Causal navigation by continuous-time neural networks
Vorbach CJ, Hasani R, Amini A, Lechner M, Rus D. 2021. Causal navigation by continuous-time neural networks. 35th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, .
Download
NeurIPS-2021-causal-navigation-by-continuous-time-neural-networks-Paper.pdf
6.84 MB
[Published Version]
Download (ext.)
Conference Paper
| Published
| English
Author
Vorbach, Charles J;
Hasani, Ramin;
Amini, Alexander;
Lechner, MathiasISTA;
Rus, Daniela
Department
Grant
Series Title
Advances in Neural Information Processing Systems
Abstract
Imitation learning enables high-fidelity, vision-based learning of policies within rich, photorealistic environments. However, such techniques often rely on traditional discrete-time neural models and face difficulties in generalizing to domain shifts by failing to account for the causal relationships between the agent and the environment. In this paper, we propose a theoretical and experimental framework for learning causal representations using continuous-time neural networks, specifically over their discrete-time counterparts. We evaluate our method in the context of visual-control learning of drones over a series of complex tasks, ranging from short- and long-term navigation, to chasing static and dynamic objects through photorealistic environments. Our results demonstrate that causal continuous-time
deep models can perform robust navigation tasks, where advanced recurrent models fail. These models learn complex causal control representations directly from raw visual inputs and scale to solve a variety of tasks using imitation learning.
Publishing Year
Date Published
2021-12-01
Proceedings Title
35th Conference on Neural Information Processing Systems
Acknowledgement
C.V., R.H. A.A. and D.R. are partially supported by Boeing and MIT. A.A. is supported by the National Science Foundation (NSF) Graduate Research Fellowship Program. M.L. is supported in part by the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award). Research was sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.
Conference
NeurIPS: Neural Information Processing Systems
Conference Location
Virtual
Conference Date
2021-12-06 – 2021-12-10
IST-REx-ID
Cite this
Vorbach CJ, Hasani R, Amini A, Lechner M, Rus D. Causal navigation by continuous-time neural networks. In: 35th Conference on Neural Information Processing Systems. ; 2021.
Vorbach, C. J., Hasani, R., Amini, A., Lechner, M., & Rus, D. (2021). Causal navigation by continuous-time neural networks. In 35th Conference on Neural Information Processing Systems. Virtual.
Vorbach, Charles J, Ramin Hasani, Alexander Amini, Mathias Lechner, and Daniela Rus. “Causal Navigation by Continuous-Time Neural Networks.” In 35th Conference on Neural Information Processing Systems, 2021.
C. J. Vorbach, R. Hasani, A. Amini, M. Lechner, and D. Rus, “Causal navigation by continuous-time neural networks,” in 35th Conference on Neural Information Processing Systems, Virtual, 2021.
Vorbach CJ, Hasani R, Amini A, Lechner M, Rus D. 2021. Causal navigation by continuous-time neural networks. 35th Conference on Neural Information Processing Systems. NeurIPS: Neural Information Processing Systems, Advances in Neural Information Processing Systems, .
Vorbach, Charles J., et al. “Causal Navigation by Continuous-Time Neural Networks.” 35th Conference on Neural Information Processing Systems, 2021.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0):
Main File(s)
Access Level
Open Access
Date Uploaded
2022-01-26
MD5 Checksum
be81f0ade174a8c9b2d4fe09590b2021
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2106.08314