Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning
Aziz W, Wang W, Kesaf S, Mohamed A, Fukazawa Y, Shigemoto R. 2014. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. PNAS. 111(1), E194–E202.
Download (ext.)
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890840/
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Aziz, Wajeeha;
Wang, Wen;
Kesaf, SebnemISTA;
Mohamed, Alsayed;
Fukazawa, Yugo;
Shigemoto, RyuichiISTA
Department
Abstract
Long-lasting memories are formed when the stimulus is temporally distributed (spacing effect). However, the synaptic mechanisms underlying this robust phenomenon and the precise time course of the synaptic modifications that occur during learning remain unclear. Here we examined the adaptation of horizontal optokinetic response in mice that underwent 1 h of massed and spaced training at varying intervals. Despite similar acquisition by all training protocols, 1 h of spacing produced the highest memory retention at 24 h, which lasted for 1 mo. The distinct kinetics of memory are strongly correlated with the reduction of floccular parallel fiber-Purkinje cell synapses but not with AMPA receptor (AMPAR) number and synapse size. After the spaced training, we observed 25%, 23%, and 12% reduction in AMPAR density, synapse size, and synapse number, respectively. Four hours after the spaced training, half of the synapses and Purkinje cell spines had been eliminated, whereas AMPAR density and synapse size were recovered in remaining synapses. Surprisingly, massed training also produced long-term memory and halving of synapses; however, this occurred slowly over days, and the memory lasted for only 1 wk. This distinct kinetics of structural plasticity may serve as a basis for unique temporal profiles in the formation and decay of memory with or without intervals.
Publishing Year
Date Published
2014-01-07
Journal Title
PNAS
Publisher
National Academy of Sciences
Acknowledgement
his work was supported by Solution Oriented Research for Science and Technology (R.S.), Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (Y.F.), and Grants-in-Aid for Scientific Research on Priority Areas-Molecular Brain Sciences 16300114 (to R.S.) and 18022043 (to Y.F.).
Volume
111
Issue
1
Page
E194 - E202
IST-REx-ID
Cite this
Aziz W, Wang W, Kesaf S, Mohamed A, Fukazawa Y, Shigemoto R. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. PNAS. 2014;111(1):E194-E202. doi:10.1073/pnas.1303317110
Aziz, W., Wang, W., Kesaf, S., Mohamed, A., Fukazawa, Y., & Shigemoto, R. (2014). Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1303317110
Aziz, Wajeeha, Wen Wang, Sebnem Kesaf, Alsayed Mohamed, Yugo Fukazawa, and Ryuichi Shigemoto. “Distinct Kinetics of Synaptic Structural Plasticity, Memory Formation, and Memory Decay in Massed and Spaced Learning.” PNAS. National Academy of Sciences, 2014. https://doi.org/10.1073/pnas.1303317110.
W. Aziz, W. Wang, S. Kesaf, A. Mohamed, Y. Fukazawa, and R. Shigemoto, “Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning,” PNAS, vol. 111, no. 1. National Academy of Sciences, pp. E194–E202, 2014.
Aziz W, Wang W, Kesaf S, Mohamed A, Fukazawa Y, Shigemoto R. 2014. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. PNAS. 111(1), E194–E202.
Aziz, Wajeeha, et al. “Distinct Kinetics of Synaptic Structural Plasticity, Memory Formation, and Memory Decay in Massed and Spaced Learning.” PNAS, vol. 111, no. 1, National Academy of Sciences, 2014, pp. E194–202, doi:10.1073/pnas.1303317110.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access