Actin flows mediate a universal coupling between cell speed and cell persistence

Maiuri P, Rupprecht J, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-PJ, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon Duménil A, Raab M, Thiam H, Piel M, Sixt MK, Voituriez R. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 161(2), 374–386.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Maiuri, Paolo; Rupprecht, Jean; Wieser, StefanISTA ; Ruprecht, VerenaISTA ; Bénichou, Olivier; Carpi, Nicolas; Coppey, Mathieu; De Beco, Simon; Gov, Nir; Heisenberg, Carl-Philipp ISTA ; Lage Crespo, Carolina; Lautenschlaeger, Franziska
All
Abstract
Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns.
Publishing Year
Date Published
2015-04-09
Journal Title
Cell
Publisher
Cell Press
Volume
161
Issue
2
Page
374 - 386
IST-REx-ID

Cite this

Maiuri P, Rupprecht J, Wieser S, et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 2015;161(2):374-386. doi:10.1016/j.cell.2015.01.056
Maiuri, P., Rupprecht, J., Wieser, S., Ruprecht, V., Bénichou, O., Carpi, N., … Voituriez, R. (2015). Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. Cell Press. https://doi.org/10.1016/j.cell.2015.01.056
Maiuri, Paolo, Jean Rupprecht, Stefan Wieser, Verena Ruprecht, Olivier Bénichou, Nicolas Carpi, Mathieu Coppey, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell. Cell Press, 2015. https://doi.org/10.1016/j.cell.2015.01.056.
P. Maiuri et al., “Actin flows mediate a universal coupling between cell speed and cell persistence,” Cell, vol. 161, no. 2. Cell Press, pp. 374–386, 2015.
Maiuri P, Rupprecht J, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, De Beco S, Gov N, Heisenberg C-PJ, Lage Crespo C, Lautenschlaeger F, Le Berre M, Lennon Duménil A, Raab M, Thiam H, Piel M, Sixt MK, Voituriez R. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell. 161(2), 374–386.
Maiuri, Paolo, et al. “Actin Flows Mediate a Universal Coupling between Cell Speed and Cell Persistence.” Cell, vol. 161, no. 2, Cell Press, 2015, pp. 374–86, doi:10.1016/j.cell.2015.01.056.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar