Bridging Scales in Random Materials
Project Period: 2021-03-01 – 2026-02-28
Funding Organisation:
EC/H2020
Acronym
RandSCALES
Principal Investigator
Department(s)
Grant Number
948819
Funding Organisation
EC/H2020
11 Publications
2024 | Epub ahead of print | Journal Article | IST-REx-ID: 14797 |
Annealed quantitative estimates for the quadratic 2D-discrete random matching problem
Clozeau, Nicolas, Annealed quantitative estimates for the quadratic 2D-discrete random matching problem. Probability Theory and Related Fields. 2024
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
Clozeau, Nicolas, Annealed quantitative estimates for the quadratic 2D-discrete random matching problem. Probability Theory and Related Fields. 2024
2023 | Epub ahead of print | Journal Article | IST-REx-ID: 12486 |
Delayed blow-up and enhanced diffusion by transport noise for systems of reaction-diffusion equations
A. Agresti, Stochastics and Partial Differential Equations: Analysis and Computations (2023).
[Submitted Version]
View
| DOI
| Download Submitted Version (ext.)
| arXiv
A. Agresti, Stochastics and Partial Differential Equations: Analysis and Computations (2023).
2023 | Published | Journal Article | IST-REx-ID: 13043 |
Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
2023 | Published | Journal Article | IST-REx-ID: 13135 |
Reaction-diffusion equations with transport noise and critical superlinear diffusion: Local well-posedness and positivity
A. Agresti, M. Veraar, Journal of Differential Equations 368 (2023) 247–300.
[Published Version]
View
| Files available
| DOI
| WoS
A. Agresti, M. Veraar, Journal of Differential Equations 368 (2023) 247–300.
2023 | Published | Thesis | IST-REx-ID: 14587 |
Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences
A. Marveggio, Weak-Strong Stability and Phase-Field Approximation of Interface Evolution Problems in Fluid Mechanics and in Material Sciences, Institute of Science and Technology Austria, 2023.
[Published Version]
View
| Files available
| DOI
A. Marveggio, Weak-Strong Stability and Phase-Field Approximation of Interface Evolution Problems in Fluid Mechanics and in Material Sciences, Institute of Science and Technology Austria, 2023.
2022 | Published | Journal Article | IST-REx-ID: 11842 |
Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
2022 | Published | Journal Article | IST-REx-ID: 12079 |
Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
2022 | Submitted | Preprint | IST-REx-ID: 14597 |
Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow
J.L. Fischer, A. Marveggio, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
J.L. Fischer, A. Marveggio, ArXiv (n.d.).
2021 | Published | Thesis | IST-REx-ID: 10007 |
Curvature driven interface evolution: Uniqueness properties of weak solution concepts
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
[Published Version]
View
| Files available
| DOI
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
2021 | Submitted | Preprint | IST-REx-ID: 10011 |
A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2021 | Submitted | Preprint | IST-REx-ID: 10013 |
Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).