Prix Lopez-Loretta 2019 - Marco Mondelli

Project Period: 2020-10-01 – 2025-09-30
Funding Organisation: Fondation_Lopez_Loreta
Principal Investigator
Department(s)
Funding Organisation
Fondation_Lopez_Loreta

23 Publications

2023 | Published | Conference Paper | IST-REx-ID: 12859 | OA
Beyond the universal law of robustness: Sharper laws for random features and neural tangent kernels
S. Bombari, S. Kiyani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 2738–2776.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 13315 | OA
Fundamental limits in structured principal component analysis and how to reach them
J. Barbier, F. Camilli, M. Mondelli, M. Sáenz, Proceedings of the National Academy of Sciences of the United States of America 120 (2023).
[Published Version] View | Files available | DOI | PubMed | Europe PMC
 
2023 | Published | Conference Paper | IST-REx-ID: 13321 | OA
Approximate message passing for multi-layer estimation in rotationally invariant models
Y. Xu, T.Q. Hou, S.S. Liang, M. Mondelli, in:, 2023 IEEE Information Theory Workshop, Institute of Electrical and Electronics Engineers, 2023, pp. 294–298.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 | Published | Conference Paper | IST-REx-ID: 14459 | OA
Fundamental limits of two-layer autoencoders, and achieving them with gradient methods
A. Shevchenko, K. Kögler, H. Hassani, M. Mondelli, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 31151–31209.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2023 | In Press | Conference Paper | IST-REx-ID: 14921 | OA
Deep neural collapse is provably optimal for the deep unconstrained features model
P. Súkeník, M. Mondelli, C. Lampert, in:, 37th Annual Conference on Neural Information Processing Systems, n.d.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2023 | In Press | Conference Paper | IST-REx-ID: 14922 | OA
Concentration without independence via information measures
A.R. Esposito, M. Mondelli, in:, Proceedings of 2023 IEEE International Symposium on Information Theory, IEEE, n.d.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 | Published | Conference Paper | IST-REx-ID: 14924 | OA
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence
D. Wu, V. Kungurtsev, M. Mondelli, in:, Transactions on Machine Learning Research, ML Research Press, 2023.
[Published Version] View | Download Published Version (ext.) | arXiv
 
2022 | Published | Journal Article | IST-REx-ID: 12480 | OA
Approximate message passing with spectral initialization for generalized linear models
M. Mondelli, R. Venkataramanan, Journal of Statistical Mechanics: Theory and Experiment 2022 (2022).
[Published Version] View | Files available | DOI | WoS
 
2022 | Published | Conference Paper | IST-REx-ID: 12537 | OA
Memorization and optimization in deep neural networks with minimum over-parameterization
S. Bombari, M.H. Amani, M. Mondelli, in:, 36th Conference on Neural Information Processing Systems, Curran Associates, 2022, pp. 7628–7640.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2022 | Published | Conference Paper | IST-REx-ID: 12540 | OA
Estimation in rotationally invariant generalized linear models via approximate message passing
R. Venkataramanan, K. Kögler, M. Mondelli, in:, Proceedings of the 39th International Conference on Machine Learning, ML Research Press, 2022.
[Published Version] View | Files available
 
2022 | Published | Journal Article | IST-REx-ID: 11420 | OA
Mean-field analysis of piecewise linear solutions for wide ReLU networks
A. Shevchenko, V. Kungurtsev, M. Mondelli, Journal of Machine Learning Research 23 (2022) 1–55.
[Published Version] View | Files available | arXiv
 
2022 | Published | Conference Paper | IST-REx-ID: 12016 | OA
Polar coded computing: The role of the scaling exponent
D. Fathollahi, M. Mondelli, in:, 2022 IEEE International Symposium on Information Theory, IEEE, 2022, pp. 2154–2159.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2022 | Published | Journal Article | IST-REx-ID: 10364 | OA
Parallelism versus latency in simplified successive-cancellation decoding of polar codes
S.A. Hashemi, M. Mondelli, A. Fazeli, A. Vardy, J. Cioffi, A. Goldsmith, IEEE Transactions on Wireless Communications 21 (2022) 3909–3920.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 13146 | OA
Tight bounds on the smallest Eigenvalue of the neural tangent kernel for deep ReLU networks
Q. Nguyen, M. Mondelli, G. Montufar, in:, Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 8119–8129.
[Published Version] View | Files available | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10053 | OA
Parallelism versus latency in simplified successive-cancellation decoding of polar codes
S.A. Hashemi, M. Mondelli, A. Fazeli, A. Vardy, J. Cioffi, A. Goldsmith, in:, 2021 IEEE International Symposium on Information Theory, Institute of Electrical and Electronics Engineers, 2021, pp. 2369–2374.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10593 | OA
PCA initialization for approximate message passing in rotationally invariant models
M. Mondelli, R. Venkataramanan, in:, 35th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2021, pp. 29616–29629.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10594 | OA
When are solutions connected in deep networks?
Q. Nguyen, P. Bréchet, M. Mondelli, in:, 35th Conference on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2021.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10595 | OA
Tight bounds on the smallest eigenvalue of the neural tangent kernel for deep ReLU networks
Q. Nguyen, M. Mondelli, G.F. Montufar, in:, M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine Learning, ML Research Press, 2021, pp. 8119–8129.
[Published Version] View | Download Published Version (ext.) | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10597 | OA
Sparse multi-decoder recursive projection aggregation for Reed-Muller codes
D. Fathollahi, N. Farsad, S.A. Hashemi, M. Mondelli, in:, 2021 IEEE International Symposium on Information Theory, Institute of Electrical and Electronics Engineers, 2021, pp. 1082–1087.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2021 | Published | Conference Paper | IST-REx-ID: 10598 | OA
Approximate message passing with spectral initialization for generalized linear models
M. Mondelli, R. Venkataramanan, in:, A. Banerjee, K. Fukumizu (Eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2021, pp. 397–405.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Export / Embed