Optimizing binary MRFs via extended roof duality

Rother C, Kolmogorov V, Lempitsky V, Szummer M. 2007. Optimizing binary MRFs via extended roof duality. CVPR: Computer Vision and Pattern Recognition.

Download
No fulltext has been uploaded. References only!

Conference Paper | Published
Author
Rother, Carsten; Kolmogorov, VladimirISTA; Lempitsky, Victor; Szummer, Martin
Abstract
Many computer vision applications rely on the efficient optimization of challenging, so-called non-submodular, binary pairwise MRFs. A promising graph cut based approach for optimizing such MRFs known as "roof duality" was recently introduced into computer vision. We study two methods which extend this approach. First, we discuss an efficient implementation of the "probing" technique introduced recently by Boros et al. [5]. It simplifies the MRF while preserving the global optimum. Our code is 400-700 faster on some graphs than the implementation of [5]. Second, we present a new technique which takes an arbitrary input labeling and tries to improve its energy. We give theoretical characterizations of local minima of this procedure. We applied both techniques to many applications, including image segmentation, new view synthesis, superresolution, diagram recognition, parameter learning, texture restoration, and image deconvolution. For several applications we see that we are able to find the global minimum very efficiently, and considerably outperform the original roof duality approach. In comparison to existing techniques, such as graph cut, TRW, BP, ICM, and simulated annealing, we nearly always find a lower energy.
Publishing Year
Date Published
2007-07-16
Publisher
IEEE
Conference
CVPR: Computer Vision and Pattern Recognition
IST-REx-ID

Cite this

Rother C, Kolmogorov V, Lempitsky V, Szummer M. Optimizing binary MRFs via extended roof duality. In: IEEE; 2007. doi:10.1109/CVPR.2007.383203
Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007). Optimizing binary MRFs via extended roof duality. Presented at the CVPR: Computer Vision and Pattern Recognition, IEEE. https://doi.org/10.1109/CVPR.2007.383203
Rother, Carsten, Vladimir Kolmogorov, Victor Lempitsky, and Martin Szummer. “Optimizing Binary MRFs via Extended Roof Duality.” IEEE, 2007. https://doi.org/10.1109/CVPR.2007.383203.
C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, “Optimizing binary MRFs via extended roof duality,” presented at the CVPR: Computer Vision and Pattern Recognition, 2007.
Rother C, Kolmogorov V, Lempitsky V, Szummer M. 2007. Optimizing binary MRFs via extended roof duality. CVPR: Computer Vision and Pattern Recognition.
Rother, Carsten, et al. Optimizing Binary MRFs via Extended Roof Duality. IEEE, 2007, doi:10.1109/CVPR.2007.383203.

Link(s) to Main File(s)
Access Level
Restricted Closed Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar