Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations
Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. 2023. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. 14(11), 953–967.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Briffa, Amy;
Hollwey, ElizabethISTA;
Shahzad, Zaigham;
Moore, Jonathan D.;
Lyons, David B.;
Howard, Martin;
Zilberman, DanielISTA
Department
Abstract
Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.
Publishing Year
Date Published
2023-11-15
Journal Title
Cell Systems
Publisher
Elsevier
Acknowledgement
We would like to thank Xiaoqi Feng, Ander Movilla Miangolarra, and Suzanne de Bruijn for discussions. This work was supported by BBSRC Institute Strategic Programme GEN (BB/P013511/1) to M.H. and D.Z. and by a European Research Council grant MaintainMeth (725746) to D.Z.
Volume
14
Issue
11
Page
953-967
ISSN
eISSN
IST-REx-ID
Cite this
Briffa A, Hollwey E, Shahzad Z, et al. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. 2023;14(11):953-967. doi:10.1016/j.cels.2023.10.007
Briffa, A., Hollwey, E., Shahzad, Z., Moore, J. D., Lyons, D. B., Howard, M., & Zilberman, D. (2023). Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. Elsevier. https://doi.org/10.1016/j.cels.2023.10.007
Briffa, Amy, Elizabeth Hollwey, Zaigham Shahzad, Jonathan D. Moore, David B. Lyons, Martin Howard, and Daniel Zilberman. “Millennia-Long Epigenetic Fluctuations Generate Intragenic DNA Methylation Variance in Arabidopsis Populations.” Cell Systems. Elsevier, 2023. https://doi.org/10.1016/j.cels.2023.10.007.
A. Briffa et al., “Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations,” Cell Systems, vol. 14, no. 11. Elsevier, pp. 953–967, 2023.
Briffa A, Hollwey E, Shahzad Z, Moore JD, Lyons DB, Howard M, Zilberman D. 2023. Millennia-long epigenetic fluctuations generate intragenic DNA methylation variance in Arabidopsis populations. Cell Systems. 14(11), 953–967.
Briffa, Amy, et al. “Millennia-Long Epigenetic Fluctuations Generate Intragenic DNA Methylation Variance in Arabidopsis Populations.” Cell Systems, vol. 14, no. 11, Elsevier, 2023, pp. 953–67, doi:10.1016/j.cels.2023.10.007.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2023_CellSystems_Briffa.pdf
5.59 MB
Access Level
Open Access
Date Uploaded
2023-11-20
MD5 Checksum
101fdac59e6f1102d68ef91f2b5bd51a
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 37944515
PubMed | Europe PMC