
Brief Announcement: Non-Blocking Dynamic
Unbounded Graphs with Worst-Case Amortized
Bounds
Bapi Chatterjee #

Institute of Science and Technology, Klosterneuburg, Austria

Sathya Peri #

Indian Institute of Technology, Hyderabad, India

Muktikanta Sa #

Télécom SudParis – Institut Polytechnique de Paris, France

Abstract
This paper reports a new concurrent graph data structure that supports updates of both edges and
vertices and queries: Breadth-first search, Single-source shortest-path, and Betweenness centrality.
The operations are provably linearizable and non-blocking.

2012 ACM Subject Classification Theory of computation → Concurrent algorithms

Keywords and phrases concurrent data structure, linearizability, non-blocking, directed graph,
breadth-first search, single-source shortest-path, betweenness centrality

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.52

Related Version Full Version: https://arxiv.org/abs/2003.01697

Funding This work was partially funded by National Supercomputing Mission, Govt. of India under
the project “Concurrent and Distributed Programming primitives and algorithms for Temporal
Graphs”(DST/NSM/R&D_Exascale/2021/16).

1 Introduction

Dynamic graph data structures with concurrent query operations and updates can readily
boost important real-world applications such as social networks [6], semantic-web [5], biolo-
gical networks [10], blockchains [3], and many others. The existing libraries of graph queries,
which support dynamic updates, for example, Stinger [12], GraphOne [16], GraphTinker [15],
Kineograph [9], GraphTau [14], Kickstarter [18], Aspen [11], etc. face limitations such as
blocking concurrency, no native support for vertex updates, and high memory-footprint.

In this paper, we describe the design and implementation of a graph data structure,
which provides (a) three useful operations – breadth-first search (BFS), single-source shortest-
path (SSSP), and betweenness centrality (BC), (b) dynamic updates of edges and vertices
concurrent with the operations, (c) non-blocking progress with linearizability [13], and (d)
a light memory footprint. We call it PANIGRAHAM a: Practical Non-blocking Graph
Algorithms. In a nutshell, we implement a concurrent non-blocking dynamic directed graph
data structure as an adjacency-list formed by a composition of lock-free sets: a lock-free
hash-table and multiple lock-free binary search trees (BSTs). The set of outgoing edges Ev

from a vertex v ∈ V is implemented by a BST, whereas, v itself is a node of the hash-table.
Addition/removal of a vertex translates to the same operation in the lock-free hash-table,

a Panigraham is the Sanskrit translation of Marriage, which undoubtedly is a prominent event in our
lives resulting in networks represented by graphs.

© Bapi Chatterjee, Sathya Peri, and Muktikanta Sa;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 52; pp. 52:1–52:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bhaskerchatterjee@gmail.com
https://orcid.org/0000-0002-2742-4028
mailto:sathya_p@cse.iith.ac.in
https://orcid.org/0000-0002-3471-7929
mailto:muktikanta.sa@gmail.com
https://orcid.org/0000-0002-7070-8210
https://doi.org/10.4230/LIPIcs.DISC.2021.52
https://arxiv.org/abs/2003.01697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Brief Announcement: Non-Blocking Dynamic Unbounded Graphs

1: Operation Op(v)
2: tid ← GetThId();// get thread-id
3: if (isMrkd(v)) then
4: return NULL; //Vertex is not present
5: return Scan(v, tid);//Invoke Scan

6: Method Scan(v, tid)
7: list⟨SNode⟩ ot, nt ; //Trees to hold the nodes
8: ot ← TreeCollect (v, tid); //1st Collect
9: while (true) do //Repeat the tree collection

10: nt ← TreeCollect (v, tid); //2nd Collect
11: if (CmpTree (ot, nt)) then
12: return nt;//return if two collects are equal
13: ot ← nt;
14: Method CmpTree(ot, nt)
15: if (ot = NULL ∨ nt = NULL) then
16: return false;
17: oit ← ot.head, nit ← nt.head;
18: while (oit ̸= ot.tail ∧ nit ̸= nt.tail) do
19: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨

oit.p ̸= nit.p) then
20: return false; //Both the trees are not equal
21: oit ← oit.nxt; nit ← nit.nxt;
22: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨ oit.p
̸= nit.p) then //Both the trees are not equal

23: return false ;
24: else return true ; //Both the trees are equal

25: Method ChkVisit(adjn, tid, count)
26: if (adjn.oi.VisA [tid] = count) then
27: return true;
28: else return false ;
29: Method TreeCollect(v, tid)

