Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation

Dimchev GA, Amiri B, Humphries AC, Schaks M, Dimchev V, Stradal TEB, Faix J, Krause M, Way M, Falcke M, Rottner K. 2020. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science. 133(7), jcs239020.

Download
OA 2020_JournalCellScience_Dimchev.pdf 13.49 MB [Published Version]

Journal Article | Published | English
Author
Dimchev, Georgi AISTA ; Amiri, Behnam; Humphries, Ashley C.; Schaks, Matthias; Dimchev, Vanessa; Stradal, Theresia E. B.; Faix, Jan; Krause, Matthias; Way, Michael; Falcke, Martin; Rottner, Klemens
Department
Abstract
Efficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin-binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex, an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell-edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.This article has an associated First Person interview with the first author of the paper.
Keywords
Publishing Year
Date Published
2020-04-09
Journal Title
Journal of Cell Science
Publisher
The Company of Biologists
Acknowledgement
This work was supported in part by Deutsche Forschungsgemeinschaft (DFG)[GRK2223/1, RO2414/5-1 (to K.R.), FA350/11-1 (to M.F.) and FA330/11-1 (to J.F.)],as well as by intramural funding from the Helmholtz Association (to T.E.B.S. andK.R.). G.D. was additionally funded by the Austrian Science Fund (FWF) LiseMeitner Program [M-2495]. A.C.H. and M.W. are supported by the Francis CrickInstitute, which receives its core funding from Cancer Research UK [FC001209], theMedical Research Council [FC001209] and the Wellcome Trust [FC001209]. M.K. issupported by the Biotechnology and Biological Sciences Research Council [BB/F011431/1, BB/J000590/1, BB/N000226/1]. Deposited in PMC for release after 6months.
Volume
133
Issue
7
Article Number
jcs239020
ISSN
eISSN
IST-REx-ID

Cite this

Dimchev GA, Amiri B, Humphries AC, et al. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science. 2020;133(7). doi:10.1242/jcs.239020
Dimchev, G. A., Amiri, B., Humphries, A. C., Schaks, M., Dimchev, V., Stradal, T. E. B., … Rottner, K. (2020). Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.239020
Dimchev, Georgi A, Behnam Amiri, Ashley C. Humphries, Matthias Schaks, Vanessa Dimchev, Theresia E. B. Stradal, Jan Faix, et al. “Lamellipodin Tunes Cell Migration by Stabilizing Protrusions and Promoting Adhesion Formation.” Journal of Cell Science. The Company of Biologists, 2020. https://doi.org/10.1242/jcs.239020.
G. A. Dimchev et al., “Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation,” Journal of Cell Science, vol. 133, no. 7. The Company of Biologists, 2020.
Dimchev GA, Amiri B, Humphries AC, Schaks M, Dimchev V, Stradal TEB, Faix J, Krause M, Way M, Falcke M, Rottner K. 2020. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of Cell Science. 133(7), jcs239020.
Dimchev, Georgi A., et al. “Lamellipodin Tunes Cell Migration by Stabilizing Protrusions and Promoting Adhesion Formation.” Journal of Cell Science, vol. 133, no. 7, jcs239020, The Company of Biologists, 2020, doi:10.1242/jcs.239020.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-09-17
Embargo End Date
2020-10-10
MD5 Checksum
ba917e551acc4ece2884b751434df9ae


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 32094266
PubMed | Europe PMC

Search this title in

Google Scholar