Local eigenvalue density for general MANOVA matrices

Erdös L, Farrell B. 2013. Local eigenvalue density for general MANOVA matrices. Journal of Statistical Physics. 152(6), 1003–1032.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Erdös, LászlóISTA ; Farrell, Brendan
Department
Abstract
We consider random n×n matrices of the form (XX*+YY*)^{-1/2}YY*(XX*+YY*)^{-1/2}, where X and Y have independent entries with zero mean and variance one. These matrices are the natural generalization of the Gaussian case, which are known as MANOVA matrices and which have joint eigenvalue density given by the third classical ensemble, the Jacobi ensemble. We show that, away from the spectral edge, the eigenvalue density converges to the limiting density of the Jacobi ensemble even on the shortest possible scales of order 1/n (up to log n factors). This result is the analogue of the local Wigner semicircle law and the local Marchenko-Pastur law for general MANOVA matrices.
Publishing Year
Date Published
2013-07-18
Journal Title
Journal of Statistical Physics
Publisher
Springer
Volume
152
Issue
6
Page
1003 - 1032
IST-REx-ID

Cite this

Erdös L, Farrell B. Local eigenvalue density for general MANOVA matrices. Journal of Statistical Physics. 2013;152(6):1003-1032. doi:10.1007/s10955-013-0807-8
Erdös, L., & Farrell, B. (2013). Local eigenvalue density for general MANOVA matrices. Journal of Statistical Physics. Springer. https://doi.org/10.1007/s10955-013-0807-8
Erdös, László, and Brendan Farrell. “Local Eigenvalue Density for General MANOVA Matrices.” Journal of Statistical Physics. Springer, 2013. https://doi.org/10.1007/s10955-013-0807-8.
L. Erdös and B. Farrell, “Local eigenvalue density for general MANOVA matrices,” Journal of Statistical Physics, vol. 152, no. 6. Springer, pp. 1003–1032, 2013.
Erdös L, Farrell B. 2013. Local eigenvalue density for general MANOVA matrices. Journal of Statistical Physics. 152(6), 1003–1032.
Erdös, László, and Brendan Farrell. “Local Eigenvalue Density for General MANOVA Matrices.” Journal of Statistical Physics, vol. 152, no. 6, Springer, 2013, pp. 1003–32, doi:10.1007/s10955-013-0807-8.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1207.0031

Search this title in

Google Scholar