Fast symbolic algorithms for mega-regular games under strong transition fairness
Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. 2023. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2, 4.
Download
Journal Article
| Published
| English
Author
Banerjee, Tamajit;
Majumdar, Rupak;
Mallik, KaushikISTA ;
Schmuck, Anne-Kathrin;
Soudjani, Sadegh
Department
Abstract
We consider fixpoint algorithms for two-player games on graphs with $\omega$-regular winning conditions, where the environment is constrained by a strong transition fairness assumption. Strong transition fairness is a widely occurring special case of strong fairness, which requires that any execution is strongly fair with respect to a specified set of live edges: whenever the
source vertex of a live edge is visited infinitely often along a play, the edge itself is traversed infinitely often along the play as well. We show that, surprisingly, strong transition fairness retains the algorithmic characteristics of the fixpoint algorithms for $\omega$-regular games -- the new algorithms have the same alternation depth as the classical algorithms but invoke a new type of predecessor operator. For Rabin games with $k$ pairs, the complexity of the new algorithm is $O(n^{k+2}k!)$ symbolic steps, which is independent of the number of live edges in the strong transition fairness assumption. Further, we show that GR(1) specifications with strong transition fairness assumptions can be solved with a 3-nested fixpoint algorithm, same as the usual algorithm. In contrast, strong fairness necessarily requires increasing the alternation depth depending on the number of fairness assumptions. We get symbolic algorithms for (generalized) Rabin, parity and GR(1) objectives under strong transition fairness assumptions as well as a direct symbolic algorithm for qualitative winning in stochastic
$\omega$-regular games that runs in $O(n^{k+2}k!)$ symbolic steps, improving the state of the art. Finally, we have implemented a BDD-based synthesis engine based on our algorithm. We show on a set of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and outperforms previous algorithms by orders of magnitude.
Publishing Year
Date Published
2023-02-24
Journal Title
TheoretiCS
Publisher
EPI Sciences
Acknowledgement
A previous version of this paper has appeared in TACAS 2022. Authors ordered alphabetically. T. Banerjee was interning with MPI-SWS when this research was conducted. R. Majumdar and A.-K. Schmuck are partially supported by DFG project 389792660 TRR 248–CPEC. A.-K. Schmuck is additionally funded through DFG project (SCHM 3541/1-1). K. Mallik is supported by the ERC project ERC-2020-AdG 101020093.
Volume
2
Article Number
4
ISSN
IST-REx-ID
Cite this
Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2023;2. doi:10.46298/theoretics.23.4
Banerjee, T., Majumdar, R., Mallik, K., Schmuck, A.-K., & Soudjani, S. (2023). Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. EPI Sciences. https://doi.org/10.46298/theoretics.23.4
Banerjee, Tamajit, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS. EPI Sciences, 2023. https://doi.org/10.46298/theoretics.23.4.
T. Banerjee, R. Majumdar, K. Mallik, A.-K. Schmuck, and S. Soudjani, “Fast symbolic algorithms for mega-regular games under strong transition fairness,” TheoretiCS, vol. 2. EPI Sciences, 2023.
Banerjee T, Majumdar R, Mallik K, Schmuck A-K, Soudjani S. 2023. Fast symbolic algorithms for mega-regular games under strong transition fairness. TheoretiCS. 2, 4.
Banerjee, Tamajit, et al. “Fast Symbolic Algorithms for Mega-Regular Games under Strong Transition Fairness.” TheoretiCS, vol. 2, 4, EPI Sciences, 2023, doi:10.46298/theoretics.23.4.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2023_TheoretiCS_Banerjee.pdf
917.08 KB
Access Level
Open Access
Date Uploaded
2024-02-05
MD5 Checksum
2972d531122a6f15727b396110fb3f5c
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2202.07480