On the condition number of the shifted real Ginibre ensemble

Cipolloni G, Erdös L, Schröder DJ. 2022. On the condition number of the shifted real Ginibre ensemble. SIAM Journal on Matrix Analysis and Applications. 43(3), 1469–1487.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Department
Abstract
We derive an accurate lower tail estimate on the lowest singular value σ1(X−z) of a real Gaussian (Ginibre) random matrix X shifted by a complex parameter z. Such shift effectively changes the upper tail behavior of the condition number κ(X−z) from the slower (κ(X−z)≥t)≲1/t decay typical for real Ginibre matrices to the faster 1/t2 decay seen for complex Ginibre matrices as long as z is away from the real axis. This sharpens and resolves a recent conjecture in [J. Banks et al., https://arxiv.org/abs/2005.08930, 2020] on the regularizing effect of the real Ginibre ensemble with a genuinely complex shift. As a consequence we obtain an improved upper bound on the eigenvalue condition numbers (known also as the eigenvector overlaps) for real Ginibre matrices. The main technical tool is a rigorous supersymmetric analysis from our earlier work [Probab. Math. Phys., 1 (2020), pp. 101--146].
Keywords
Publishing Year
Date Published
2022-07-01
Journal Title
SIAM Journal on Matrix Analysis and Applications
Publisher
Society for Industrial and Applied Mathematics
Volume
43
Issue
3
Page
1469-1487
ISSN
eISSN
IST-REx-ID

Cite this

Cipolloni G, Erdös L, Schröder DJ. On the condition number of the shifted real Ginibre ensemble. SIAM Journal on Matrix Analysis and Applications. 2022;43(3):1469-1487. doi:10.1137/21m1424408
Cipolloni, G., Erdös, L., & Schröder, D. J. (2022). On the condition number of the shifted real Ginibre ensemble. SIAM Journal on Matrix Analysis and Applications. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21m1424408
Cipolloni, Giorgio, László Erdös, and Dominik J Schröder. “On the Condition Number of the Shifted Real Ginibre Ensemble.” SIAM Journal on Matrix Analysis and Applications. Society for Industrial and Applied Mathematics, 2022. https://doi.org/10.1137/21m1424408.
G. Cipolloni, L. Erdös, and D. J. Schröder, “On the condition number of the shifted real Ginibre ensemble,” SIAM Journal on Matrix Analysis and Applications, vol. 43, no. 3. Society for Industrial and Applied Mathematics, pp. 1469–1487, 2022.
Cipolloni G, Erdös L, Schröder DJ. 2022. On the condition number of the shifted real Ginibre ensemble. SIAM Journal on Matrix Analysis and Applications. 43(3), 1469–1487.
Cipolloni, Giorgio, et al. “On the Condition Number of the Shifted Real Ginibre Ensemble.” SIAM Journal on Matrix Analysis and Applications, vol. 43, no. 3, Society for Industrial and Applied Mathematics, 2022, pp. 1469–87, doi:10.1137/21m1424408.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 2105.13719

Search this title in

Google Scholar