Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result
Moser M. 2023. Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. 131(3–4), 297–383.
Download (ext.)
https://doi.org/10.48550/arXiv.2105.07100
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Department
Abstract
We consider the sharp interface limit for the scalar-valued and vector-valued Allen–Cahn equation with homogeneous Neumann boundary condition in a bounded smooth domain Ω of arbitrary dimension N ⩾ 2 in the situation when a two-phase diffuse interface has developed and intersects the boundary ∂ Ω. The limit problem is mean curvature flow with 90°-contact angle and we show convergence in strong norms for well-prepared initial data as long as a smooth solution to the limit problem exists. To this end we assume that the limit problem has a smooth solution on [ 0 , T ] for some time T > 0. Based on the latter we construct suitable curvilinear coordinates and set up an asymptotic expansion for the scalar-valued and the vector-valued Allen–Cahn equation. In order to estimate the difference of the exact and approximate solutions with a Gronwall-type argument, a spectral estimate for the linearized Allen–Cahn operator in both cases is required. The latter will be shown in a separate paper, cf. (Moser (2021)).
Keywords
Publishing Year
Date Published
2023-02-02
Journal Title
Asymptotic Analysis
Publisher
IOS Press
Acknowledgement
The author gratefully acknowledges support through DFG, GRK 1692 “Curvature,
Cycles and Cohomology” during parts of the work.
Volume
131
Issue
3-4
Page
297-383
ISSN
eISSN
IST-REx-ID
Cite this
Moser M. Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. 2023;131(3-4):297-383. doi:10.3233/asy-221775
Moser, M. (2023). Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. IOS Press. https://doi.org/10.3233/asy-221775
Moser, Maximilian. “Convergence of the Scalar- and Vector-Valued Allen–Cahn Equation to Mean Curvature Flow with 90°-Contact Angle in Higher Dimensions, Part I: Convergence Result.” Asymptotic Analysis. IOS Press, 2023. https://doi.org/10.3233/asy-221775.
M. Moser, “Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result,” Asymptotic Analysis, vol. 131, no. 3–4. IOS Press, pp. 297–383, 2023.
Moser M. 2023. Convergence of the scalar- and vector-valued Allen–Cahn equation to mean curvature flow with 90°-contact angle in higher dimensions, part I: Convergence result. Asymptotic Analysis. 131(3–4), 297–383.
Moser, Maximilian. “Convergence of the Scalar- and Vector-Valued Allen–Cahn Equation to Mean Curvature Flow with 90°-Contact Angle in Higher Dimensions, Part I: Convergence Result.” Asymptotic Analysis, vol. 131, no. 3–4, IOS Press, 2023, pp. 297–383, doi:10.3233/asy-221775.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2105.07100