Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity
Kiran GK, Singh S, Mahato N, Sreekanth TVM, Dillip GR, Yoo K, Kim J. 2024. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 7(1), 214–229.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Kiran, Gundegowda Kalligowdanadoddi;
Singh, SaurabhISTA ;
Mahato, Neelima;
Sreekanth, Thupakula Venkata Madhukar;
Dillip, Gowra Raghupathy;
Yoo, Kisoo;
Kim, Jonghoon
Department
Abstract
Production of hydrogen at large scale requires development of non-noble, inexpensive, and high-performing catalysts for constructing water-splitting devices. Herein, we report the synthesis of Zn-doped NiO heterostructure (ZnNiO) catalysts at room temperature via a coprecipitation method followed by drying (at 80 °C, 6 h) and calcination at an elevated temperature of 400 °C for 5 h under three distinct conditions, namely, air, N2, and vacuum. The vacuum-synthesized catalyst demonstrates a low overpotential of 88 mV at −10 mA cm–2 and a small Tafel slope of 73 mV dec–1 suggesting relatively higher charge transfer kinetics for hydrogen evolution reactions (HER) compared with the specimens synthesized under N2 or O2 atmosphere. It also demonstrates an oxygen evolution (OER) overpotential of 260 mV at 10 mA cm–2 with a low Tafel slope of 63 mV dec–1. In a full-cell water-splitting device, the vacuum-synthesized ZnNiO heterostructure demonstrates a cell voltage of 1.94 V at 50 mA cm–2 and shows remarkable stability over 24 h at a high current density of 100 mA cm–2. It is also demonstrated in this study that Zn-doping, surface, and interface engineering in transition-metal oxides play a crucial role in efficient electrocatalytic water splitting. Also, the results obtained from density functional theory (DFT + U = 0–8 eV), where U is the on-site Coulomb repulsion parameter also known as Hubbard U, based electronic structure calculations confirm that Zn doping constructively modifies the electronic structure, in both the valence band and the conduction band, and found to be suitable in tailoring the carrier’s effective masses of electrons and holes. The decrease in electron’s effective masses together with large differences between the effective masses of electrons and holes is noticed, which is found to be mainly responsible for achieving the best water-splitting performance from a 9% Zn-doped NiO sample prepared under vacuum.
Keywords
Publishing Year
Date Published
2024-01-08
Journal Title
ACS Applied Energy Materials
Publisher
American Chemical Society
Acknowledgement
This work was supported by the Technology Innovation Program (20011622, Development of Battery System Applied High-Efficiency Heat Control Polymer and Part Component) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). Author acknowledge to Prof. Tsunehiro Takeuchi from Toyota Technological Institute, Nagoya, Japan for the support of computational resources.
Volume
7
Issue
1
Page
214-229
ISSN
IST-REx-ID
Cite this
Kiran GK, Singh S, Mahato N, et al. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 2024;7(1):214-229. doi:10.1021/acsaem.3c02519
Kiran, G. K., Singh, S., Mahato, N., Sreekanth, T. V. M., Dillip, G. R., Yoo, K., & Kim, J. (2024). Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.3c02519
Kiran, Gundegowda Kalligowdanadoddi, Saurabh Singh, Neelima Mahato, Thupakula Venkata Madhukar Sreekanth, Gowra Raghupathy Dillip, Kisoo Yoo, and Jonghoon Kim. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials. American Chemical Society, 2024. https://doi.org/10.1021/acsaem.3c02519.
G. K. Kiran et al., “Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity,” ACS Applied Energy Materials, vol. 7, no. 1. American Chemical Society, pp. 214–229, 2024.
Kiran GK, Singh S, Mahato N, Sreekanth TVM, Dillip GR, Yoo K, Kim J. 2024. Interface engineering modulation combined with electronic structure modification of Zn-doped NiO heterostructure for efficient water-splitting activity. ACS Applied Energy Materials. 7(1), 214–229.
Kiran, Gundegowda Kalligowdanadoddi, et al. “Interface Engineering Modulation Combined with Electronic Structure Modification of Zn-Doped NiO Heterostructure for Efficient Water-Splitting Activity.” ACS Applied Energy Materials, vol. 7, no. 1, American Chemical Society, 2024, pp. 214–29, doi:10.1021/acsaem.3c02519.
Export
Marked PublicationsOpen Data ISTA Research Explorer