On the number of small cuts in a graph

Henzinger MH, Williamson DP. 1996. On the number of small cuts in a graph. Information Processing Letters. 59(1), 41–44.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Henzinger, MonikaISTA ; Williamson, David P.
Abstract
We prove that in an undirected graph there are at most O(n²) cuts of size strictly less than of the size of the minimum cut.
Publishing Year
Date Published
1996-07-08
Journal Title
Information Processing Letters
Publisher
Elsevier
Volume
59
Issue
1
Page
41-44
ISSN
IST-REx-ID

Cite this

Henzinger MH, Williamson DP. On the number of small cuts in a graph. Information Processing Letters. 1996;59(1):41-44. doi:10.1016/0020-0190(96)00079-8
Henzinger, M. H., & Williamson, D. P. (1996). On the number of small cuts in a graph. Information Processing Letters. Elsevier. https://doi.org/10.1016/0020-0190(96)00079-8
Henzinger, Monika H, and David P. Williamson. “On the Number of Small Cuts in a Graph.” Information Processing Letters. Elsevier, 1996. https://doi.org/10.1016/0020-0190(96)00079-8.
M. H. Henzinger and D. P. Williamson, “On the number of small cuts in a graph,” Information Processing Letters, vol. 59, no. 1. Elsevier, pp. 41–44, 1996.
Henzinger MH, Williamson DP. 1996. On the number of small cuts in a graph. Information Processing Letters. 59(1), 41–44.
Henzinger, Monika H., and David P. Williamson. “On the Number of Small Cuts in a Graph.” Information Processing Letters, vol. 59, no. 1, Elsevier, 1996, pp. 41–44, doi:10.1016/0020-0190(96)00079-8.

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar