Earlier Version
Average case analysis of dynamic graph algorithms
Alberts D, Henzinger MH. 1995. Average case analysis of dynamic graph algorithms. 6th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 312–321.
Download (ext.)
https://dl.acm.org/doi/10.5555/313651.313712
[Published Version]
Conference Paper
| Published
| English
Scopus indexed
Author
Alberts, David;
Henzinger, MonikaISTA
Abstract
We present a model with restricted randomness for edge updates in dynamic graph algorithms and a general technique
for analyzing the expected running time of an update operation. This model is able to capture the average case in many applications, since (1) it allows restrictions on the set of edges which can be used for insertions and (2) the type (insertion or deletion) of each update operation is arbitrary, i.e., not random. We use our technique to analyze existing and new dynamic algorithms for maximum cardinality matching, minimum spanning forest, connectivity, 2-edge connectivity,
k-edge connectivity, k-vertex connectivity, and bipartiteness. Given a random graph G with mo edges and n vertices and
a sequence of 1 update operations such that the graph contains rni edges after operation i, the expected time for performing the updates for any 1 is O(1 logn + n xi=, l/fii) in the case of minimum spanning forests, connectivity, 2-
edge connectivity, and bipartiteness. The expected time per update operation is O(n) in the case of maximum matching. For k-edge and k-vertex connectivity we also give improved bounds. Additionally we give an insertions-only algorithm for maximum cardinality matching with worst-case O(n) amortized time per insertion.
Publishing Year
Date Published
1995-01-01
Proceedings Title
6th Annual ACM-SIAM Symposium on Discrete Algorithms
Publisher
Society for Industrial and Applied Mathematics
Page
312-321
Conference
SODA: Symposium on Discrete Algorithms
Conference Location
San Francisco, CA, United States
Conference Date
1995-01-22 – 1995-01-24
ISBN
IST-REx-ID
Cite this
Alberts D, Henzinger MH. Average case analysis of dynamic graph algorithms. In: 6th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics; 1995:312-321.
Alberts, D., & Henzinger, M. H. (1995). Average case analysis of dynamic graph algorithms. In 6th Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 312–321). San Francisco, CA, United States: Society for Industrial and Applied Mathematics.
Alberts, David, and Monika H Henzinger. “Average Case Analysis of Dynamic Graph Algorithms.” In 6th Annual ACM-SIAM Symposium on Discrete Algorithms, 312–21. Society for Industrial and Applied Mathematics, 1995.
D. Alberts and M. H. Henzinger, “Average case analysis of dynamic graph algorithms,” in 6th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, United States, 1995, pp. 312–321.
Alberts D, Henzinger MH. 1995. Average case analysis of dynamic graph algorithms. 6th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA: Symposium on Discrete Algorithms, 312–321.
Alberts, David, and Monika H. Henzinger. “Average Case Analysis of Dynamic Graph Algorithms.” 6th Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 1995, pp. 312–21.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access