, if the question concerns a particular organism with a given
generation time and across a particular time period, the parameters
can be chosen accordingly. For example, setting dt = 100 and using
210 time points takes the ancestral population back to the last gla-
cial maximum (LGM, 21kya), which could be a suitable parameter
combination for several species that expanded after the LGM.

gridCoal avoids the simulation of genetic data and instead simulates
summary statistics that can be derived from coalescence times, that
is, gene diversity, the strength of population structure (F¢;), and the
genetic distance between pairs of demes (F*). We emphasize that ap-
proximating summary statistics of genetic diversity and F¢; from co-
alescence times holds only when the mutation rate is low and when
migration is possible to neighbouring demes only (Slatkin, 1985).
Further, for comparing gridCoal simulations to real data, a calibration
of N, and mutation rate is necessary because these parameters are
non-identifiable. Such a calibration can be achieved by using additional
information about the mutation rate of particular genetic markers used
and by estimating N/N, (Waples et al., 2011). Finally, simulations from
gridCoal are closer to that of a continuous space model, and thus to
biological reality, for large grid sizes. Nevertheless, at least for small
neighbourhood sizes, a grid of 50x 50 already appears to be sufficient
to accurately approximate a continuous space process for many com-
monly used summary statistics (see details in Battey et al., 2020). In
empirical applications, the grid size will be determined by the resolu-
tion of the input data. For example, in the example of post-glacial colo-
nization of silver fir, we used a grid size of 53x 24 (Figure 5), which was
the resolution of the LPX Bern data.

4.3 | gridCoal for eco-evolutionary data fusion

gridCoal might be useful for empirical applications of eco-evolutionary
data-fusion approaches, such as integrative Distributional

Demographic Coalescent (iDDC) approach (Brown & Knowles, 2012;
He et al., 2013). In this context, one key feature of gridCoal is that it
is not only spatially but also temporally explicit. Temporal explicitness
means that the exact population size of each deme has to be set by the
user at regularly placed time intervals. In this way, gridCoal is fully de-
terministic in terms of the forward-time demography, and stochastic in
terms of the backward coalescence events. Although this feature may
appear as a limitation in some situations, it is necessary for applications
that make use of species distribution data issued from ecological mod-
els and paleological data (Gavin et al., 2014; Svenning et al., 2011). This
feature also represents an important contrast to SPLATCHE 3 (Currat
et al., 2019), where each deme follows a logistic growth model. As a
result, in SPLATCHE 3, user-provided population sizes are only approxi-
mately achieved, no population declines, and only local extinctions are
possible. Indeed, to set up explicit temporal changes in population size,
Ortego and Knowles (2020) updated the population sizes only three
times from 21 ky BP to the present, which is a rough approximation of
actual population size changes and may bias the isolation-by-distance
patterns (Figure 4d).

There is a wide range of possible input data sets that can be used
for eco-evolutionary data-fusion approaches. First, the availabil-
ity of global paleo-climatic databases, such as in CHELSA (Karger
et al., 2021), opened the possibility for predicting species distribu-
tions in the past using species distribution models (SDMs; Elith &
Leathwick, 2009; Sexton et al., 2009). SDMs can be used to generate
a time series of species abundances (Calabrese et al., 2014), which
may be interpreted as relative deme sizes. Second, process-based
dynamic vegetation models (DVMs; Pereira et al., 2010) hold a great
potential for use in data-fusion approaches. This is because unlike
SDMs that are based on simple empirical correlations of presence
and climate, DVMs also integrate biological processes such as com-
petition or dispersal. Even though DVMs also suffer from limitations
related to their complex parametrization, they are continually im-
proving as the quality and richness of climatic, remote sensing, and
other biological data increases (e.g. Hartig et al., 2012). Third, fossil
data is increasingly being organized in databases (Davis et al., 2013;
Peters et al., 2019). The most abundant type of fossil data is pollen,
particularly from forest trees, which has been used to reconstruct
past population size fluctuations (e.g. Kaufman et al., 2020; Ruosch
et al., 2016). Indeed, our example of post-glacial colonization history
in silver fir (see Figure 5) could also benefit from more realistic esti-
mates of relative deme sizes by using the spatio-temporal interpola-
tion of pollen records (Ruosch et al., 2016).
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