30: queue ⟨SNode ⟩ que; //Queue used for traversal
31: list⟨SNode ⟩st; cnt ←cnt + 1; //List to keep

of the visited nodes
32: v.oi.VisA [tid] ← cnt;
33: sn←new CTNode(v,NULL,NULL,

v.oi.ecnt);//Create a new SNode
34: st.Add(sn);que.enque(sn);
35: while (¬que.empty()) do //Iterate all vertices
36: cvn ← que.deque(); // Get the front node
37: if (isMrkd (cvn)) then
38: continue;// If marked then continue
39: itn ← cvn.n.enxt; //Get the root ENode
40: stack ⟨ENode ⟩ S; // stack for inorder traversal
41: /*Process all neighbors of cvn in the order of
42: inorder traversal, as the edge-list is a BST*/
43: while (itn ∨ ¬S.empty()) do
44: while (itn) do
45: if (¬isMrkd(itn)) then
46: S.push(itn); // push the ENode

47: itn ← itn.el;
48: itn ← S.pop();
49: if (¬isMrkd(itn)) then //Validate it
50: adjn ← itn.ptv;
51: if (¬isMrkd (adjn)) then //Validate it
52: if (¬ChkVisit (adjn, tid, cnt)) then
53: adjn.oi.VisA [tid] ← cnt; //Mark it
54: //Create a new SNode
55: sn ← new CTNode(adjn,

cvn,NULL,adjn.oi.ecnt);
56: st.Add(sn); //Insert sn to st

57: que.enque(sn); //Push sn into the que

58: itn ← itn.er;
59: return st; //The tree is returned to the Scan

Figure 1 Framework interface operation for graph queries.

whereas, addition/removal of an edge translates to the same operation in a lock-free BST.
The operations – BFS, SSSP, BC – are implemented by specialized partial snapshots. In a
dynamic concurrent setting, we apply multi-scan/validate [1] to ensure the linearizability of
a partial snapshot. We prove that these operations are non-blocking. The empirical results
show the effectiveness of our algorithms.

2 PANIGRAHAM

Algorithm Overview. We implement an ADT A = S ∪ Q, wherein the set operations
S := {PutV, RemV, GetV, PutE, RemE, GetE} use lock-free hash-table and BST and
the queries Q := {BFS, SSSP, BC} use partial snapshot. To de-clutter the presentation,
we encapsulate the three queries in a unified framework with an interface operation Op–
presented in pseudo-code in Figure 1. Op is specialized to the requirements of the three
queries. We have explained the pseudo-code using line-comments in Figure 1. For detail of
the ADT operations please see the full version [8], wherein we also present their proofs of
linearizability and non-blocking progress.

Experimental Results and Discussion. We experimentally evaluate our non-blocking graph
against two well-known existing batch analytics methods: (a) Stinger [12], and (b) Ligra [17].
To analyze the trade-off between consistency and performance, in addition to the presented

B. Chatterjee, S. Peri, and M. Sa 52:3

linearizable algorithm PANIGRAHAM (PG-Cn), we include its inconsistent variant (PG-
Icn). The results are based on a standard dataset R-MAT graphs [7]. Each micro-benchmark
displays the latency of an end-to-end run of 104 operations on a loaded graph, assigned
in a uniform random order to the threads. We used a range of workload distributions.
A sample label, say, 2/49/49 on the top of a column of performance plots refers to a
distribution {Op : 2%, {PutV : 24.5%, RemV : 24.5%}, {PutE : 24.5%, RemE : 24.5%}}.
We used a multi-core system with 28 cores (56 logical threads). The results shown in Figure
2 demonstrate the scalability of the proposed methods. We observe that the presented
algorithm outperforms Stinger and Ligra in several cases by orders of magnitude. In the full
version [8] we present additional results on real-life graphs as well as experimental comparison
of the memory-footprints of the methods that further highlights the efficacy of our method.

7 14 28 56

100

101

102

103

2/49/49

Stinger
Ligra
PG-Cn
PG-Icn

(a)
7 14 28 56

100

101

102

103
5/47.5/47.5

(b)
7 14 28 56

101

102

103
10/45/45

(c)

7 14 28 56

10−0.5

100

Ligra
PG-Cn
PG-Icn

(d)
7 14 28 56

10−1

100

(e)
7 14 28 56

100

101

(f)

7 14 28 56
10−1

100 Ligra
PG-Cn
PG-Icn

(g)
7 14 28 56

10−0.5

100

(h)
7 14 28 56

100

(i)

Figure 2 Latency of the executions containing Op: (1) BFS ((a), (b), and (c)) on a graph of size
|V |= 131K and |E|= 2.44M , (2) SSSP ((d), (e), and (f)) on a graph of size |V |= 8K and |E|= 80K,
and (3) BC ((g), (h), and (i)) on a graph of size |V |= 16K and |E|= 160K. X-axis and Y-axis units
are the number of threads and time in second, respectively.

