Dissipative dynamics of an impurity with spin-orbit coupling

Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. 2023. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 5(1), 013029.

Download
OA 2023_PhysicalReviewResearch_Ghazaryan.pdf 865.15 KB [Published Version]

Journal Article | Published | English

Scopus indexed
Department
Abstract
Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics.
Publishing Year
Date Published
2023-01-20
Journal Title
Physical Review Research
Publisher
American Physical Society
Acknowledgement
We thank Rafael Barfknecht for help at the initial stages of this project; Fabian Brauneis for useful discussions; Miguel A. Garcia-March, Georgios Koutentakis, and Simeon Mistakidis for comments on the paper. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON).
Volume
5
Issue
1
Article Number
013029
ISSN
IST-REx-ID

Cite this

Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 2023;5(1). doi:10.1103/physrevresearch.5.013029
Ghazaryan, A., Cappellaro, A., Lemeshko, M., & Volosniev, A. (2023). Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.5.013029
Ghazaryan, Areg, Alberto Cappellaro, Mikhail Lemeshko, and Artem Volosniev. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/physrevresearch.5.013029.
A. Ghazaryan, A. Cappellaro, M. Lemeshko, and A. Volosniev, “Dissipative dynamics of an impurity with spin-orbit coupling,” Physical Review Research, vol. 5, no. 1. American Physical Society, 2023.
Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. 2023. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 5(1), 013029.
Ghazaryan, Areg, et al. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research, vol. 5, no. 1, 013029, American Physical Society, 2023, doi:10.1103/physrevresearch.5.013029.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-02-13
MD5 Checksum
6068b62874c0099628a108bb9c5c6bd2


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar