Relaxing full-codebook security: A refined analysis of key-length extension schemes

Gazi P, Lee J, Seurin Y, Steinberger J, Tessaro S. 2015. Relaxing full-codebook security: A refined analysis of key-length extension schemes. 9054, 319–341.

Download (ext.)
OA http://eprint.iacr.org/2015/397 [Submitted Version]

Conference Paper | Published | English

Scopus indexed
Author
Gazi, PeterISTA; Lee, Jooyoung; Seurin, Yannick; Steinberger, John; Tessaro, Stefano
Department
Series Title
LNCS
Abstract
We revisit the security (as a pseudorandom permutation) of cascading-based constructions for block-cipher key-length extension. Previous works typically considered the extreme case where the adversary is given the entire codebook of the construction, the only complexity measure being the number qe of queries to the underlying ideal block cipher, representing adversary’s secret-key-independent computation. Here, we initiate a systematic study of the more natural case of an adversary restricted to adaptively learning a number qc of plaintext/ciphertext pairs that is less than the entire codebook. For any such qc, we aim to determine the highest number of block-cipher queries qe the adversary can issue without being able to successfully distinguish the construction (under a secret key) from a random permutation. More concretely, we show the following results for key-length extension schemes using a block cipher with n-bit blocks and κ-bit keys: Plain cascades of length ℓ=2r+1 are secure whenever qcqre≪2r(κ+n), qc≪2κ and qe≪22κ. The bound for r=1 also applies to two-key triple encryption (as used within Triple DES). The r-round XOR-cascade is secure as long as qcqre≪2r(κ+n), matching an attack by Gaži (CRYPTO 2013). We fully characterize the security of Gaži and Tessaro’s two-call
Publishing Year
Date Published
2015-08-12
Publisher
Springer
Volume
9054
Page
319 - 341
Conference
FSE: Fast Software Encryption
Conference Location
Istanbul, Turkey
Conference Date
2015-03-08 – 2015-03-11
IST-REx-ID

Cite this

Gazi P, Lee J, Seurin Y, Steinberger J, Tessaro S. Relaxing full-codebook security: A refined analysis of key-length extension schemes. 2015;9054:319-341. doi:10.1007/978-3-662-48116-5_16
Gazi, P., Lee, J., Seurin, Y., Steinberger, J., & Tessaro, S. (2015). Relaxing full-codebook security: A refined analysis of key-length extension schemes. Presented at the FSE: Fast Software Encryption, Istanbul, Turkey: Springer. https://doi.org/10.1007/978-3-662-48116-5_16
Gazi, Peter, Jooyoung Lee, Yannick Seurin, John Steinberger, and Stefano Tessaro. “Relaxing Full-Codebook Security: A Refined Analysis of Key-Length Extension Schemes.” Lecture Notes in Computer Science. Springer, 2015. https://doi.org/10.1007/978-3-662-48116-5_16.
P. Gazi, J. Lee, Y. Seurin, J. Steinberger, and S. Tessaro, “Relaxing full-codebook security: A refined analysis of key-length extension schemes,” vol. 9054. Springer, pp. 319–341, 2015.
Gazi P, Lee J, Seurin Y, Steinberger J, Tessaro S. 2015. Relaxing full-codebook security: A refined analysis of key-length extension schemes. 9054, 319–341.
Gazi, Peter, et al. Relaxing Full-Codebook Security: A Refined Analysis of Key-Length Extension Schemes. Vol. 9054, Springer, 2015, pp. 319–41, doi:10.1007/978-3-662-48116-5_16.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar