Cell cycle dynamics control fluidity of the developing mouse neuroepithelium

Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058.

Download
OA 2023_NaturePhysics_Boncanegra.pdf 5.53 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Abstract
As developing tissues grow in size and undergo morphogenetic changes, their material properties may be altered. Such changes result from tension dynamics at cell contacts or cellular jamming. Yet, in many cases, the cellular mechanisms controlling the physical state of growing tissues are unclear. We found that at early developmental stages, the epithelium in the developing mouse spinal cord maintains both high junctional tension and high fluidity. This is achieved via a mechanism in which interkinetic nuclear movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the cell proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, the solidification uncovered here resembles a glass transition that depends on the dynamical stresses generated by proliferation and differentiation. Our finding that the fluidity of developing epithelia is linked to interkinetic nuclear movements and the dynamics of growth is likely to be relevant to multiple developing tissues.
Publishing Year
Date Published
2023-07-01
Journal Title
Nature Physics
Publisher
Springer Nature
Acknowledgement
We thank S. Hippenmeyer for the reagents and C. P. Heisenberg, J. Briscoe and K. Page for comments on the manuscript. This work was supported by IST Austria; the European Research Council under Horizon 2020 research and innovation programme grant no. 680037 and Horizon Europe grant 101044579 (A.K.); Austrian Science Fund (FWF): F78 (Stem Cell Modulation) (A.K.); ISTFELLOW postdoctoral program (A.S.); Narodowe Centrum Nauki, Poland SONATA, 2017/26/D/NZ2/00454 (M.Z.); and the Polish National Agency for Academic Exchange (M.Z.).
Volume
19
Page
1050-1058
ISSN
eISSN
IST-REx-ID

Cite this

Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 2023;19:1050-1058. doi:10.1038/s41567-023-01977-w
Bocanegra, L., Singh, A., Hannezo, E. B., Zagórski, M. P., & Kicheva, A. (2023). Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. Springer Nature. https://doi.org/10.1038/s41567-023-01977-w
Bocanegra, Laura, Amrita Singh, Edouard B Hannezo, Marcin P Zagórski, and Anna Kicheva. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics. Springer Nature, 2023. https://doi.org/10.1038/s41567-023-01977-w.
L. Bocanegra, A. Singh, E. B. Hannezo, M. P. Zagórski, and A. Kicheva, “Cell cycle dynamics control fluidity of the developing mouse neuroepithelium,” Nature Physics, vol. 19. Springer Nature, pp. 1050–1058, 2023.
Bocanegra L, Singh A, Hannezo EB, Zagórski MP, Kicheva A. 2023. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nature Physics. 19, 1050–1058.
Bocanegra, Laura, et al. “Cell Cycle Dynamics Control Fluidity of the Developing Mouse Neuroepithelium.” Nature Physics, vol. 19, Springer Nature, 2023, pp. 1050–58, doi:10.1038/s41567-023-01977-w.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-10-04
MD5 Checksum
858225a4205b74406e5045006cdd853f


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar