Relaminarization by steady modification of the streamwise velocity profile in a pipe

Kühnen J, Scarselli D, Schaner M, Hof B. 2018. Relaminarization by steady modification of the streamwise velocity profile in a pipe. Flow Turbulence and Combustion. 100(4), 919–942.

Download
OA 2018_FlowTurbulenceCombust_Kuehnen.pdf 2.21 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Department
Abstract
We show that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes. Two different devices, a stationary obstacle (inset) and a device which injects fluid through an annular gap close to the wall, are used to control the flow. Both devices modify the streamwise velocity profile such that the flow in the center of the pipe is decelerated and the flow in the near wall region is accelerated. We present measurements with stereoscopic particle image velocimetry to investigate and capture the development of the relaminarizing flow downstream these devices and the specific circumstances responsible for relaminarization. We find total relaminarization up to Reynolds numbers of 6000, where the skin friction in the far downstream distance is reduced by a factor of 3.4 due to relaminarization. In a smooth straight pipe the flow remains completely laminar downstream of the control. Furthermore, we show that transient (temporary) relaminarization in a spatially confined region right downstream the devices occurs also at much higher Reynolds numbers, accompanied by a significant local skin friction drag reduction. The underlying physical mechanism of relaminarization is attributed to a weakening of the near-wall turbulence production cycle.
Publishing Year
Date Published
2018-01-01
Journal Title
Flow Turbulence and Combustion
Publisher
Springer
Volume
100
Issue
4
Page
919 - 942
IST-REx-ID
422

Cite this

Kühnen J, Scarselli D, Schaner M, Hof B. Relaminarization by steady modification of the streamwise velocity profile in a pipe. Flow Turbulence and Combustion. 2018;100(4):919-942. doi:10.1007/s10494-018-9896-4
Kühnen, J., Scarselli, D., Schaner, M., & Hof, B. (2018). Relaminarization by steady modification of the streamwise velocity profile in a pipe. Flow Turbulence and Combustion. Springer. https://doi.org/10.1007/s10494-018-9896-4
Kühnen, Jakob, Davide Scarselli, Markus Schaner, and Björn Hof. “Relaminarization by Steady Modification of the Streamwise Velocity Profile in a Pipe.” Flow Turbulence and Combustion. Springer, 2018. https://doi.org/10.1007/s10494-018-9896-4.
J. Kühnen, D. Scarselli, M. Schaner, and B. Hof, “Relaminarization by steady modification of the streamwise velocity profile in a pipe,” Flow Turbulence and Combustion, vol. 100, no. 4. Springer, pp. 919–942, 2018.
Kühnen J, Scarselli D, Schaner M, Hof B. 2018. Relaminarization by steady modification of the streamwise velocity profile in a pipe. Flow Turbulence and Combustion. 100(4), 919–942.
Kühnen, Jakob, et al. “Relaminarization by Steady Modification of the Streamwise Velocity Profile in a Pipe.” Flow Turbulence and Combustion, vol. 100, no. 4, Springer, 2018, pp. 919–42, doi:10.1007/s10494-018-9896-4.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-17
MD5 Checksum
d7c0bade150faabca150b0a9986e60ca


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar