On the memory hardness of data independent password hashing functions
Alwen JF, Gazi P, Kamath Hosdurg C, Klein K, Osang GF, Pietrzak KZ, Reyzin L, Rolinek M, Rybar M. 2018. On the memory hardness of data independent password hashing functions. Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ASIACCS: Asia Conference on Computer and Communications Security , 51–65.
Download (ext.)
https://eprint.iacr.org/2016/783
[Submitted Version]
Conference Paper
| Published
| English
Scopus indexed
Author
Alwen, Joel FISTA;
Gazi, Peter;
Kamath Hosdurg, ChethanISTA;
Klein, KarenISTA;
Osang, Georg FISTA ;
Pietrzak, Krzysztof ZISTA ;
Reyzin, Lenoid;
Rolinek, MichalISTA;
Rybar, MichalISTA
Department
Abstract
We show attacks on five data-independent memory-hard functions (iMHF) that were submitted to the password hashing competition (PHC). Informally, an MHF is a function which cannot be evaluated on dedicated hardware, like ASICs, at significantly lower hardware and/or energy cost than evaluating a single instance on a standard single-core architecture. Data-independent means the memory access pattern of the function is independent of the input; this makes iMHFs harder to construct than data-dependent ones, but the latter can be attacked by various side-channel attacks. Following [Alwen-Blocki'16], we capture the evaluation of an iMHF as a directed acyclic graph (DAG). The cumulative parallel pebbling complexity of this DAG is a measure for the hardware cost of evaluating the iMHF on an ASIC. Ideally, one would like the complexity of a DAG underlying an iMHF to be as close to quadratic in the number of nodes of the graph as possible. Instead, we show that (the DAGs underlying) the following iMHFs are far from this bound: Rig.v2, TwoCats and Gambit each having an exponent no more than 1.75. Moreover, we show that the complexity of the iMHF modes of the PHC finalists Pomelo and Lyra2 have exponents at most 1.83 and 1.67 respectively. To show this we investigate a combinatorial property of each underlying DAG (called its depth-robustness. By establishing upper bounds on this property we are then able to apply the general technique of [Alwen-Block'16] for analyzing the hardware costs of an iMHF.
Publishing Year
Date Published
2018-06-01
Proceedings Title
Proceedings of the 2018 on Asia Conference on Computer and Communication Security
Publisher
ACM
Acknowledgement
Leonid Reyzin was supported in part by IST Austria and by US NSF grants 1012910, 1012798, and 1422965; this research was performed while he was visiting IST Austria.
Page
51 - 65
Conference
ASIACCS: Asia Conference on Computer and Communications Security
Conference Location
Incheon, Republic of Korea
Conference Date
2018-06-04 – 2018-06-08
IST-REx-ID
Cite this
Alwen JF, Gazi P, Kamath Hosdurg C, et al. On the memory hardness of data independent password hashing functions. In: Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ACM; 2018:51-65. doi:10.1145/3196494.3196534
Alwen, J. F., Gazi, P., Kamath Hosdurg, C., Klein, K., Osang, G. F., Pietrzak, K. Z., … Rybar, M. (2018). On the memory hardness of data independent password hashing functions. In Proceedings of the 2018 on Asia Conference on Computer and Communication Security (pp. 51–65). Incheon, Republic of Korea: ACM. https://doi.org/10.1145/3196494.3196534
Alwen, Joel F, Peter Gazi, Chethan Kamath Hosdurg, Karen Klein, Georg F Osang, Krzysztof Z Pietrzak, Lenoid Reyzin, Michal Rolinek, and Michal Rybar. “On the Memory Hardness of Data Independent Password Hashing Functions.” In Proceedings of the 2018 on Asia Conference on Computer and Communication Security, 51–65. ACM, 2018. https://doi.org/10.1145/3196494.3196534.
J. F. Alwen et al., “On the memory hardness of data independent password hashing functions,” in Proceedings of the 2018 on Asia Conference on Computer and Communication Security, Incheon, Republic of Korea, 2018, pp. 51–65.
Alwen JF, Gazi P, Kamath Hosdurg C, Klein K, Osang GF, Pietrzak KZ, Reyzin L, Rolinek M, Rybar M. 2018. On the memory hardness of data independent password hashing functions. Proceedings of the 2018 on Asia Conference on Computer and Communication Security. ASIACCS: Asia Conference on Computer and Communications Security , 51–65.
Alwen, Joel F., et al. “On the Memory Hardness of Data Independent Password Hashing Functions.” Proceedings of the 2018 on Asia Conference on Computer and Communication Security, ACM, 2018, pp. 51–65, doi:10.1145/3196494.3196534.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer