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Abstract
For a Seifert fibered homology sphere 𝑋, we show that
the 𝑞-series invariant Ẑ0(𝑋; 𝑞), introduced by Gukov–
Pei–Putrov–Vafa, is a resummation of the Ohtsuki series
Z0(𝑋). We show that for every even 𝑘 ∈ ℕ there exists
a full asymptotic expansion of Ẑ0(𝑋; 𝑞) for 𝑞 tending to
𝑒2𝜋𝑖∕𝑘, and in particular that the limit Ẑ0(𝑋; 𝑒2𝜋𝑖∕𝑘) exists
and is equal to the Witten–Reshetikhin–Turaev quan-
tum invariant 𝜏𝑘(𝑋). We show that the poles of the Borel
transform of Z0(𝑋) coincide with the classical complex
Chern–Simons values, which we further show classifies
the corresponding components of the moduli space of
flat SL(2, ℂ)-connections.

MSC 2020
57R56 (primary)

1 INTRODUCTION

Let 𝑋 be a closed and oriented 3-manifold and consider the positive integer level 𝑘 Witten–
Reshetikhin–Turaev (WRT) quantum invariant [88, 89, 92]

𝜏𝑘(𝑋) ∈ ℂ. (1.1)

This extends to a full topological quantum field theory (TQFT) [15] and was motivated from
physics by Witten’s work [94] on quantum Chern–Simons and the Jones polynomial [68, 69].
Classical Chern–Simons theory is a gauge theory with a Lagrangian formulation [45], and for
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a SU(2)-connection 𝛼 ∈ Ω1(𝑋, 𝔰𝔲(2)) we have the classical Chern–Simons action

SCS(𝛼) =
1
8𝜋2 ∫𝑋 tr

(
𝛼 d𝛼 +

2
3
𝛼3

)
mod ℤ.

The classical solutions in the theory are given by the moduli space of flat connections, which we
denote byFlat(𝑋, SU(2))). The asymptotic expansion conjecture [1–3, 7, 9, 94] postulates that to
each classical Chern–Simons invariant

𝜃 ∈ CS(𝑋) = SCS(Flat(𝑋, SU(2))),

there exists a natural number𝜇𝜃, ∈ ℕ and constants𝑑𝜃,𝑗 ∈ ℚ, 𝑗 = 1,… , 𝜇𝜃 and (possible divergent)
formal power series with non-zero constant termZ𝜃,𝑗(𝑘) ∈ ℂ[[𝑘−1∕2]]×, 𝑗 = 1,… , 𝜇𝜃 giving a large
level 𝑘 Poincaré asymptotic expansion

𝜏𝑘(𝑋) ∼
𝑘→∞

∑
𝜃∈CS(𝑋)

𝑒2𝜋𝑖𝑘𝜃
𝜇𝜃∑
𝑗=1

𝑘𝑑𝜃,𝑗 Z𝜃,𝑗(𝑘). (1.2)

The Chern–Simons action have a holomorphic extension to the space of SL(2, ℂ)-connections,
and this fact was used byWitten in his work on the analytic continuation of Chern–Simons theory
[95]. This is in accordance with recent developments in quantum field theory [18, 39, 54, 76] which
makes use of resurgence [38, 40, 41, 80] andPham–Picard–Lefshetz theory [19, 20, 35, 66, 75, 85–87].
In particular, this motivates that the power series invariants (pertubative series) in the expansion
(1.2) should be resurgent, with poles in the Borel-plane equal to (up to a shift) the set of classical
complex Chern–Simons values

CSℂ(𝑋) = SCS(Flat(𝑋, SL(2, ℂ))).

The work [48] by Garoufalidis used these ideas to pose a rich series of conjectures concerning
the resurgence properties of quantum invariants, and their connection to complex Chern–Simons
theory.More recently, the use of resurgence in connection to the Teichmüller topological quantum
field theory (TQFT) of the first author and Kashaev [8], which is the mathematical model of the
partition function of complex Chern–Simons theory [52], has been initiated by Garoufalidis, Gu
and Marino in [49].
In [55], Gukov, Pei, Putrov and Vafa used arguments from string theory and 3𝑑 − 3𝑑 correspon-

dence to propose the existence of an invariant of (𝑋, 𝑎), 𝑎 ∈ Spinc(𝑋), which is an integer power
series convergent inside the unit disc

Ẑ𝑎(𝑋; 𝑞) ∈ 2−𝑐𝑞Δℤ[[𝑞]]. (1.3)

The Gukov–Pei–Putrov–Vafa (GPPV) invariant was argued to be connected via resurgence to
Chern–Simons in the work of Gukov, Marino and Putrov [54]. In the case of certain Brieskorn
spheres 𝑋 = Σ(𝑝1, 𝑝2, 𝑝3) the invariant Ẑ𝑎(𝑋; 𝑞) was conceived as a Borel–Laplace resummation
of the large level 𝑘 asymptotic expansion of theWitten–Reshetikhin–Turaev (WRT) invariant (1.1).
Subsequently, the contour integral formula for (1.3) for (negatively definite) plumbed 3-manifolds
from [55] was proven mathematically to be a topological invariant in [53]. Moreover; the radial
limit conjecture [28, 53, 55] postulates that if 𝑏1(𝑋) = 0, then the following holds:
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𝜏𝑘(𝑋)

𝜏𝑘(S
2 × S1)

= (𝑖
√
2𝑘)−1

∑
𝑎,𝑏∈Spinc(𝑋)∕ℤ2

𝑒2𝜋𝑖𝑘𝑙𝑘(𝑎,𝑎)|𝑏|−1𝑆𝑎,𝑏 lim
𝑞↑exp(2𝜋𝑖∕𝑘)

Ẑ𝑏(𝑋; 𝑞)

(see Conjecture 2, where the notation is introduced). The proof of this remarkable conjecture
would give an analytic extension of 𝜏𝑘(𝑋) to the interior of the unit disc.
This paper concerns with WRT quantum invariants and their connection to Gukov–Pei–

Putrov–Vafa (GPPV) invariants via resurgence and the radial limit conjecture.We now summarize
our main results. Let 𝑝1, … , 𝑝𝑛 ∈ ℕ be pairwise coprime integers, and let for the rest of this paper
𝑋 denote the oriented Seifert fibered integral homology 3-sphere with 𝑛 ⩾ 3 exceptional fibers:

𝑋 = Σ(𝑝1, … , 𝑝𝑛).

Let Z0(𝑋) denote the Ohtsuki series of 𝑋. This is known by the work [73] to give the series in (1.2)
attached to 0 ∈ CS(𝑋). Let  denote the Borel transform (see the Appendix).

(1) Theorem 1 computes CSℂ(𝑋) and establishes that the Chern–Simons action SCS induces a
bijection between 𝜋0((𝑋, SL(2, ℂ))) and CSℂ(𝑋).

(2) Theorem 2 establishes that CSℂ(𝑋) is equal to the set of poles of (Z0(𝑋)).
(3) Theorem 3 establishes that Ẑ0(𝑋; 𝑞) is a Borel–Laplace resummation of Z0(𝑋).
(4) Theorem 4 establishes that Ẑ0(𝑋; 𝑞) admits an asymptotic expansion for 𝑞 → 𝑒2𝜋𝑖∕𝑘, and that

the radial limit conjecture is true for 𝑋, that is, there are explicit constants 𝜇, 𝛿 such that

𝜏𝑘(𝑋)

𝜏𝑘(S
2 × S1)

= lim
𝑞↑exp(2𝜋𝑖∕𝑘)

𝜇√
𝑘
𝑞𝛿Ẑ0(𝑋; 𝑞).

We stress that in this paper we work with the mathematical definition of Ẑ0(𝑋; 𝑞) given in [53].
We now present our results in full detail.

1.1 Complex Chern–Simons theory

For a Lie group 𝐺, let(𝐺) = (𝑋, 𝐺) be the moduli space of flat 𝐺-connections on 𝑋. Set 𝑃 =∏𝑛
𝑗=1 𝑝𝑗 . For a rational number 𝑥 ∈ ℚ, let [𝑥] = 𝑥 mod ℤ. We prove

Theorem 1. The Chern–Simons action SCS induces a bijection between 𝜋0((SL(2, ℂ))) and the
range of the Chern–Simons action, which is equal to

CSℂ(𝑋) = {[0]} ⊔

{[
−𝑚2

4𝑃

]
∶ 𝑚 ∈ ℤ is divisible by at most 𝑛 − 3 of the integers 𝑝𝑗

}
.

The natural inclusion

(SL(2, ℝ)) ⊔(U(1)) (SU(2)) → (SL(2, ℂ))

induces an isomorphism on the level of 𝜋0

𝜋0((SL(2, ℝ)) ⊔(U(1)) (SU(2))) ≅ 𝜋0((SL(2, ℂ))).
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1.2 The Borel transform

For 𝑘 ∈ ℕ∗ set 𝑞𝑘 = exp(2𝜋𝑖∕𝑘) and let 𝜍 ∈ ℂ∗ and 𝜙 ∈ ℚ be the constants introduced below in
(2.2). We consider the normalized quantum invariant

Z̃𝑘(𝑋) = 𝜍𝑞
𝜙
4
𝑘

𝜏𝑘(𝑋)

𝜏𝑘(S
2 × S1)

. (1.4)

Let CS∗ℂ(𝑋) = CSCS(𝑋) ⧵ {[0]}. Introduce the rational function

𝐺(𝑧) =
𝑛∏
𝑗=1

(
𝑧

𝑃
𝑝𝑗 − 𝑧

− 𝑃
𝑝𝑗

)(
𝑧𝑃 − 𝑧−𝑃

)2−𝑛
. (1.5)

InTheorem2weuse thenotion of a resurgent function and theBorel transform,which are recalled
in Definitions A1 and A2, respectively. Let 𝜅 =

√
2𝜋𝑖𝑃. Building on the work of Lawrence and

Rozansky† [73] and on our Theorem 1 we prove the following:

Theorem 2. There are uniquely determined polynomials Z𝜃 = Z𝜃(𝑋) for 𝜃 ∈ CS∗ℂ(𝑋) of degree at

most 𝑛 − 3 and a formal power series Z0 = Z0(𝑋) ∈ 𝑥−
1
2 ℂ[[𝑥−1]] giving the full asymptotic expan-

sion in the Poincaré sense

Z̃𝑘(𝑋) ∼
𝑘→∞

∑
𝜃∈CSℂ(𝑋)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘). (1.6)

The series Z0 is a normalization of the Ohtsuki series of 𝑋 (see Equation 2.6) whose Borel transform
(Z0) is the resurgent function:

(Z0)(𝜁) = 𝜅

𝜋𝑖
√
𝜁
𝐺

(
exp

(
𝜅
√
𝜁

𝑃

))
=

𝜅𝑖
4𝜋

∏𝑛
𝑗=1 sinh

(
𝜅
√
𝜁

𝑝𝑗

)
√
𝜁
(
sinh

(
𝜅
√
𝜁
))𝑛−2 . (1.7)

Furthermore; ifΩ is the set of poles of (Z0), then
Ω = −2𝜋𝑖 CS∗ℂ(𝑋) + 2𝜋𝑖ℤ. (1.8)

Remark 1. In accordance with the asymptotic expansion conjecture we expect that the sum
in (1.6) should only range over the Chern–Simons values of flat SU(2)-connections. This is
known to be true for 𝑛 = 3 [59] and in some cases for 𝑛 = 4 [58]. However, we see from (1.8)
that the quantum invariants via resurgence determine all the Chern–Simons values of flat
SL(2, ℂ)-connections.

†A comparison is given at the end of the introduction.
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F IGURE 1 The integration contour 𝛤 = 𝛤+ + 𝛤−

1.3 A resurgence formula for the GPPV invariant �̂�

Let Δ ∈ ℚ be given by Equation (4.2). Let 𝑞 denote a complex variable. Consider the GPPV invari-
ant [55] which (up to the pre-factor 𝑞−Δ) is given by a power series invariant (1.9) with integer
coefficients and radius of convergence equal to unity

Ẑ0(𝑋; 𝑞) ∈ 𝑞−Δℤ[[𝑞]]. (1.9)

In this paper, we work with the mathematical definition of (1.9) given in [53] for a large class
of plumbed 3-manifolds which includes 𝑋. This definition is recalled below in Definition 1. Set
𝑚0 = 𝑃(𝑛 − 2 −

∑𝑛
𝑗=1 𝑝

−1
𝑗
) ∈ ℤ. There exists a sequence of integers {𝜒𝑚}∞𝑚=𝑚0

such that for all
𝑧 ∈ ℂ with |𝑧| < 1

𝐺(𝑧) = (−1)𝑛
∞∑

𝑚=𝑚0

𝜒𝑚𝑧
𝑚 ∈ ℤ[[𝑧]].

Let 𝔥 denote the upper half-plane. Let 𝜏 ∈ 𝔥 and set

𝑞 = exp(2𝜋𝑖𝜏).

Let 𝛤 = 𝛤+ + 𝛤− be the oriented unbounded contour depicted in Figure 1 and let 𝜆 =
(−1)𝑛 𝑖

2
(2𝑃)−1∕2. We show that the GPPV invariant Ẑ0(𝑋; 𝑞) is a Borel–Laplace resummation (see

the Appendix) of the Ohtsuki series Z0(𝑋).

Theorem 3.

𝑞ΔẐ0(𝑋; 𝑞) =
𝜆√
𝜏 ∫𝛤 exp(−𝜁∕𝜏)(Z0(𝑋))(𝜁) d𝜁 =

∞∑
𝑚=𝑚0

𝜒𝑚𝑞
𝑚2

4𝑃 . (1.10)

In this paper, we use the resurgence formula (1.10) to prove that the GPPV invariant Ẑ0(𝑋; 𝑞)
admits a full Poincaré asymptotic expansion when 𝑞 tends to the 𝑘th root of unity equal to 𝑒2𝜋𝑖∕𝑘.
We further show that the constant term of this expansion is equal (up to a scaling factor) to the
Witten–Reshetikhin–Turaev quantum invariant, and thus we use resurgence to prove the radial
limit conjecture for 𝑋.
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1.4 The asymptotic expansion of the GPPV invariant �̂�

We now present the asymptotic expansion theorem for Ẑ0(𝑋), which in particular implies the
radial limit conjecture for 𝑋 [28, 53, 55]. This conjecture is recalled in Conjecture 2. Assume that
𝑃 is even. Set 𝛿 = Δ − 𝜙∕4 and 𝜇 = (2𝜆𝜍)−1. For a positive parameter 𝑡 set

𝑞𝑘,𝑡 = exp

(
2𝜋𝑖

𝑘 − 𝑖 2𝑃𝑡
𝜋

)
.

Theorem4. For each 𝜃 ∈ CS∗ℂ(𝑋), there exists a unique polynomial (defined in (5.21)) in 𝑘 of degree
at most 𝑛 − 3 with coefficients in formal power series without constant terms

Ž𝜃(𝑘, 𝑡) ∈ 𝑡 ⋅ ℚ[𝜋𝑖, 𝑘][[𝑡]] (1.11)

giving a full Poincaré asymptotic expansion for small 𝑡 and fixed even 𝑘

(
√
𝑘𝜆)−1𝑞Δ𝑘,𝑡Ẑ0(𝑋; 𝑞𝑘,𝑡) ∼

𝑡→0
Z̃𝑘(𝑋) +

∑
𝜃∈CS∗

ℂ
(𝑋)

𝑒2𝜋𝑖𝑘𝜃Ž𝜃(𝑘, 𝑡). (1.12)

In particular, for every even 𝑘 we have

𝜇√
𝑘
lim
𝑡→0

𝑞𝛿Ẑ0(𝑋; 𝑞𝑘,𝑡) =
𝜏𝑘(𝑋)

𝜏𝑘(S
2 × S1)

. (1.13)

Thus, the radial limit conjecture (Conjecture 2) holds for 𝑋.

We remark that the existence of a full asymptotic expansion in terms of complex Chern–Simons
invariants and polynomials in the level as in (1.12) is a new phenomenon not observed in the
literature prior to this work (neither as a conjecture nor as a result). Thus the series (1.11) are new
topological invariants of 𝑋.
In combination with Lemma 14, our Theorem 4 yields a remarkable resummation formula for

the (normalized) Witten–Reshetikhin–Turaev quantum invariant in terms of the (normalized)
Ohtsuki series Z0. Recall that Ω denotes the set of poles of the Borel transform (Z0) of Z0. Let 𝑘
be even, let 𝑡 be a small positive parameter and set

𝜏𝑘,𝑡 =
(
𝑘 − 𝑖

2𝑃𝑡
𝜋

)−1
=
log(𝑞𝑘,𝑡)

2𝜋𝑖
.

Corollary 5.

Z̃𝑘(𝑋) = lim
𝑡→0

[
∫

∞

0
exp

(
−

𝜁

𝜏𝑘,𝑡

)
(Z0)(𝜁) d𝜁 −

∑
𝜔∈Ω

Res𝜁=𝜔

(
exp

(
−

𝜁

𝜏𝑘,𝑡

)
(Z0)(𝜁)

)]
. (1.14)

Informally, the identity (1.14) can be rewritten as

Z̃𝑘(𝑋) = ∫
∞

0
𝑒−𝑘𝜁(Z0)(𝜁) d𝜁 −

∑
𝜔∈Ω

Res𝜁=𝜔

(
𝑒−𝑘𝜁(Z0)(𝜁)

)
,

provided the right-hand side is interpreted as the limit on the right-hand side of (1.14).
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1.5 Comparisons with the literature

We now give a brief comparison with the relevant works from the literature. The existence of an
asymptotic expansion

Z̃𝑘(𝑋) ∼
𝑘→∞

∑
𝜃∈𝑅(𝑌)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘), (1.15)

where 𝑅(𝑌) ⊂ ℚ∕ℤ is a finite set which was proven in [73]. In this work, it was also shown that Z0
is a normalization of the Ohtsuki series. Our contribution in regard to (1.15) is to compute CSℂ(𝑋)
and to show 𝑅(𝑋) ⊂ CSℂ(𝑋). In [73], the authors do not address the Borel transform.
The 𝑞-series from Theorem 3

Ψ(𝑞) =
∞∑

𝑚=𝑚0

𝜒𝑚𝑞
𝑚2

4𝑃 (1.16)

was considered in the study of 𝜏𝑘(Σ(𝑝1, 𝑝2, 𝑝3)) by Lawrence and Zagier [74], and further explored
byHikami [58]. It is easy to show that for 𝑛 = 3, the series (1.16) have periodic coefficients of mean
value equal to zero. These facts, which are not true for 𝑛 ⩾ 3, were used by Lawrence and Zagier
to prove that when 𝑞 → 𝑞𝑘, the seriesΨ(𝑞) tends to theWitten–Reshetikhin–Turaev invariant. For
𝑛 ⩾ 4Hikami in [59] considers a differently defined 𝑞-series. Our Theorem 4 generalizes the result
from [74] from 𝑛 = 3 to any number of exceptional fibers 𝑛 ⩾ 3. We remark that to go beyond the
case of 𝑛 = 3, we use the resurgence formula (1.10).
The work [54] of Gukov, Marino and Putrov is one of the main inspirations for this paper. In

[54], the authors analyze 𝜏𝑘(𝑋) for some examples with 𝑛 = 3. The identity (1.8) was verified for
these examples. For 𝜏 ∈ 𝔥 set ℎ = 2𝜋𝑖𝜏 so that 𝑞 = exp(ℎ). Consider again the integral

I(ℎ) =
𝜆√
𝜏 ∫𝛤 exp

(
−
2𝜋𝑖𝜉

ℎ

)
(Z0)(𝜉) d𝜉. (1.17)

In [54], identities of the form

I(ℎ) = Ψ(𝑞) (1.18)

were discovered. In a sense, the series Ψ(𝑞) was taken as a definition for Ẑ0(𝑞) for Σ(𝑝1, 𝑝2, 𝑝3),
and the GPPV formula (Definition 1) was only later introduced in [55]. Prior to this work, it was
not proven that the GPPV formula and the Borel–Laplace resummation (1.17) give the same result.
In the work [47] of Fuji, Iwaki, Murakami and Terashima, the 𝑞-series Ψ(𝑞) is also considered

for general 𝑛 ⩾ 3, and they prove a radial limit theorem, which is analogous to (1.13). They also
prove an identity of the form (1.18). In [47], they do not however work with the definition of the
GPPV invariant Ẑ0(𝑞), although they conjecture that this is equal to Ψ(𝑞). They also consider the
case of the WRT invariant of a knot inside 𝑋 and prove a difference equation for Ψ(𝑞).
Our Theorem 3 shows

𝑞ΔẐ0(𝑞) = I(ℎ) = Ψ(𝑞)

for all Seifert fibered integral homology 3-spheres 𝑋 with 𝑛 ⩾ 3 singular fibers, where Ẑ0(𝑞) is
independently defined via the GPPV formula. We remark that those of our results that overlap
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with [47] had been presented prior to their submission by the first author in the online seminar [5]
and by the second author at a seminar [79] at IST, Austria. The 𝑞-seriesΨ(𝑞)was also conjectured
to be a normalization of Ẑ0(𝑞) in the second author’s thesis [78]. We also remark that our proof
of the radial limit formula (1.13) differs from theirs; our stronger Theorem 4 is derived using the
resurgence formula for Ẑ0(𝑞) from Theorem 3, while their proof of their radial limit theorem uses
Gaussian reciprocity directly on Ψ(𝑞). We warmly thank them for cordial coordination.

1.6 Further perspectives

In a planned sequel to this paper, we give a resurgence analysis of Witten–Reshetikhin–Turaev
quantum invariants of hyperbolic surgeries on the figure-eight knot. These manifolds are more
complicated than Seifert fibered manifolds, and the resurgence analysis will fully use the Pham–
Picard–Lefshetz theory [19, 20, 35, 66, 75, 85–87] developed for Laplace integrals with holomorphic
phase (see the introduction to the second author’s thesis [78] for a brief summary of the relevant
results), as well as a detailed study of Faddeev’s quantum dilogarithm [42, 43]. In connection
hereto, we mention also the paper [50] on resurgence of Faddeev’s quantum dilogarithm and the
following work of the first author [4], which concerns resurgence of meromorphic transforms,
which is a class of functions that includes Faddeev’s quantum dilogarithm. To obtain our results,
we prove a conjecture due to the first author and Hansen [6]. A preliminary version of our results
in this direction, which assumed the conjecture of [6], featured in the PhD thesis of the second
author [78].
The resurgence analysis in this paper was derived from concrete formulae for quantum invari-

ants, obtained combinatorially from a surgery diagram of 𝑋. It is an important open problem
to generalize this work by deriving a similar resurgence analysis for more general and compli-
cated 3-manifolds using either the conformal field theory approach [11, 91], or the quantization
approach [17, 65] to the Witten–Reshetikhin–Turaev TQFT. By a large body of work culminating
in the works of the first author and Ueno [10–13], these approaches are equivalent to the combi-
natorial construction of 𝜏𝑘.
Let us make a few more remarks in the quantization direction. For a closed oriented surface

Σ (possible with labeled points), let V𝑘(Σ) be the TQFT Hilbert space. By the works mentioned
above, thisHilbert space can be obtained by quantization ofFlat(Σ, SU(𝑛)) [17, 65] equippedwith
the Atiyah–Bott–Goldman symplectic form [16, 51]. Consider a closed oriented 3-manifold 𝑀3,
which contains Σ as an embedded surface. By cutting along Σ, we obtain a 3-manifold𝑀cut

3 with
boundary 𝜕𝑀cut

3 ≃ Σ ⊔ −Σ and there is an associated boundary state vector 𝜏𝑘(𝑀cut
3 ) ∈ V𝑘(Σ ⊔

−Σ). The TQFT provides isomorphismsV𝑘(Σ ⊔ −Σ) ≃ V𝑘(Σ) ⊗ V𝑘(−Σ) andV𝑘(Σ) ≃ V𝑘(Σ)
∗, and

using these one can compute the Witten–Reshetikhin–Turaev invariant of𝑀3 as the trace

𝜏𝑘(𝑀3) = tr 𝜏𝑘(𝑀
cut
3 ). (1.19)

In our joint work [9], we prove the asymptotic expansion conjecture for themapping tori𝑀3 (with
a special colored link) of a generic surface self-diffeomorphism 𝜑 ∶ Σ → Σ (preserving a point
𝑃 ∈ Σwhich traces out the link in𝑀3) using formula (1.19) and the quantization of moduli spaces
approach to V𝑘(Σ). This quantization approach to quantum invariants is also considered by other
authors in the works of [25–27, 67]. By building on the work of the first author [2] and Toeplitz
operator theory [70], the quantization approach allowed us in [9] to reduce the proof of the asymp-
totic conjecture to an application of stationary phase approximation applied to oscillatory integrals
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(1.20) over the moduli spaceΣ = Flat(Σ ⧵ {𝑃}, SU(𝑛), 𝑒
2𝜋𝑖∕𝑛 Id) of flat connections on Σ ⧵ {𝑃}

with holonomomy around 𝑃 conjugate to 𝑒2𝜋𝑖∕𝑛 Id

I𝜑(𝑘) = ∫Σ

exp(𝑘�̂�) ⋅Ω𝜑. (1.20)

Such integrals are amenable to resurgence analysis bymeans of Pham–Picard–Lefshetz theory [19,
20, 35, 66, 75, 85–87]. Moreover, the phase function �̂� appearing in (1.20) admits a holomorphic
extensions to a suitable complexification of an open neighborhood of the fixed locus𝜑

Σ. This is
possible connected to Gukov andWitten’s theory of brane quantization [56], in which complexifi-
cation plays a central role, and where Hitchin’s moduli space of Higgs bundles [64] plays the role
of a complexification of Flat(Σ, SU(𝑛)). The moduli space of Higgs bundles is by non-abelian
Hodge theory [31, 37, 64] isomorphic toFlat(Σ, SL(𝑛, ℂ)), and thus there is an immediate con-
nection to complex Chern–Simons theory. In the future, we hope to use this approach to perform
a general resurgence analysis of quantum invariants.

1.7 Organization

In Section 2, we prove Theorem 1 in several steps. Theorem 7 gives a decomposition of the moduli
space, Corollary 9 computes the Chern–Simons invariants and Theorem 10 proves that compo-
nents of this moduli space are classified by their Chern–Simons value. In Section 3, we prove
Theorem 2. Proposition 12 gives an exact formula for the generating function of Z̃𝑘(𝑋), verifying a
special case of a conjecture of Garoufalidis [48]. In Section 4 we prove Theorem 3 and in Section 5
we prove Theorem 4. In the Appendix, we present generalities on resurgence.

2 COMPLEX CHERN–SIMONS THEORY ON 𝑿

Let𝑋 be the oriented Seifert fibered homology 3-sphere from the introduction. Choose 𝑞1, … , 𝑞𝑛 ∈
ℤ such that (𝑝𝑗, 𝑞𝑗) = 1 and

𝑛∑
𝑗=1

𝑞𝑗
𝑝𝑗

=
1
𝑃
.

Then 𝑋 has a surgery diagram as depicted in Figure 2. Without loss of generality, we can assume
that 𝑝2, … , 𝑝𝑛 are odd. The homeomorphism type of 𝑋 is unaltered under a transformation

p1/q1
p2/q2 p3/q3

pn/qn

F IGURE 2 Surgery link for 𝑋
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𝑞𝑗 ↦ 𝑞𝑗 + 𝑦𝑗 for any choice of integers 𝑦1, … , 𝑦𝑛 such that (𝑝𝑗, 𝑞𝑗 + 𝑦𝑗) = 1 and

𝑛∑
𝑗=1

𝑞𝑗
𝑝𝑗

=
∑
𝑗=1

𝑞𝑗 + 𝑦𝑗
𝑝𝑗

. (2.1)

If 𝑞𝑗 is odd for 𝑗 > 1, we perform the transformation 𝑞𝑗 ↦ 𝑞𝑗 + 𝑝𝑗 and 𝑞1 ↦ 𝑞1 − (𝑛 − 1)𝑝1 which
does not change sum (2.1). Hence, we can assume without loss of generality that 𝑞2, … , 𝑞𝑛 are all
even. Recall that under our assumptions 1 = 𝑃

∑
𝑗=1

𝑞𝑗
𝑝𝑗
. Note that this implies that 𝑞1 is odd.

We recall the computation of 𝜏𝑘(𝑋) from [73]. Let 𝑆( ⋅ , ⋅ ) be the Dedekind sum. Introduce the
constants

𝜍 = −

√
𝑃

4
exp

(
−
𝜋𝑖3
4

)
, 𝜙 = 3 −

1
𝑃
+ 12

𝑛∑
𝑗=1

𝑆

(
𝑃
𝑝𝑗
, 𝑝𝑗

)
. (2.2)

The quantity 𝜙 is related to the Casson–Walker invariant 𝜆(𝑋) [93] (in Casson’s normalization) as
follows:

−24𝜆(𝑋) = 𝜙 + 𝑃

(
𝑛 − 2 −

𝑛∑
𝑗=1

𝑝−2𝑗

)
.

Define the meromorphic function 𝐹 ∈ (ℂ) and g ∈ ℂ[𝑦] explicitly as follows:

𝐹(𝑦) =
1
4

(
sinh

(𝑦
2

))2−𝑛 𝑛∏
𝑗=1

sinh

(
𝑦

2𝑝𝑗

)
,

g(𝑦) =
𝑖𝑦2

8𝜋𝑃
.

(2.3)

In [73], Lawrence and Rozansky show the following results. There exists a finite subset 𝑅∗(𝑋) ⊂
ℚ∗∕ℤ and non-vanishing polynomials Z𝜃(𝑧) ∈ ℂ[𝑧], 𝜃 ∈ 𝑅∗(𝑋) of degree at most 𝑛 − 3 such that

∑
𝜃∈𝑅∗(𝑋)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘) = −
2𝑃−1∑
𝑚=1

Res
(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖𝑚

)
for all non-negative integers 𝑘. Let 𝛾 to be the contour from (−1 − 𝑖)∞ to (1 + 𝑖)∞. Observe that
𝛾(𝐻) is a steepest descent path for g . Introduce the following notation:

Z𝑅(𝑘) =
∑

𝜃∈𝑅∗(𝑋)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘)

ZI(𝑘) =
1
2𝜋𝑖 ∫𝛾 𝐹(𝑦)𝑒

𝑘g(𝑦) d𝑦.

Recalling the definition of the normalized quantum invariant Z̃𝑘 given in (1.4), Lawrence and
Rozansky proved that it can be decomposed into a sum of an integral part ZI and a residue part
Z𝑅

Z̃𝑘(𝑋) = ZI(𝑘) + Z𝑅(𝑘). (2.4)
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This is [73, Section 4.5, eq. 4.8]. We have used the same notation for 𝐹, g and 𝜙, whereas constant
𝐵 in their notation is equal to 𝜍−1. Thus, if we define

Z0(𝑥) =
1
2𝜋𝑖

√
𝑃𝜋𝑖8

∞∑
𝑛=0

𝐹(2𝑛)(0)(𝑖8𝑃𝜋)𝑛

(2𝑛)!

Γ
(
𝑛 + 1

2

)
𝑥𝑛+

1
2

∈ 𝑥−1∕2ℂ[[𝑥−1]]

and set 𝑅(𝑋) = 𝑅∗(𝑋) ⊔ {0} then we have an asymptotic expansion

Z̃𝑘(𝑋) ∼𝑘→∞

∑
𝜃∈𝑅(𝑋)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘). (2.5)

In the work [73], it was observed that Z0 is in fact a normalization of the Ohtsuki-series [81–83].
LetZ∞ denote theOhtsuki series (with the normalization used in [73]). Introduce the variable ℎ =
𝑞𝑘 − 1, where, as above, 𝑞𝑘 = exp(2𝜋𝑖∕𝑘). In [74, Section 4.6], they show the following identity:

Z0(𝑘) = Z∞(ℎ). (2.6)

2.1 The moduli space and complex Chern–Simons values

We now begin our investigation of (𝑋, SL(2, ℂ)), which closely follows [44]. We have the fol-
lowing presentation of the fundamental group of 𝑋:

𝜋1(𝑋) ≃
⟨
ℎ, 𝑥1, … , 𝑥𝑛 ∣ 𝑥1𝑥2⋯𝑥𝑛, 𝑥

𝑝𝑗
𝑗
ℎ−𝑞𝑗 , [𝑥𝑗, ℎ], 𝑗 = 1,… , 𝑛

⟩
.

Let us first recall a few of Fintushel and Stern’s results concerning the moduli space
(𝑋, SU(2)) established in [44]. As 𝑋 is an integral homology sphere, the only reducible rep-
resentation into 𝑆𝑈(2) is the trivial one. For an irreducible representation 𝜌 ∶ 𝜋1(𝑋) → SU(2) at
most 𝑛 − 3 of the 𝜌(𝑥𝑗) are ±𝐼, and if exactly 𝑛 − 𝑚 of the 𝜌(𝑥𝑗) are equal to ±𝐼, then the compo-
nent of 𝜌 in(𝑋, SU(2)) is of dimension 2(𝑛 − 𝑚) − 6.
Let 𝐿(𝑝1, … , 𝑝𝑛) ⊂ ℕ𝑛 be the set of 𝑛-tuples 𝑙 = (𝑙1, … , 𝑙𝑛) which satisfies the following condi-

tion. We have 0 ⩽ 𝑙1 ⩽ 𝑝1 and 0 ⩽ 𝑙𝑗 ⩽ (𝑝𝑗 − 1)∕2, for 𝑗 = 2,… , 𝑛 and there exist at least three
distinct 𝑗1 < 𝑗2 < 𝑗3 with 𝑙𝑗𝑡 ≠ 0 for 𝑡 = 1, 2, 3. The following proposition is an adaptation and
generalization of [21, Lemma 2; 44, Lemmas 2.1 and 2.2].

Proposition 6. Let 𝑙 = (𝑙1, 𝑙2, … , 𝑙𝑛) ∈ 𝐿(𝑝1, … , 𝑝𝑛). Then there exist matrices 𝑄𝑗 ∈ SL(2, ℂ) and a
representation 𝜌𝑙 ∶ 𝜋1(𝑋) → SL(2, ℂ) with

𝜌𝑙(𝑥1) = 𝑄1

⎛⎜⎜⎝
𝑒
𝜋𝑖𝑙1
𝑝1 0

0 𝑒
−
𝜋𝑖𝑙1
𝑝1

⎞⎟⎟⎠𝑄−1
1 , 𝜌𝑙(𝑥𝑗) = 𝑄𝑗

⎛⎜⎜⎜⎝
𝑒

2𝜋𝑖𝑙𝑗
𝑝𝑗 0

0 𝑒
−
2𝜋𝑖𝑙𝑗
𝑝𝑗

⎞⎟⎟⎟⎠𝑄
−1
𝑗

for 𝑗 = 2,…𝑛. In fact we can choose 𝑄𝑗 = 𝐼 for 𝑗 ≠ 𝑗2, 𝑗3.
Furthermore we can choose functions 𝑄𝑗 such that

𝜌𝑙 ∶ 𝜋1(𝑋) → SL(2, ℝ)



720 ANDERSEN and MISTEGÅRD

or

𝜌𝑙 ∶ 𝜋1(𝑋) → SU(2)

depending on properties of 𝑙. For any non-trivial representation 𝜌 ∶ 𝜋1(𝑋) → SL(2, ℂ), there exists
𝑙′ ∈ ℕ𝑛 such that 𝑝𝑗 divides 𝑙′𝑗 for at most 𝑛 − 3 of the indices 𝑗 = 1, 2, 3, … , 𝑛 and such that 𝜌 is of
the form

𝜌(𝑥1) = 𝑆1

⎛⎜⎜⎜⎝
𝑒
𝜋𝑖𝑙′

1
𝑝1 0

0 𝑒
−
𝜋𝑖𝑙′

1
𝑝1

⎞⎟⎟⎟⎠ 𝑆
−1
1 , 𝜌(𝑥𝑗) = 𝑆𝑗

⎛⎜⎜⎜⎝
𝑒

2𝜋𝑖𝑙′
𝑗

𝑝𝑗 0

0 𝑒
−
2𝜋𝑖𝑙′

𝑗
𝑝𝑗

⎞⎟⎟⎟⎠ 𝑆
−1
𝑗 (2.7)

for some 𝑆1, … , 𝑆𝑛 ∈ SL(2, ℂ).
Finally, we have that the map which associates 𝑙 ∈ 𝐿(𝑝1, … , 𝑝𝑛) to a non-trivial representation

𝜌 ∶ 𝜋1(𝑋) → SL(2, ℂ) via (2.7) induces an isomorphism

𝜋0(∗(𝑋, SL(2, ℂ))) ≅ 𝐿(𝑝1, … , 𝑝𝑛).

The family of Brieskorn integral homology spheres (𝑛 = 3) is very special because the moduli
space (Σ(𝑝1, 𝑝2, 𝑝3), SL(2, ℂ)) is finite with cardinality given by the SL(2, ℂ) Casson invariant
introduced by Curtis [33, 34]:

𝜆SL(2,ℂ)(Σ(𝑝1, 𝑝2, 𝑝3)) = (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1)∕4.

This is shown by Boden and Curtis [21]. Prior to this and in relation to Floer homology, Fintuschel
and Stern [44] analyzed the SU(2)moduli space(𝑋, SU(2)) of the Seifert fibered 3-manifold 𝑋
considered in this paper and their work shows that the components are even-dimensional man-
ifolds with the top dimension 2𝑛 − 6. This is in stark contrast to the finiteness of the moduli
space(Σ(𝑝1, 𝑝2, 𝑝3), SL(2, ℂ)). In the three fibered case, Kitano and Yamaguchi [72] has given
a decomposition

(Σ, SL(2, ℂ)) = (Σ, SL(2, ℝ))
⋃

(Σ,U(1))
(Σ, SU(2)),

where Σ = Σ(𝑝1, 𝑝2, 𝑝3). Here we can observe the following generalization of this work as an
immediate corollary of Proposition 6.

Theorem 7. The natural inclusion

(𝑋, SL(2, ℝ)) ⊔(𝑋,U(1)) (𝑋, SU(2)) → (𝑋, SL(2, ℂ))

induces an isomorphism on the level of 𝜋0

𝜋0((𝑋, SL(2, ℝ)) ⊔(𝑋,U(1)) (𝑋, SU(2))) ≅ 𝜋0((𝑋, SL(2, ℂ))).

By this corollary we can, in particular, conclude that all Chern–Simons values are real and they
only depend on 𝑙 ∈ 𝐿(𝑝1, … , 𝑝𝑛). In Proposition 8, we actually provide an explicit formula.
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Before commencing the proof let us introduce the following notation:

exp(𝑥) =

(
𝑒𝑥 0
0 𝑒−𝑥

)
,

which should not cause any ambiguities as long as the context shows that we are dealing with
a matrix.

Proof. We start with the construction of 𝜌𝑙. Introduce matrices

𝑋1 = exp(𝜋𝑖𝑙1∕𝑝1), 𝑋𝑗 = exp(2𝜋𝑖𝑙𝑗∕𝑝𝑗)

for 𝑗 ∈ {2, … ., 𝑛} ⧵ {𝑗2, 𝑗3}. Rewrite the relation
∏𝑛

𝑗=1 𝑥𝑗 = 1 as the equivalent relation

𝑥𝑗3+1⋯𝑥𝑛𝑥1⋯𝑥𝑗1 ⋯𝑥𝑗2 ⋯𝑥𝑗3−1 = 𝑥−1𝑗3
.

Assume that we can chose 𝑄𝑗2 , 𝑄𝑗3 ∈ SL(2, ℂ) such that

𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑄𝑗2𝑋𝑗2𝑄
−1
𝑗2

⋯𝑋𝑗3−1 = 𝑄−1
𝑗3
𝑋−1
𝑗3
𝑄𝑗3 . (2.8)

Taking 𝑄𝑗 = 𝐼 for 𝑗 ∉ {𝑗2, 𝑗3}, we can define 𝜌 ∶ 𝜋1(𝑋) → SL(2, ℂ) by the assignment

𝜌(𝑥𝑗) = 𝑄𝑗𝑋𝑗𝑄
−1
𝑗 , 𝜌(ℎ) = 𝑋

𝑝1
1 .

To see this, observe that 𝐵 ∶= 𝑋
𝑝1
1 = (−𝐼)𝑙1 is central and as 𝑞1 is odd whereas 𝑞𝑗 is even for 𝑗 ⩾ 2,

we also have 𝑋
𝑝𝑗
𝑗
= 𝐵𝑞𝑗 , ∀𝑗. The last relation in 𝜋1(𝑋) is ensured by (2.8). Observe that it will

suffice to choose 𝑄𝑗2 ∈ SL(2, ℂ) such that

tr
(
𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑄𝑗2𝑋𝑗2𝑄

−1
𝑗2

⋯𝑋𝑗3−1

)
= 2 cos

(
2𝜋𝑙𝑗3
𝑝𝑗3

)
(2.9)

because this will ensure that there exists some 𝑄𝑗3 ∈ SL(2, ℂ) with the property that

𝑄𝑗3𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑄𝑗2𝑋𝑗2𝑄
−1
𝑗2

⋯𝑋𝑗3−1𝑄
−1
𝑗3

= 𝑋𝑗3 ,

since non-diagonalizable elements of SL(2, ℂ) have trace±2, given that the unit determinant con-
dition implies that the unique eigenvalue with multiplicity two for such elements must be either
1 or −1 and we have that

2

||||||cos
(
2𝜋𝑙𝑗3
𝑝𝑗3

)|||||| < 2.

For (2.9) we used our assumption on 𝑗3. Write

𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑋𝑗2−1 = exp(𝑖𝑎),

𝑋𝑗2 = exp(𝑖𝑏),
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𝑋𝑗2+1⋯𝑋𝑗3−1 = exp(𝑖𝑐),

𝑋𝑗3 = exp(𝑖𝑑).

We observe that by the conditions on (𝑙𝑗2 , 𝑝𝑗2) and (𝑙𝑗3 , 𝑝𝑗3) we have that

𝑏, 𝑑 ∉ 𝜋ℤ.

Let 𝑄𝑗2 = �̃� where

�̃� = �̃�(𝑢, 𝑣, 𝑤, 𝑧) =

(
𝑢 𝑣
𝑤 𝑧

)
for 𝑢, 𝑣, 𝑤, 𝑧 to be chosen below. Assume 𝑢𝑧 − 𝑣𝑤 = 1 so that �̃� ∈ SL(2, ℂ). We compute

𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑋𝑗2−1�̃�𝑋𝑗2�̃�
−1𝑋𝑗2+1⋯𝑋𝑗3−1

=

(
𝑧𝑢𝑒𝑖(𝑎+𝑏+𝑐) − 𝑤𝑣𝑒𝑖(𝑎−𝑏+𝑐) −𝑢𝑣𝑒𝑖(𝑎+𝑏−𝑐) + 𝑢𝑣𝑒𝑖(𝑎−𝑏−𝑐)

𝑧𝑣𝑒𝑖(𝑏+𝑐−𝑎) − 𝑧𝑤𝑒𝑖(𝑐−𝑎−𝑏) −𝑣𝑤𝑒−𝑖(𝑎+𝑏+𝑐) + 𝑧𝑢𝑒𝑖(𝑏−𝑎−𝑐)

)
.

Thus we have that

tr

(
𝑧𝑢𝑒𝑖(𝑎+𝑏+𝑐) − 𝑤𝑣𝑒𝑖(𝑎−𝑏+𝑐) −𝑢𝑣𝑒𝑖(𝑎+𝑏−𝑐) + 𝑢𝑣𝑒𝑖(𝑎−𝑏−𝑐)

𝑧𝑤𝑒𝑖(𝑏+𝑐−𝑎) − 𝑧𝑤𝑒𝑖(𝑐−𝑎−𝑏) −𝑣𝑤𝑒−𝑖(𝑎+𝑏+𝑐) + 𝑧𝑢𝑒𝑖(𝑏−𝑎−𝑐)

)
= 2𝑧𝑢 cos(𝑎 + 𝑏 + 𝑐) − 2𝑤𝑣 cos(𝑎 + 𝑐 − 𝑏).

It follows that we must solve(
cos(𝑎 + 𝑏 + 𝑐) cos(𝑎 + 𝑐 − 𝑏)

1 1

)(
𝑧𝑢
−𝑤𝑣

)
=

(
2 cos(𝑑)

1

)
. (2.10)

Using the trigonometric identity cos(𝑥 + 𝑦) − cos(𝑥 − 𝑦) = −2 sin(𝑥) sin(𝑦) we get

det

(
cos(𝑎 + 𝑏 + 𝑐) cos(𝑎 + 𝑐 − 𝑏)

1 1

)
= cos((𝑎 + 𝑐) + 𝑏) − cos((𝑎 + 𝑐) − 𝑏)

= −2 sin(𝑎 + 𝑐) sin(𝑏).

Thus it remains to argue 𝑎 + 𝑐 ∉ 𝜋ℤ and 𝑏 ∉ 𝜋ℤ. Assume toward a contradiction that 𝑎 + 𝑐 = 𝜋𝑚
for some𝑚 ∈ ℤ. Hence, we would have 𝑃(𝑎 + 𝑐) = 𝑃𝑚𝜋 for some integer𝑚, which would imply

𝑙𝑗12
𝜖
∏
𝑡≠𝑗1

𝑝𝑡 = 0 mod 𝑝𝑗1

for 𝜖 ∈ {0, 1}, with 𝜖 = 0 for 𝑗1 = 1 and 𝜖 = 0 otherwise. This is a contradiction, as 2𝜖
∏

𝑡≠𝑗1 𝑝𝑡 is
invertible in ℤ∕𝑝𝑗1ℤ and 1 ⩽ 𝑙𝑗1 ⩽ (𝑝𝑗1 − 1)∕2𝜖. We see that 𝑏 ∉ 𝜋ℤ directly from the conditions
on 𝑙𝑗2 . Thus we can solve (2.10), and hence find the needed 𝑢, 𝑣, 𝑤, 𝑧, which concludes the proof
of the first part of the proposition.
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Let us now prove that we can actually choose the functions𝑄𝑗 such that we obtain an SL(2, ℝ)-
representation. We will denote this new choice of the 𝑄𝑗 by 𝑄ℝ

𝑗
. We set 𝑄ℝ

𝑗
= 𝑄 for 𝑗 ∈ {1, … 𝑗2 −

1, 𝑗3 + 1,… , 𝑛}, where

𝑄 =

√
2

2

(
1 −𝑖
−𝑖 1

)
,

which has the following property:

𝑄 exp(𝑎)𝑄−1 =

(
cos(𝑎) − sin(𝑎)
sin(𝑎) cos(𝑎)

)
.

Introduce the notation �̃�𝑗 = 𝑄𝑋𝑗𝑄
−1 and observe by the above computations that

tr(�̃�𝑗3+1⋯ �̃�𝑛�̃�1⋯ �̃�𝑗1 ⋯ �̃�𝑗2−1𝑄�̃�𝑋𝑗2(𝑄�̃�)
−1) = tr(𝑋𝑗3+1⋯𝑋𝑛𝑋1⋯𝑋𝑗1 ⋯𝑋𝑗2−1�̃�𝑋𝑗2�̃�

−1)

= 2𝑧𝑢 cos(𝑎 + 𝑏) − 2𝑤𝑣 cos(𝑎 − 𝑏).

To understand which values, say 𝑡, this trace can take, we consider in analogy with (2.10) the
equation (

cos(𝑎 + 𝑏) cos(𝑎 − 𝑏)
1 1

)(
𝑧𝑢
−𝑤𝑣

)
=

(
𝑡
1

)
. (2.11)

The determinant is 𝐷 = −2 sin(𝑎) sin(𝑏), which is non-vanishing since 𝑎, 𝑏 ∉ 𝜋ℤ. Then we have
that (

𝑧𝑢
−𝑤𝑣

)
=

1
𝐷

(
𝑡 − cos(𝑎 − 𝑏)
−𝑡 + cos(𝑎 + 𝑏)

)
.

For 𝑡 ∈ ℝ we observe that 𝑧𝑢 ∈ ℝ and 𝑤𝑣 ∈ ℝ. Now we compute

𝑄�̃�𝑋𝑗2(𝑄�̃�)
−1

=

(
(𝑢𝑧 − 𝑤𝑣) cos(𝑏) + (𝑢𝑣 + 𝑤𝑧) sin(𝑏) (−(𝑢𝑧 + 𝑤𝑣) − 𝑖(𝑢𝑣 − 𝑤𝑧)) sin(𝑏)

((𝑢𝑧 + 𝑤𝑣) − 𝑖(𝑢𝑣 − 𝑤𝑧)) sin(𝑏) (𝑢𝑧 − 𝑤𝑣) cos(𝑏) − (𝑢𝑣 + 𝑤𝑧) sin(𝑏)

)
.

From which we see that

𝑄�̃�𝑋𝑗2(𝑄�̃�)
−1 ∈ 𝑆𝐿(2, ℝ)

if and only if

Im(𝑢𝑣 + 𝑤𝑧) = 0, Re(𝑢𝑣 − 𝑤𝑧) = 0

or equivalently

𝑢𝑣 = 𝑤𝑧
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whenever 𝑡 ∈ ℝ. But then this implies that

|𝑢|2|𝑣|2 = (𝑡 − cos(𝑎 + 𝑏))(𝑡 − cos(𝑎 − 𝑏))

𝐷2
.

Which we can solve when 𝑡 > cos(𝑎 ± 𝑏) by letting

𝑢 =

√
𝑡 − cos(𝑎 + 𝑏)

𝐷
, 𝑣 =

√
𝑡 − cos(𝑎 − 𝑏)

𝐷

and then

𝑧 =
√
𝑡 − cos(𝑎 + 𝑏), 𝑤 =

√
𝑡 − cos(𝑎 − 𝑏)

and when 𝑡 < cos(𝑎 ± 𝑏) then we can take

𝑢 =

√
cos(𝑎 + 𝑏) − 𝑡

𝐷
, 𝑣 =

√
cos(𝑎 − 𝑏) − 𝑡

𝐷

and then

𝑧 =
√
cos(𝑎 + 𝑏) − 𝑡, 𝑤 =

√
cos(𝑎 − 𝑏) − 𝑡.

This allows us to complete the construction as follows. First we assume that 𝑎, 𝑐 ∉ 𝜋ℤ. For

�̃�𝑖 = �̃�(𝑢𝑖, 𝑣𝑖, 𝑤𝑖, 𝑧𝑖)

for 𝑖 = 1, 2 we consider the equation[
�̃�𝑗3+1⋯ �̃�𝑛�̃�1⋯ �̃�𝑗1 ⋯𝑄�̃�1𝑋𝑗2(𝑄�̃�1)

−1
]
=

[(
�̃�𝑗2+1 … �̃�𝑗3−1𝑄�̃�2𝑋𝑗3(𝑄�̃�2)

−1
)−1]

which is equivalent to

tr
(
�̃�𝑗3+1⋯ �̃�𝑛�̃�1⋯ �̃�𝑗1 ⋯𝑄�̃�1𝑋𝑗2(𝑄�̃�1)

−1
)
= tr

(
�̃�𝑗2+1 … �̃�𝑗3−1𝑄�̃�2𝑋𝑗3(𝑄�̃�2)

−1
)
,

since these are certainly all SL(2, ℂ)matrices. But now, using that we also have that 𝑐, 𝑑 ∉ 𝜋ℤ, we
can choose 𝑡 bigger than cos(𝑎 ± 𝑏) and cos(𝑐 ± 𝑑) and fix �̃�𝑖 as above such that

tr
(
�̃�𝑗3+1⋯ �̃�𝑛�̃�1⋯ �̃�𝑗1 ⋯𝑄�̃�1𝑋𝑗2(𝑄�̃�1)

−1
)
= 𝑡 (2.12)

and

tr
(
�̃�𝑗2+1 … �̃�𝑗3−1𝑄�̃�2𝑋𝑗3(𝑄�̃�2)

−1
)
= 𝑡. (2.13)

Thus, we can now conclude that there exists 𝑄ℝ ∈ SL(2, ℝ) such that

�̃�𝑗3+1⋯ �̃�𝑛�̃�1⋯ �̃�𝑗1 ⋯𝑄�̃�1𝑋𝑗2(𝑄�̃�1)
−1 = 𝑄ℝ

(
�̃�𝑗2+1 … �̃�𝑗3−1𝑄�̃�2𝑋𝑗3(𝑄�̃�2)

−1
)−1

(𝑄ℝ)−1

= 𝑄ℝ𝑄�̃�2𝑋
−1
𝑗3
(𝑄ℝ𝑄�̃�2)

−1𝑄ℝ�̃�−1
𝑗3−1

(𝑄ℝ)−1 …𝑄ℝ�̃�−1
𝑗2+1

(𝑄ℝ)−1.
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Thus if we further set

𝑄ℝ
𝑗2
= 𝑄�̃�1, 𝑄

ℝ
𝑗3
= 𝑄ℝ𝑄�̃�2

and

𝑄ℝ
𝑗 = 𝑄ℝ𝑄

for 𝑗 ∈ {𝑗2 + 1,… , 𝑗3 − 1}, then we find the needed conjugation to obtain an SL(2, ℝ)-
representation. Let us now consider the remaining cases. Suppose that 𝑎 ∈ 𝜋𝑍 but 𝑐 ∉ 𝜋ℤ. Then
the common trace 𝑡 is by (2.12) forced to be 𝑒𝑖𝑎 cos 𝑏, so we can solve (2.13) if and only if 𝑒𝑖𝑎 cos 𝑏 is
not contained in the interval spanned by the two values cos(𝑐 ± 𝑑). If this is the case, we proceed
with the argument as above. If on the other hand 𝑒𝑖𝑎 cos 𝑏 is contained in the interval spanned
by cos(𝑐 ± 𝑑), then it is well known that we can choose 𝑄𝑗 ∈ SU(2) so as to obtain an SU(2)-
representation. A similar argument of course works in the case where 𝑐 ∈ 𝜋𝑍 but 𝑎 ∉ 𝜋ℤ. If we
have 𝑎, 𝑐 ∈ 𝜋ℤ, then 𝑎 + 𝑐 ∈ 𝜋ℤ, but this we have already argued is impossible.
Now let 𝜌 ∶ 𝜋1(𝑋) → SL(2, ℂ) be an arbitrary non-trivial representation. As remarked before

any non-trivial representation is irreducible since 𝑋 is an integral homology 3-sphere. Since 𝜌(ℎ)
commutes with the image of 𝜌, we see that 𝜌(ℎ) = ±𝐼. Hence, the relation 𝑥

𝑝𝑗
𝑗
= ℎ𝑞𝑗 implies that

𝜌(𝑥𝑗)
𝑝𝑗 = ±𝐼, and for 𝑗 = 2,… , 𝑛 we must have 𝜌(𝑥𝑗)

𝑝𝑗 = 𝐼, since 𝑞𝑗 is even. Hence, 𝜌 must be
of the form (2.7) for some 𝑙′ ∈ ℕ𝑛. It only remains to argue that at most 𝑛 − 3 of the 𝜌(𝑥𝑗) are
±𝐼. If not, the relation 𝑥1𝑥2⋯𝑥𝑛 = 1 implies that there is 𝑗1 < 𝑗2 with 𝜌(𝑥𝑗1)𝜌(𝑥𝑗2) = ±𝐼. As 𝑝𝑗1
and 𝑝𝑗2 are relatively coprime, this is only possible if 𝜌(𝑥𝑗1) = ±𝐼 and 𝜌(𝑥𝑗2) = ±𝐼. This would
imply that 𝜌(𝜋1(𝑋)) ⊂ {±1} = 𝑍(SU(2)) which contradicts the fact that 𝜌 is irreducible since it
was assumed non-trivial.
We describe the connected components of ∗(𝑋, SL(2, ℂ)). First we assume that 𝑙1 ∈

{1, … , 𝑝1 − 1} and 𝑙2 > 0 for an 𝑙 ∈ 𝐿(𝑝1, … , 𝑝𝑛). We will now prove that the subset
∗

𝑙
(𝑋, SL(2, ℂ)) of ∗(𝑋, SL(2, ℂ)) consisting of conjugacy classes of representations 𝜌 for

which

tr(𝜌(𝑥1)) = 2 cos(𝜋𝑙1∕𝑝1), tr(𝜌(𝑥𝑗)) = 2 cos(2𝜋𝑙𝑗∕𝑝𝑗), 𝑗 = 2,…𝑛

is connected. Let

𝑇 =
𝑛⨉
𝑗=3

[
exp

(2𝜋𝑖𝑙𝑗
𝑝𝑗

)]
.

It is obvious that 𝑇 is connected. Let now 𝑚 ∶ 𝑇 → SL(2, ℂ) be the algebraic product map. Let
𝑃 ⊂ SL(2, ℂ) be the set of non-diagonalizable elements in SL(2, ℂ) and observe that 𝑃 has com-
plex co-dimension one, thus so does𝑚−1(𝑃) ⊂ 𝑇, but then it follows that 𝑇′ = 𝑇 −𝑚−1(𝑃) is also
connected. For any

(𝑀3, … ,𝑀𝑛) ∈ 𝑇′,

we observe that the set of (𝑄1, 𝑄) ∈ SL(2, ℂ) which solves

exp(𝜋𝑙1∕𝑝1)𝑄1 exp(2𝜋𝑙2∕𝑝2)𝑄
−1
1 = 𝑄𝑀−1

𝑛 …𝑀−1
3 𝑄−1 (2.14)

is non-empty and connected since it is acted transitively on by (ℂ∗)2 × ℂ∗, where the first fac-
tor comes from the ambiguity from solving (2.11) and the second comes from the stabiliser of
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𝑀−1
𝑛 ⋯𝑀−1

3 under conjugation. But then we see that an open dense subset of∗
𝑙
(𝑋, SL(2, ℂ)) is

connected, thus∗
𝑙
(𝑋, SL(2, ℂ)) itself must be connected. If 𝑙1 ∈ {0, 𝑝1} or 𝑙2 = 0, we proceed as

follows. Choose 𝑗1, 𝑗2 ∈ {1, … , 𝑛 − 2} such that

𝑎 = 𝜋
𝑙1
𝑝1

+ 2𝜋
𝑗1∑
𝑗=2

𝑙𝑗
𝑝𝑗
, 𝑏 = 2𝜋

𝑗2∑
𝑗=𝑗1+1

𝑙𝑗
𝑝𝑗

has the property that 𝑎, 𝑏 ∉ 𝜋ℤ. Now consider the equation

exp(𝑎)𝑄1 exp(𝑏)𝑄
−1
1 = 𝑄𝑀−1

𝑛 …𝑀−1
𝑗2+1

𝑄−1. (2.15)

The connectedness is now argued in exactly the same way, with (2.15) in place of (2.14). □

For an SL(2, ℂ)-connection 𝑎 in the trivial SL(2, ℂ)-bundle on 𝑋 we recall that the Chern–
Simons action is given by

SCS(𝑎) =
1
8𝜋2 ∫𝑋 tr

(
𝑎 d𝑎 +

2
3
𝑎3

)
mod ℤ.

We now compute the Chern–Simons values of the representations constructed above.

Proposition 8. For any representation 𝜌 ∶ 𝜋1(𝑋) → 𝑆𝐿(2, ℂ), define 𝑙 = (𝑙1, … , 𝑙𝑛) ∈ 𝐿(𝑝1, … , 𝑝𝑛),
so that

tr(𝜌(𝑥1)) = 2 cos(𝜋𝑙1∕𝑝1), tr(𝜌(𝑥𝑗)) = 2 cos(2𝜋𝑙𝑗∕𝑝𝑗), 𝑗 = 2,… , 𝑛.

Then we have that

SCS (𝜌) = −
𝑃
4

(
𝑙1
𝑝1

+
𝑛∑
𝑗=2

2𝑙𝑗
𝑝𝑗

)2

mod ℤ. (2.16)

Formula (2.16) was proven for SU(2) connections by Kirk and Klassen and it is stated in [71,
Theorem 5.2]. It is proven using the following general result. Let𝑀 be a closed oriented 3-manifold
containing a knot𝐾. Let 𝑌 be the complement of a tubular neighborhood of𝐾 in𝑀. With respect
to an identification 𝑀 ⧵ 𝑌 ≃ 𝐷2 × 𝑆1, choose simple closed curves 𝜇, 𝜆 on 𝜕𝑌 intersecting in a
single point such that 𝜇 bounds a disc of the form 𝐷2 × {1}. Let 𝜌𝑡 ∶ 𝜋1(𝑌) → SU(2) be a path
of representations such that 𝜌0(𝜇) = 𝜌1(𝜇) = 1, and for which there exist continuous piecewise
differentiable functions

𝛼, 𝛽 ∶ 𝐼 → ℝ

with

𝜌𝑡(𝜇) =

(
𝑒2𝜋𝑖𝛼(𝑡) 0
0 𝑒−2𝜋𝑖𝛼(𝑡)

)
, 𝜌𝑡(𝜆) =

(
𝑒2𝜋𝑖𝛽(𝑡) 0
0 𝑒−2𝜋𝑖𝛽(𝑡)

)
.
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Thinking of 𝜌1, 𝜌0 as flat connections on𝑀 we have

SCS(𝜌0) − SCS(𝜌1) = −2∫
1

0
𝛽(𝑡)𝛼′(𝑡) d𝑡 mod ℤ. (2.17)

Note that formula (2.17) differs from the corresponding formula in [71] by a sign. This discrepancy
was already discussed by Freed andGompf in [46] and is due to a sign convention; see the footnote
in [46, p. 98]. The formula (2.17) was also used in the work [6] by the first author and Hansen.

Proof of Proposition 8. Let𝐾 ⊂ 𝑋 be the𝑛th exceptional fiber. Let𝑌 be the complement of a tubular
neighborhood of 𝐾 in 𝑋. Removing 𝐾 has the effect on 𝜋1 of removing the relation 𝑥

𝑝𝑛
𝑛 = ℎ−𝑞𝑛 ,

that is, we have a presentation

𝜋1(𝑌) ≃
⟨
ℎ, 𝑥1, … , 𝑥𝑛 ∣ 𝑥1𝑥2⋯𝑥𝑛, 𝑥

𝑝1
1 ℎ−𝑞1 , … , 𝑥

𝑝𝑛−1
𝑛−1 ℎ

−𝑞𝑛−1 , ∀𝑗[𝑥𝑗, ℎ]
⟩
. (2.18)

As the meridian and longitude of 𝜕𝑌 we can take 𝜇 = 𝑥
𝑝𝑛
𝑛 ℎ𝑞𝑛 and 𝜆 = 𝑥

−𝑝1⋯𝑝𝑛−1
𝑛 ℎ𝑐, respectively,

where 𝑐 =
∑𝑛−1

𝑗=1 (𝑝1⋯𝑝𝑛−1𝑞𝑗)∕𝑝𝑗 . These choices of meridian and longitude coincide with the
choices made in [44].
Let 𝜌 ∶ 𝜋1(𝑋) → SL(2, ℂ) be any irreducible representation with its corresponding

𝑙 = (𝑙1, … , 𝑙𝑛) ∈ 𝐿(𝑝1, … , 𝑝𝑛). Now 𝜌(ℎ) = exp(𝜋𝑖𝑣) for some integer 𝑣 ∈ ℤ. Introduce the
two quantities,

𝜉 = 𝑃

(
𝑙1
𝑝1

+
𝑛∑
𝑗=2

2𝑙𝑗
𝑝𝑗

)
and

𝜂 =
𝜉

𝑃
.

The proof of (2.16) presented here consists analogously with [71, Proof of Theorem 5.2] of two
parts. In the first part, we find a path of SL(2, ℂ) connections on 𝑋 connecting 𝜌 to an abelian
representation 𝜌0. In fact 𝜌0 will be an SU(2) connection on 𝑋. In the second part, we then find a
path from 𝜌0 to the trivial representation 𝜌triv andwe then apply Kirk and Klassens formula (2.17).
The only difference from the proof in [71] is that we need to explicitly ensure that our paths stay
away from parabolic representations. The relevant paths are chosen such that 𝜆, 𝜇 are mapped to
the maximal ℂ∗ torus of diagonal matrices.
After conjugating by 𝑆−1𝑛 we have 𝜌(𝑥𝑛) = exp(

2𝜋𝑖𝑙𝑛
𝑝𝑛

). Consider the subset

𝑆 ⊂ Hom(𝜋1(𝑌), SL(2, ℂ))

of representations �̃� satisfying

�̃�(ℎ) = 𝜌(ℎ), [�̃�(𝑥1)] =

[
exp

(
𝜋𝑖𝑙1
𝑝1

)]
and

[�̃�(𝑥𝑗)] =

[
exp

(2𝜋𝑖𝑙𝑗
𝑝𝑗

)]
, for 2 ⩽ 𝑗 ⩽ 𝑛 − 1,
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where [𝑄] denotes the SL(2, ℂ) conjugacy class of 𝑄 ∈ SL(2, ℂ). By considering the presentation
(2.18), we see that 𝑆 is naturally homeomorphic to the product of the 𝑛 − 1 conjugacy classes

𝑆 ≃

[
exp

(
𝜋𝑖𝑙1
𝑝1

)]
×

𝑛−1⨉
𝑗=2

[
exp

(2𝜋𝑖𝑙𝑗
𝑝𝑗

)]
.

Therefore, the connectedness of SL(2, ℂ) implies that 𝑆 is connected. Following a similar argu-
ment use in the proof of the previous proposition, we let

𝑚 ∶ 𝑆 → SL(2, ℂ)

be the algebraic product map. Let 𝑃 ⊂ SL(2, ℂ) be the set of non-diagonalizable elements in
SL(2, ℂ) and observe that 𝑃 has complex co-dimension one, thus so does 𝑚−1(𝑃) ⊂ 𝑆, but then
it follows that 𝑆′ = 𝑆 − 𝑚−1(𝑃) is also connected.
Write 𝜌 = 𝜌1 and observe that 𝜌1 ∈ 𝑆′. Choose a smooth path 𝜌𝑡 in 𝑆′ connecting 𝜌1 to 𝜌0 ∈ 𝑆′

given by

𝜌0(𝑥1) = exp

(
−
𝜋𝑖𝑙1
𝑝1

)
, 𝜌0(𝑥𝑗) = exp

(
−
2𝜋𝑖𝑙𝑗
𝑝𝑗

)
, 𝑗 = 2, … , 𝑛 − 1

and 𝜌0(𝑥𝑛) = exp(𝜋𝑖𝑙1∕𝑝1 +
∑𝑛−1

𝑗=2

2𝜋𝑖𝑙𝑗
𝑝𝑗

). By an overall conjugation, we can choose the arc 𝜌𝑡 such

that 𝜌𝑡(𝑥𝑛) = exp(2𝜋𝑖𝑓(𝑡)) for a smooth function 𝑓(𝑡). We have 𝑓(0) = 𝑙1
2𝑝1

+
∑𝑛−1

𝑗=2

𝑙𝑗
𝑝𝑗
and 𝑓(1) =

𝑙𝑛
𝑝𝑛
. Note that 𝑓(0) = (𝜂∕2) − 𝑓(1). As 𝑞𝑛 is even, we have the following two equalities:

𝜌𝑡(𝜇) = 𝜌𝑡(𝑥𝑛)
𝑝𝑛𝜌𝑡(ℎ)

𝑞𝑛 = exp(2𝜋𝑖𝑝𝑛𝑓(𝑡)),

𝜌𝑡(𝜆) = 𝜌𝑡(𝑥𝑛)
−𝑝1⋯𝑝𝑛−1𝜌𝑡(ℎ)

𝑐 = exp (−2𝜋𝑖𝑝1⋯𝑝𝑛−1𝑓(𝑡) + 𝑣𝑐𝜋𝑖).

Write 𝑦 = 𝑣𝑐 ∈ ℤ. Define 𝛼1(𝑡) = 𝑝𝑛𝑓(𝑡) and 𝛽1(𝑡) = − 𝑃
𝑝𝑛
𝑓(𝑡) + 𝑦

2
. We have that

−2∫
1

0
𝛼′1(𝑡)𝛽1(𝑡) d𝑡 = −2∫

1

0
𝑝𝑛𝑓

′(𝑡)

(
−
𝑃
𝑝𝑛

𝑓(𝑡) +
𝑦

2

)
d𝑡

= −2∫
𝑓(1)

𝑓(0

(
−𝑃𝑢 +

𝑝𝑛𝑦

2

)
d𝑢

= −2

[
−
𝑃𝑢2

2
+
𝑝𝑛𝑦𝑢

2

]𝑢=𝑓(1)
𝑢=𝑓(0)

= 𝑃𝑓(1)2 − 𝑦𝑝𝑛𝑓(1) − 𝑃𝑓(0)2 + 𝑦𝑝𝑛𝑓(0)

= 𝑃𝑓(1)2 − 𝑃𝑓(0)2 + 𝑦𝑝𝑛𝑓(0)mod ℤ.

(2.19)

For the last identity we used that 𝑦𝑝𝑛𝑓(1) = 𝑦𝑙𝑛 ∈ ℤ.
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For the second part, we use the fact that 𝐻1(𝑌) ≃ ℤ with generator 𝜇 to conclude that the
abelian SU(2) connection 𝜌0 can be connected to the trivial representation 𝜌triv by a path of SU(2)
representations𝜎𝑡 with𝜎𝑡(𝜇) = exp(2𝜋𝑖𝑡𝛼1(0)) and𝜎𝑡(𝜆) = exp(2𝜋𝑖𝛽1(0)). Let𝛼0(𝑡) = 𝑡𝛼1(0) and
𝛽0(𝑡) = 𝛽1(0). As SCS(𝜌triv) = 0, we can apply Kirk and Klassen’s formula (2.17) to obtain

−SCS(𝜌) = SCS(𝜌
triv) − SCS(𝜌) = −2∫

1

0
𝛼′0(𝑡)𝛽0(𝑡) d𝑡 − 2∫

1

0
𝛼′1(𝑡)𝛽1(𝑡) d𝑡.

We have

−2∫
1

0
𝛼′0(𝑡)𝛽0(𝑡) d𝑡 = −2𝑓(0)(−𝑃𝑓(0) +

𝑦𝑝𝑛
2
) = 2𝑃𝑓(0)2 − 𝑦𝑝𝑛𝑓(0).

Comparing this with (2.19) we get that

−SCS(𝜌) = 𝑃(𝑓(1)2 + 𝑓(0)2) mod ℤ

= 𝑃((𝑓(1) + 𝑓(0))2 − 2𝑓(0)𝑓(1)) mod ℤ

=
𝜉2

4𝑃
mod ℤ.

For the last equality, we used that 2𝑃𝑓(0)𝑓(1) ∈ ℤ and that

𝑓(0) + 𝑓(1) =
𝜂

2
=

𝜉

2𝑃
.

This is what we wanted. □

For 𝑥 ∈ ℚ let [𝑥] = 𝑥 mod ℤ. Introduce the set

(𝑝1, … , 𝑝𝑛) =

{[
−𝑚2

4𝑃

]
∶ 𝑚 ∈ ℤ is divisible by at most 𝑛 − 3 of the functions 𝑝𝑗

}
.

Recall that the classical complex Chern–Simons values CS∗ℂ(𝑋) is the range of the restriction of
SCS to∗(𝑋, SL(2, ℂ)). Thus we can compute CS∗ℂ(𝑋) as a corollary of Proposition 8.

Corollary 9. We have that

CS∗ℂ(𝑋) = (𝑝1, … , 𝑝𝑛).

