Poisson–Delaunay Mosaics of Order k
Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878.
Download
Journal Article
| Published
| English
Scopus indexed
Department
Grant
Abstract
The order-k Voronoi tessellation of a locally finite set 𝑋⊆ℝ𝑛 decomposes ℝ𝑛 into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold.
Publishing Year
Date Published
2019-12-01
Journal Title
Discrete and Computational Geometry
Publisher
Springer
Volume
62
Issue
4
Page
865–878
ISSN
eISSN
IST-REx-ID
Cite this
Edelsbrunner H, Nikitenko A. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 2019;62(4):865–878. doi:10.1007/s00454-018-0049-2
Edelsbrunner, H., & Nikitenko, A. (2019). Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. Springer. https://doi.org/10.1007/s00454-018-0049-2
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry. Springer, 2019. https://doi.org/10.1007/s00454-018-0049-2.
H. Edelsbrunner and A. Nikitenko, “Poisson–Delaunay Mosaics of Order k,” Discrete and Computational Geometry, vol. 62, no. 4. Springer, pp. 865–878, 2019.
Edelsbrunner H, Nikitenko A. 2019. Poisson–Delaunay Mosaics of Order k. Discrete and Computational Geometry. 62(4), 865–878.
Edelsbrunner, Herbert, and Anton Nikitenko. “Poisson–Delaunay Mosaics of Order K.” Discrete and Computational Geometry, vol. 62, no. 4, Springer, 2019, pp. 865–878, doi:10.1007/s00454-018-0049-2.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2019-02-06
MD5 Checksum
f9d00e166efaccb5a76bbcbb4dcea3b4
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 1709.09380