Complexity Analysis. Given a graph G = (V, E), denote |V |= n, |E|= m, maxv∈V (δv) = δ,
where δv is the degree of vertex v. Define the (static) state of a graph G as a tuple
SG = (n, m, δ). Let X be a concurrent execution given as a set of operations. Thus, for
an o ∈ X, type(o) ∈ A , where type(o) denotes the type of o and A is the ADT. Let Io

and Co be the interval contention [2] and point contention [4], respectively, for an o ∈ X.
Denote Ĩo = (Io − 1), the total number of concurrent operation calls other than o itself
(those responsible for a possible cost escalation) that were invoked between the invocation
and response of o. Denote the worst-case cost of o, given o is invoked at an atomic time
point when state of G was SG by Wo,SG

. Wo,SG
for each operation type is given in Table 1

of [8]. The states of G, being tuples, are ordered by dictionary order. In a dynamic setting,
Wo,SG

is upper-bounded by the worst-case cost of o as performed in a static setting over the
worst-case state, during the lifetime of o, of G. It can be shown that the worst-case state of
G that o can encounter is SG,o = (O(n + Ĩo), O(m + Ĩo), O(δ + Ĩo)).

DISC 2021

52:4 Brief Announcement: Non-Blocking Dynamic Unbounded Graphs

▶ Theorem 1.Denote Q={BFS, SSSP, BC}, MV ={PutV, RemV}, ME={PutE, RemE},
and M = MV ∪ ME. Let δe be the degree of vertex whose edge modification happens. Denote
XU = {o ∈ X | type(o) ∈ U , U ⊆ A }, where A is the ADT as defined before. Let
Io,U and Co,U denote the interval and point contentions, respectively, of o pertaining to the
operation calls o ∈ {XU ∪ {o}}. Accordingly, Ĩo,U = Io,U −1. Considering the queries q ∈ Q

performed by PG-Cn, the worst-case amortized cost per operation AX for an execution X s.t.
type(o) ∈ M ∪ {q} ∀o ∈ X, and q ∈ Q is AX = AX(M) + Co,M

|X|
∑

o∈XQ

(
Wo,SG,o

+ Ĩo,M

)
,

where AX(M) = Co,MV

|X|
∑

o∈XMV
Wo,SG,o

+ 1
|X|

∑
o∈XMX

Wo,SG,o
+ Co,ME

|X|
∑

o∈XME
O(δe).

The proof of Theorem 1 is available in the full version [8].

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic

Snapshots of Shared Memory. Journal of the ACM, 40(4):873–890, 1993.
2 Yehuda Afek, Gideon Stupp, and Dan Touitou. Long Lived Adaptive Splitter and Applications.

Distributed Comput., 15(2):67–86, 2002.
3 Parwat Singh Anjana, Sweta Kumari, Sathya Peri, Sachin Rathor, and Archit Somani. An

Efficient Framework for Optimistic Concurrent Execution of Smart Contracts. In (PDP) 2019,
pages 83–92, 2019.

4 Hagit Attiya and Arie Fouren. Algorithms Adapting to Point Contention. J. ACM, 50(4):444–
468, 2003.

5 Sumit Bhatia, Bapi Chatterjee, Deepak Nathani, and Manohar Kaul. A Persistent Homology
Perspective to the Link Prediction Problem. In Complex Networks, page (to appear), 2019.

6 Salvatore Catanese, Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro
Provetti. Crawling Facebook for Social Network Analysis Purposes. In (WIMS), page 52,
2011.

7 Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for
graph mining. In SDM, pages 442–446, 2004.

8 Bapi Chatterjee, Sathya Peri, and Muktikanta Sa. Dynamic Graph Operations: A Consistent
Non-blocking Approach. CoRR, abs/2003.01697, 2020.

9 Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang,
Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the pulse of a fast-changing
and connected world. In EuroSys, pages 85–98, 2012.

10 Antonio del Sol, Hirotomo Fujihashi, and Paul O’Meara. Topology of Small-world Networks
of Protein–Protein Complex Structures. Bioinformatics, 21(8):1311–1315, 2005.

11 Laxman Dhulipala, Guy E Blelloch, and Julian Shun. Low-latency graph streaming using
compressed purely-functional trees. In 40th PLDI, pages 918–934, 2019.

12 D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High Performance Data Structure
for Streaming Graphs. In HPEC, 2012.

13 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

14 Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. Time-evolving Graph
Processing at Scale. In GRADES, page 5, 2016.

15 Wole Jaiyeoba and K. Skadron. Graphtinker: A high performance data structure for dynamic
graph processing. IPDPS, pages 1030–1041, 2019.

16 P. Kumar and H. Huang. Graphone: A data store for real-time analytics on evolving graphs.
In FAST, 2019.

17 Julian Shun and Guy E. Blelloch. Ligra: a Lightweight Graph Processing Framework for
Shared Memory. In PPoPP, pages 135–146, 2013.

18 Keval Vora, R. Gupta, and Guoqing Xu. Kickstarter: Fast and accurate computations on
streaming graphs via trimmed approximations. ASPLOS, 2017.

	1 Introduction
	2 PANIGRAHAM

