The membrane surface as a platform that organizes cellular and biochemical processes
Leonard TA, Loose M, Martens S. 2023. The membrane surface as a platform that organizes cellular and biochemical processes. Developmental Cell. 58(15), 1315–1332.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Leonard, Thomas A.;
Loose, MartinISTA ;
Martens, Sascha
Department
Grant
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Publishing Year
Date Published
2023-08-07
Journal Title
Developmental Cell
Publisher
Elsevier
Acknowledgement
We acknowledge funding from the Austrian Science Fund (FWF F79, P32814-B, and P35061-B to S.M.; P34607-B to M.L.; and P30584-B and P33066-B to T.A.L.) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 101045340 to M.L.). We are grateful for comments on the manuscript by Justyna Sawa-Makarska, Verena Baumann, Marko Kojic, Philipp Radler, Ronja Reinhardt, and Sumire Antonioli.
Volume
58
Issue
15
Page
1315-1332
ISSN
eISSN
IST-REx-ID
Cite this
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Developmental Cell. 2023;58(15):1315-1332. doi:10.1016/j.devcel.2023.06.001
Leonard, T. A., Loose, M., & Martens, S. (2023). The membrane surface as a platform that organizes cellular and biochemical processes. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2023.06.001
Leonard, Thomas A., Martin Loose, and Sascha Martens. “The Membrane Surface as a Platform That Organizes Cellular and Biochemical Processes.” Developmental Cell. Elsevier, 2023. https://doi.org/10.1016/j.devcel.2023.06.001.
T. A. Leonard, M. Loose, and S. Martens, “The membrane surface as a platform that organizes cellular and biochemical processes,” Developmental Cell, vol. 58, no. 15. Elsevier, pp. 1315–1332, 2023.
Leonard TA, Loose M, Martens S. 2023. The membrane surface as a platform that organizes cellular and biochemical processes. Developmental Cell. 58(15), 1315–1332.
Leonard, Thomas A., et al. “The Membrane Surface as a Platform That Organizes Cellular and Biochemical Processes.” Developmental Cell, vol. 58, no. 15, Elsevier, 2023, pp. 1315–32, doi:10.1016/j.devcel.2023.06.001.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2023-08-14
MD5 Checksum
d8c5dc97cd40c26da2ec98ae723ab368
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 37419118
PubMed | Europe PMC