Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices

Schnelli K, Xu Y. 2023. Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. 33(1), 677–725.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Department
Abstract
We establish a quantitative version of the Tracy–Widom law for the largest eigenvalue of high-dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix X∗X converge to its Tracy–Widom limit at a rate nearly N−1/3, where X is an M×N random matrix whose entries are independent real or complex random variables, assuming that both M and N tend to infinity at a constant rate. This result improves the previous estimate N−2/9 obtained by Wang (2019). Our proof relies on a Green function comparison method (Adv. Math. 229 (2012) 1435–1515) using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.
Publishing Year
Date Published
2023-02-01
Journal Title
The Annals of Applied Probability
Publisher
Institute of Mathematical Statistics
Acknowledgement
K. Schnelli was supported by the Swedish Research Council Grants VR-2017-05195, and the Knut and Alice Wallenberg Foundation. Y. Xu was supported by the Swedish Research Council Grant VR-2017-05195 and the ERC Advanced Grant “RMTBeyond” No. 101020331.
Volume
33
Issue
1
Page
677-725
ISSN
IST-REx-ID

Cite this

Schnelli K, Xu Y. Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. 2023;33(1):677-725. doi:10.1214/22-aap1826
Schnelli, K., & Xu, Y. (2023). Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-aap1826
Schnelli, Kevin, and Yuanyuan Xu. “Convergence Rate to the Tracy–Widom Laws for the Largest Eigenvalue of Sample Covariance Matrices.” The Annals of Applied Probability. Institute of Mathematical Statistics, 2023. https://doi.org/10.1214/22-aap1826.
K. Schnelli and Y. Xu, “Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices,” The Annals of Applied Probability, vol. 33, no. 1. Institute of Mathematical Statistics, pp. 677–725, 2023.
Schnelli K, Xu Y. 2023. Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. 33(1), 677–725.
Schnelli, Kevin, and Yuanyuan Xu. “Convergence Rate to the Tracy–Widom Laws for the Largest Eigenvalue of Sample Covariance Matrices.” The Annals of Applied Probability, vol. 33, no. 1, Institute of Mathematical Statistics, 2023, pp. 677–725, doi:10.1214/22-aap1826.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

arXiv 2108.02728

Search this title in

Google Scholar