Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites
Curk S, Krausser J, Meisl G, Frenkel D, Linse S, Michaels TCT, Knowles TPJ, Šarić A. 2024. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. 121(7), e2220075121.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Curk, SamoISTA ;
Krausser, Johannes;
Meisl, Georg;
Frenkel, Daan;
Linse, Sara;
Michaels, Thomas C.T.;
Knowles, Tuomas P.J.;
Šarić, AnđelaISTA
Department
Abstract
Self-replication of amyloid fibrils via secondary nucleation is an intriguing physicochemical phenomenon in which existing fibrils catalyze the formation of their own copies. The molecular events behind this fibril surface-mediated process remain largely inaccessible to current structural and imaging techniques. Using statistical mechanics, computer modeling, and chemical kinetics, we show that the catalytic structure of the fibril surface can be inferred from the aggregation behavior in the presence and absence of a fibril-binding inhibitor. We apply our approach to the case of Alzheimer’s A
amyloid fibrils formed in the presence of proSP-C Brichos inhibitors. We find that self-replication of A
fibrils occurs on small catalytic sites on the fibril surface, which are far apart from each other, and each of which can be covered by a single Brichos inhibitor.
Publishing Year
Date Published
2024-02-13
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Acknowledgement
We acknowledge support from the Erasmus programme and the University College London Institute for the Physics of Living Systems (S.C., T.C.T.M., A.Š.), the Biotechnology and Biological Sciences Research Council (T.P.J.K.), the Engineering and Physical Sciences Research Council (D.F.), the European Research Council (T.P.J.K., S.L., D.F., and A.Š.), the Frances and Augustus Newman Foundation (T.P.J.K.), the Academy of Medical Sciences and Wellcome Trust (A.Š.), and the Royal Society (S.C. and A.Š.).
Volume
121
Issue
7
Article Number
e2220075121
eISSN
IST-REx-ID
Cite this
Curk S, Krausser J, Meisl G, et al. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(7). doi:10.1073/pnas.2220075121
Curk, S., Krausser, J., Meisl, G., Frenkel, D., Linse, S., Michaels, T. C. T., … Šarić, A. (2024). Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2220075121
Curk, Samo, Johannes Krausser, Georg Meisl, Daan Frenkel, Sara Linse, Thomas C.T. Michaels, Tuomas P.J. Knowles, and Anđela Šarić. “Self-Replication of Aβ42 Aggregates Occurs on Small and Isolated Fibril Sites.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2220075121.
S. Curk et al., “Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 7. Proceedings of the National Academy of Sciences, 2024.
Curk S, Krausser J, Meisl G, Frenkel D, Linse S, Michaels TCT, Knowles TPJ, Šarić A. 2024. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. Proceedings of the National Academy of Sciences of the United States of America. 121(7), e2220075121.
Curk, Samo, et al. “Self-Replication of Aβ42 Aggregates Occurs on Small and Isolated Fibril Sites.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 7, e2220075121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2220075121.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
File Name
2024_PNAS_Curk.pdf
7.70 MB
Access Level
Open Access
Date Uploaded
2024-02-26
MD5 Checksum
5aeb65bcc0dd829b1f9ab307c5031d4b
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 38335256
PubMed | Europe PMC