The splay-list: A distribution-adaptive concurrent skip-list
Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2020. The splay-list: A distribution-adaptive concurrent skip-list. 34th International Symposium on Distributed Computing. DISC: Symposium on Distributed ComputingLIPIcs vol. 179, 3:1-3:18.
Download
Conference Paper
| Published
| English
Author
Aksenov, Vitaly;
Alistarh, Dan-AdrianISTA ;
Drozdova, Alexandra;
Mohtashami, Amirkeivan
Department
Abstract
The design and implementation of efficient concurrent data structures have
seen significant attention. However, most of this work has focused on
concurrent data structures providing good \emph{worst-case} guarantees. In real
workloads, objects are often accessed at different rates, since access
distributions may be non-uniform. Efficient distribution-adaptive data
structures are known in the sequential case, e.g. the splay-trees; however,
they often are hard to translate efficiently in the concurrent case.
In this paper, we investigate distribution-adaptive concurrent data
structures and propose a new design called the splay-list. At a high level, the
splay-list is similar to a standard skip-list, with the key distinction that
the height of each element adapts dynamically to its access rate: popular
elements ``move up,'' whereas rarely-accessed elements decrease in height. We
show that the splay-list provides order-optimal amortized complexity bounds for
a subset of operations while being amenable to efficient concurrent
implementation. Experimental results show that the splay-list can leverage
distribution-adaptivity to improve on the performance of classic concurrent
designs, and can outperform the only previously-known distribution-adaptive
design in certain settings.
Publishing Year
Date Published
2020-08-03
Proceedings Title
34th International Symposium on Distributed Computing
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
Vitaly Aksenov: Government of Russian Federation (Grant 08-08).
Dan Alistarh: ERC Starting Grant 805223 ScaleML.
Volume
179
Page
3:1-3:18
Conference
DISC: Symposium on Distributed Computing
Conference Location
Freiburg, Germany
Conference Date
2020-10-12 – 2020-10-16
ISBN
ISSN
IST-REx-ID
Cite this
Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. In: 34th International Symposium on Distributed Computing. Vol 179. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020:3:1-3:18. doi:10.4230/LIPIcs.DISC.2020.3
Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2020). The splay-list: A distribution-adaptive concurrent skip-list. In 34th International Symposium on Distributed Computing (Vol. 179, p. 3:1-3:18). Freiburg, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.DISC.2020.3
Aksenov, Vitaly, Dan-Adrian Alistarh, Alexandra Drozdova, and Amirkeivan Mohtashami. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” In 34th International Symposium on Distributed Computing, 179:3:1-3:18. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.DISC.2020.3.
V. Aksenov, D.-A. Alistarh, A. Drozdova, and A. Mohtashami, “The splay-list: A distribution-adaptive concurrent skip-list,” in 34th International Symposium on Distributed Computing, Freiburg, Germany, 2020, vol. 179, p. 3:1-3:18.
Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. 2020. The splay-list: A distribution-adaptive concurrent skip-list. 34th International Symposium on Distributed Computing. DISC: Symposium on Distributed ComputingLIPIcs vol. 179, 3:1-3:18.
Aksenov, Vitaly, et al. “The Splay-List: A Distribution-Adaptive Concurrent Skip-List.” 34th International Symposium on Distributed Computing, vol. 179, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, p. 3:1-3:18, doi:10.4230/LIPIcs.DISC.2020.3.
All files available under the following license(s):
Creative Commons Attribution 3.0 Unported (CC BY 3.0):
Main File(s)
File Name
2020_LIPIcs_Aksenov.pdf
740.36 KB
Access Level
Open Access
Date Uploaded
2021-03-11
MD5 Checksum
a626a9c47df52b6f6d97edd910dae4ba
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2008.01009