Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots
Hörmayer L, Montesinos López JC, Marhavá P, Benková E, Yoshida S, Friml J. 2020. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. 117(26), 202003346.
Download
2020_PNAS_Hoermayer.pdf
2.41 MB
Journal Article
| Published
| English
Scopus indexed
Author
Department
Grant
Abstract
Wound healing in plant tissues, consisting of rigid cell wall-encapsulated cells, represents a considerable challenge and occurs through largely unknown mechanisms distinct from those in animals. Owing to their inability to migrate, plant cells rely on targeted cell division and expansion to regenerate wounds. Strict coordination of these wound-induced responses is essential to ensure efficient, spatially restricted wound healing. Single-cell tracking by live imaging allowed us to gain mechanistic insight into the wound perception and coordination of wound responses after laser-based wounding in Arabidopsis root. We revealed a crucial contribution of the collapse of damaged cells in wound perception and detected an auxin increase specific to cells immediately adjacent to the wound. This localized auxin increase balances wound-induced cell expansion and restorative division rates in a dose-dependent manner, leading to tumorous overproliferation when the canonical TIR1 auxin signaling is disrupted. Auxin and wound-induced turgor pressure changes together also spatially define the activation of key components of regeneration, such as the transcription regulator ERF115. Our observations suggest that the wound signaling involves the sensing of collapse of damaged cells and a local auxin signaling activation to coordinate the downstream transcriptional responses in the immediate wound vicinity.
Publishing Year
Date Published
2020-06-30
Journal Title
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Acknowledged SSUs
Volume
117
Issue
26
Article Number
202003346
ISSN
eISSN
IST-REx-ID
Cite this
Hörmayer L, Montesinos López JC, Marhavá P, Benková E, Yoshida S, Friml J. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. 2020;117(26). doi:10.1073/pnas.2003346117
Hörmayer, L., Montesinos López, J. C., Marhavá, P., Benková, E., Yoshida, S., & Friml, J. (2020). Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2003346117
Hörmayer, Lukas, Juan C Montesinos López, Petra Marhavá, Eva Benková, Saiko Yoshida, and Jiří Friml. “Wounding-Induced Changes in Cellular Pressure and Localized Auxin Signalling Spatially Coordinate Restorative Divisions in Roots.” Proceedings of the National Academy of Sciences. Proceedings of the National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2003346117.
L. Hörmayer, J. C. Montesinos López, P. Marhavá, E. Benková, S. Yoshida, and J. Friml, “Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots,” Proceedings of the National Academy of Sciences, vol. 117, no. 26. Proceedings of the National Academy of Sciences, 2020.
Hörmayer L, Montesinos López JC, Marhavá P, Benková E, Yoshida S, Friml J. 2020. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences. 117(26), 202003346.
Hörmayer, Lukas, et al. “Wounding-Induced Changes in Cellular Pressure and Localized Auxin Signalling Spatially Coordinate Restorative Divisions in Roots.” Proceedings of the National Academy of Sciences, vol. 117, no. 26, 202003346, Proceedings of the National Academy of Sciences, 2020, doi:10.1073/pnas.2003346117.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
File Name
2020_PNAS_Hoermayer.pdf
2.41 MB
Access Level
Open Access
Date Uploaded
2020-06-23
MD5 Checksum
908b09437680181de9990915f2113aca
Material in ISTA:
Dissertation containing ISTA record
External material:
Press Release
Description
News on IST Homepage
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 32541049
PubMed | Europe PMC