Near-linear time algorithms for Streett objectives in graphs and MDPs

Chatterjee K, Dvorák W, Henzinger MH, Svozil A. 2019. Near-linear time algorithms for Streett objectives in graphs and MDPs. Leibniz International Proceedings in Informatics. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 7.

Download
OA 2019_LIPIcs_Chatterjee.pdf 730.11 KB [Published Version]

Conference Paper | Published | English

Scopus indexed
Author
Chatterjee, KrishnenduISTA ; Dvorák, Wolfgang; Henzinger, MonikaISTA ; Svozil, Alexander
Department
Series Title
LIPIcs
Abstract
The fundamental model-checking problem, given as input a model and a specification, asks for the algorithmic verification of whether the model satisfies the specification. Two classical models for reactive systems are graphs and Markov decision processes (MDPs). A basic specification formalism in the verification of reactive systems is the strong fairness (aka Streett) objective, where given different types of requests and corresponding grants, the requirement is that for each type, if the request event happens infinitely often, then the corresponding grant event must also happen infinitely often. All omega-regular objectives can be expressed as Streett objectives and hence they are canonical in verification. Consider graphs/MDPs with n vertices, m edges, and a Streett objectives with k pairs, and let b denote the size of the description of the Streett objective for the sets of requests and grants. The current best-known algorithm for the problem requires time O(min(n^2, m sqrt{m log n}) + b log n). In this work we present randomized near-linear time algorithms, with expected running time O~(m + b), where the O~ notation hides poly-log factors. Our randomized algorithms are near-linear in the size of the input, and hence optimal up to poly-log factors.
Publishing Year
Date Published
2019-08-01
Proceedings Title
Leibniz International Proceedings in Informatics
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Volume
140
Article Number
7
Conference
CONCUR: International Conference on Concurrency Theory
Conference Location
Amsterdam, Netherlands
Conference Date
2019-08-27 – 2019-08-30
IST-REx-ID

Cite this

Chatterjee K, Dvorák W, Henzinger MH, Svozil A. Near-linear time algorithms for Streett objectives in graphs and MDPs. In: Leibniz International Proceedings in Informatics. Vol 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2019. doi:10.4230/LIPICS.CONCUR.2019.7
Chatterjee, K., Dvorák, W., Henzinger, M. H., & Svozil, A. (2019). Near-linear time algorithms for Streett objectives in graphs and MDPs. In Leibniz International Proceedings in Informatics (Vol. 140). Amsterdam, Netherlands: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPICS.CONCUR.2019.7
Chatterjee, Krishnendu, Wolfgang Dvorák, Monika H Henzinger, and Alexander Svozil. “Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs.” In Leibniz International Proceedings in Informatics, Vol. 140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. https://doi.org/10.4230/LIPICS.CONCUR.2019.7.
K. Chatterjee, W. Dvorák, M. H. Henzinger, and A. Svozil, “Near-linear time algorithms for Streett objectives in graphs and MDPs,” in Leibniz International Proceedings in Informatics, Amsterdam, Netherlands, 2019, vol. 140.
Chatterjee K, Dvorák W, Henzinger MH, Svozil A. 2019. Near-linear time algorithms for Streett objectives in graphs and MDPs. Leibniz International Proceedings in Informatics. CONCUR: International Conference on Concurrency Theory, LIPIcs, vol. 140, 7.
Chatterjee, Krishnendu, et al. “Near-Linear Time Algorithms for Streett Objectives in Graphs and MDPs.” Leibniz International Proceedings in Informatics, vol. 140, 7, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, doi:10.4230/LIPICS.CONCUR.2019.7.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2019-10-01
MD5 Checksum
e1f0e4061212454574f34a1368d018ec


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar