Relation between the number of peaks and the number of reciprocal sign epistatic interactions
Saona Urmeneta RJ, Kondrashov F, Khudiakova K. 2022. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 84(8), 74.
Download
Journal Article
| Published
| English
Scopus indexed
Department
Grant
Abstract
Empirical essays of fitness landscapes suggest that they may be rugged, that is having multiple fitness peaks. Such fitness landscapes, those that have multiple peaks, necessarily have special local structures, called reciprocal sign epistasis (Poelwijk et al. in J Theor Biol 272:141–144, 2011). Here, we investigate the quantitative relationship between the number of fitness peaks and the number of reciprocal sign epistatic interactions. Previously, it has been shown (Poelwijk et al. in J Theor Biol 272:141–144, 2011) that pairwise reciprocal sign epistasis is a necessary but not sufficient condition for the existence of multiple peaks. Applying discrete Morse theory, which to our knowledge has never been used in this context, we extend this result by giving the minimal number of reciprocal sign epistatic interactions required to create a given number of peaks.
Keywords
Publishing Year
Date Published
2022-06-17
Journal Title
Bulletin of Mathematical Biology
Publisher
Springer Nature
Acknowledgement
We are grateful to Herbert Edelsbrunner and Jeferson Zapata for helpful discussions. Open access funding provided by Austrian Science Fund (FWF). Partially supported by the ERC Consolidator (771209–CharFL) and the FWF Austrian Science Fund (I5127-B) grants to FAK.
Volume
84
Issue
8
Article Number
74
ISSN
eISSN
IST-REx-ID
Cite this
Saona Urmeneta RJ, Kondrashov F, Khudiakova K. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 2022;84(8). doi:10.1007/s11538-022-01029-z
Saona Urmeneta, R. J., Kondrashov, F., & Khudiakova, K. (2022). Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. Springer Nature. https://doi.org/10.1007/s11538-022-01029-z
Saona Urmeneta, Raimundo J, Fyodor Kondrashov, and Kseniia Khudiakova. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology. Springer Nature, 2022. https://doi.org/10.1007/s11538-022-01029-z.
R. J. Saona Urmeneta, F. Kondrashov, and K. Khudiakova, “Relation between the number of peaks and the number of reciprocal sign epistatic interactions,” Bulletin of Mathematical Biology, vol. 84, no. 8. Springer Nature, 2022.
Saona Urmeneta RJ, Kondrashov F, Khudiakova K. 2022. Relation between the number of peaks and the number of reciprocal sign epistatic interactions. Bulletin of Mathematical Biology. 84(8), 74.
Saona Urmeneta, Raimundo J., et al. “Relation between the Number of Peaks and the Number of Reciprocal Sign Epistatic Interactions.” Bulletin of Mathematical Biology, vol. 84, no. 8, 74, Springer Nature, 2022, doi:10.1007/s11538-022-01029-z.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2022_BulletinMathBiology_Saona.pdf
463.02 KB
Access Level
Open Access
Date Uploaded
2022-06-20
MD5 Checksum
05a1fe7d10914a00c2bca9b447993a65
Export
Marked PublicationsOpen Data ISTA Research Explorer