Spectral radius of random matrices with independent entries
Alt J, Erdös L, Krüger TH. 2021. Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. 2(2), 221–280.
Download (ext.)
https://doi.org/10.48550/arXiv.1907.13631
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Department
Abstract
We consider random n×n matrices X with independent and centered entries and a general variance profile. We show that the spectral radius of X converges with very high probability to the square root of the spectral radius of the variance matrix of X when n tends to infinity. We also establish the optimal rate of convergence, that is a new result even for general i.i.d. matrices beyond the explicitly solvable Gaussian cases. The main ingredient is the proof of the local inhomogeneous circular law [arXiv:1612.07776] at the spectral edge.
Publishing Year
Date Published
2021-05-21
Journal Title
Probability and Mathematical Physics
Publisher
Mathematical Sciences Publishers
Acknowledgement
Partially supported by ERC Starting Grant RandMat No. 715539 and the SwissMap grant of Swiss National Science Foundation. Partially supported by ERC Advanced Grant RanMat No. 338804. Partially supported by the Hausdorff Center for Mathematics in Bonn.
Volume
2
Issue
2
Page
221-280
ISSN
eISSN
IST-REx-ID
Cite this
Alt J, Erdös L, Krüger TH. Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. 2021;2(2):221-280. doi:10.2140/pmp.2021.2.221
Alt, J., Erdös, L., & Krüger, T. H. (2021). Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. Mathematical Sciences Publishers. https://doi.org/10.2140/pmp.2021.2.221
Alt, Johannes, László Erdös, and Torben H Krüger. “Spectral Radius of Random Matrices with Independent Entries.” Probability and Mathematical Physics. Mathematical Sciences Publishers, 2021. https://doi.org/10.2140/pmp.2021.2.221.
J. Alt, L. Erdös, and T. H. Krüger, “Spectral radius of random matrices with independent entries,” Probability and Mathematical Physics, vol. 2, no. 2. Mathematical Sciences Publishers, pp. 221–280, 2021.
Alt J, Erdös L, Krüger TH. 2021. Spectral radius of random matrices with independent entries. Probability and Mathematical Physics. 2(2), 221–280.
Alt, Johannes, et al. “Spectral Radius of Random Matrices with Independent Entries.” Probability and Mathematical Physics, vol. 2, no. 2, Mathematical Sciences Publishers, 2021, pp. 221–80, doi:10.2140/pmp.2021.2.221.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1907.13631