Proof. It is clear that CS∗ℂ(𝑋) ⊂ (𝑝1, … , 𝑝𝑛). We must show that for any 𝑦 ∈ ℤ which is not
divisible by more than three of the 𝑝𝑗 we can find 𝑙 = (𝑙1, … , 𝑙𝑛) ∈ 𝐿(𝑝1, … , 𝑝𝑛) which solves the
congruence equation

𝑦2 =

(
𝑃

(
𝑙1
𝑝1

+
𝑛∑
𝑗=2

2𝑙𝑗
𝑝𝑗

))2

mod 4𝑃ℤ. (2.20)
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For 𝑥 ∈ ℤ and 𝑑 ∈ ℕ let [𝑥]𝑑 denote the congruence class of 𝑥 in the quotient ring ℤ∕𝑑ℤ. Since
𝑝𝑗 is odd for 𝑗 ⩾ 2, it follows that 4𝑝1, 𝑝2, … , 𝑝𝑛 are also pairwise co-prime. Hence, the Chinese
remainder theorem applies and the natural ring homomorphism 𝑞 ∶ ℤ → ℤ∕4𝑝1ℤ ⊕𝑛

𝑗=2
ℤ∕𝑝𝑗ℤ,

given by 𝑥 ↦ ([𝑥]4𝑝1 , … , [𝑥]𝑝𝑛 ), descends to an isomorphism of rings

𝑞 ∶ ℤ∕4𝑃ℤ
∼
→ ℤ∕4𝑝1ℤ ⊕

𝑛⨁
𝑗=2

ℤ∕𝑝𝑗ℤ.

It follows that (2.20) is in fact equivalent to the following 𝑛 congruence equations

[𝑦]24𝑝1 =

[
𝑙1

𝑛∏
𝑗=2

𝑝𝑗 + 2

(
𝑛∑
𝑗=2

𝑙𝑗
∏
𝑡≠𝑗

𝑝𝑡

)]2
4𝑝1

, (2.21)

[𝑦]2𝑝𝑗 =

[
2𝑙𝑗

∏
𝑡≠𝑗

𝑝𝑡

]2
𝑝𝑗

, ∀𝑗 ⩾ 2.

The coprimality conditions ensures that 2
∏

𝑡≠𝑗 𝑝𝑡 is an invertible element inℤ∕𝑝𝑗ℤ and therefore
solving the last 𝑛 − 1 of the equations in (2.21) can indeed be done with 0 ⩽ 𝑙𝑗 ⩽ (𝑝𝑗 − 1)∕2. It
remains only to consider the first of the equations in (2.21). To this end we first observe that(

𝑙1

𝑛∏
𝑗=2

𝑝𝑗 + 2
𝑛∑
𝑗=2

𝑙𝑗
∏
𝑡≠𝑗

𝑝𝑗

)2

=

(
𝑙1

𝑛∏
𝑗=2

𝑝𝑗

)2

mod 4𝑝1.

But then we can solve

𝑦2 = 𝑙21

𝑛∏
𝑗=2

𝑝2𝑗 mod 4𝑝1

for 0 ⩽ 𝑙1 ⩽ 2𝑝1. But we also have that

𝑦2 = (−𝑙1 ± 2𝑝1)
2

𝑛∏
𝑗=2

𝑝2𝑗 mod 4𝑝1.

Thus it follows that we can in fact solve (2.21) with 𝑙1 ∈ {0, … , 𝑝1}. Thus we have shown that
CS∗ℂ(𝑋) = (𝑝1, … , 𝑝𝑛). □

Our analysis of the components of the SL(2, ℂ) moduli space and the Chern–Simons values
now allow us to prove the following.

Theorem 10. The Chern–Simons action

SCS ∶ 𝜋0((𝑋, SL(2, ℂ))) → ℝ∕ℤ

is injective and induces an isomorphism

𝜋0((𝑋, SL(2, ℂ))) ≅ (𝑝1, … , 𝑝𝑛) ⊔ {0}.
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Proof. We use the inverse of the isomorphism

𝑞 ∶ ℤ∕4𝑃ℤ
∼
→ ℤ∕4𝑝1ℤ

𝑛⨁
𝑗=2

ℤ∕𝑝𝑗ℤ

to conclude that for each Chern–Simons value in(𝑝1, … , 𝑝𝑛), there is a unique 𝑙 ∈ 𝐿(𝑝1, … , 𝑝𝑛)
with the given Chern–Simons value, concluding the proof by the last statement of Proposi-
tion 6. □

Theorem 1 is a summary of the main results obtained in this section.

Proof of Theorem 1. This follows from Theorem 7, Corollary 9 and Theorem 10. □

3 THE BOREL TRANSFORMAND COMPLEX CHERN–SIMONS

We now provide the proof of Theorem 2. The reader not familiar with the Borel transform  and
its relation to the Laplace transform is encouraged to read the Appendix, before reading the proof
of Theorem 2. For a measurable function g ∶ ℝ+ → ℂ of sufficient decay, we use the notation
ℝ+

(g) for the Laplace transform— see Equation (A1).

Proof of Theorem 2. We start by giving a characterization of which of the phases in (2.4) give a
non-zero contribution. Introduce for 𝜇 ∈ ℚ∕ℤ the set

 (𝜇) = {𝑚 = 1,… , 2𝑃 − 1 ∶ −𝑚2∕4𝑃 = 𝜇 mod ℤ}

= {𝑚 = 1,… , 2𝑃 − 1 ∶ g(2𝜋𝑖𝑚) = 2𝜋𝑖𝜇 mod 2𝜋𝑖ℤ}.

The set of phases 2𝜋𝑖𝑅∗(𝑋) in (2.5) consists of the values g(2𝜋𝑖𝑚) = −𝑚22𝜋𝑖
4𝑃

for which

∑
𝑥∈ (−𝑚2∕4𝑃)

Res
(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖𝑥

)
≠ 0, (3.1)

for 𝑚 = 1,… , 2𝑃 − 1. Thus, by Corollary 9, we must prove that if (3.1) holds, then there exists
�̃� ∈  (−𝑚2∕4𝑃) such that at most 𝑛 − 3 of the functions 𝑝𝑗 which divide �̃�.
We start by noting that the set of poles of 𝐹 is given by

𝐹 = {2𝜋𝑖𝑚 ∣ 𝑚 ∈ ℤ and𝑚 is divisible by at most 𝑛 − 3 of the functions 𝑝𝑗}. (3.2)

It follows that if �̃� is divisible by at least 𝑛 − 2 of the𝑝𝑗 , then𝐹(𝑦) does not have a pole at 𝑦 = 2𝜋𝑖�̃�
and we get for integral 𝑘

Res
(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖�̃�

)
= 𝐹(2𝜋𝑖�̃�)𝑒𝑘g(2𝜋𝑖�̃�)Res

(
1

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖�̃�

)
= 𝐹(2𝜋𝑖�̃�)𝑒𝑘g(2𝜋𝑖�̃�)

1
𝑘
.
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As we already noted above, Lawrence and Rozansky checked that all the 𝑘−1 terms cancels, so it
follows that

∑
�̃�∈ (−𝑚2∕4𝑃),

and �̃� is divisible by at least 𝑛 − 2 of the 𝑝𝑗

Res
(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖�̃�

)
= 0.

Therefore we see that if (3.1) holds, then there is some �̃� ∈  (−𝑚2∕4𝑃) which is divisible by at
most 𝑛 − 3 of the 𝑝𝑗 . This establishes 𝑅∗(𝑋) ⊂ CS∗ℂ and we get (1.6). Observe that as a corollary
we obtain for each 𝜃 ∈ CS∗ℂ the formula

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘) = −
∑

�̃�∈ (𝜃)
Res

(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖�̃�

)
. (3.3)

We now turn to(Z0). The formal series Z0 is the asymptotic expansion of the Laplace integral

ZI(𝑘) =
1
2𝜋𝑖 ∫𝛾 𝐹(𝑦)𝑒

𝑘g(𝑦) d𝑦.

Let 𝐺 be the rational function introduced in (1.5) and introduce the multivalued function 0(𝜁)
given by

0(𝜁) =
𝜅

𝜋𝑖
√
𝜁
𝐺

(
exp

(
𝜅
√
𝜁

𝑃

))
=

𝜅𝑖
4𝜋

∏𝑛
𝑗=1 sinh

(
𝜅
√
𝜁

𝑝𝑗

)
√
𝜁
(
sinh

(
𝜅
√
𝜁
))𝑛−2 .

With this notation, the equation for the Borel transform (1.7) which we want to prove, reads as
follows:

(Z0) = 0.

The function 0 is related to 𝐹 as follows:

0(𝜁) =

√
2𝑃√
𝜋𝑖𝜁

𝐹
(√

8𝜋𝑖𝑃𝜁
)
. (3.4)

Now as, 𝐹(−𝑦) = 𝐹(𝑦) we have a convergent power series expansion valid for 𝑦 close to 0

𝐹(𝑦) =
∞∑
𝑚=1

𝐹(2𝑚)(0)

(2𝑚)!
𝑦2𝑚.

Therefore Equation (3.4) implies that if we set

𝐵𝑚 =
1
2𝜋𝑖

√
8𝜋𝑖𝑃

𝐹(2𝑚)(0)

(2𝑚)!
(8𝜋𝑖𝑃)𝑚,
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then we have a convergent expansion valid for 𝜁 close to 0 of the form

0(𝜁) =
∞∑
𝑚=1

𝐵𝑚𝜁
𝑚−1∕2. (3.5)

Introduce variable 𝑡 defined by

−𝑡 = g(𝑦) =
𝑖𝑦2

8𝜋𝑃
.

Thus

d𝑦 =
1
2

√
8𝜋𝑖𝑃
𝑡

d𝑡.

We now rewrite ZI(𝑘) as the Laplace transform of 0

ZI(𝑘) =
1
2𝜋𝑖 ∫𝛾 𝐹(𝑦)𝑒

𝑘g(𝑦) d𝑦 =
1
2𝜋𝑖 ∫

∞

0
𝑒−𝑘𝑡 ∫g=𝑡

𝐹
dg

d𝑡

=
1
2𝜋𝑖 ∫

∞

0
𝑒−𝑘𝑡

√
8𝜋𝑖𝑃
𝑡

𝐹
(√

8𝜋𝑖𝑃𝑡
)
d𝑡

= ∫
∞

0
𝑒−𝑘𝑡0(𝑡) d𝑡 = ℝ+

(0)(𝑘).

(3.6)

The existence of the asymptotic expansion (2.5)

ZI(𝑘) = ℝ+
(0)(𝑘) ∼𝑘→∞ Z0(𝑘)

can now be obtained by appealing to the first part of Lemma A1 where we set 𝐵 = 0. Here we
use the existence of the expansion (3.5). Therefore the desired identity (1.7) (Z0) = 0 follows
from the second part of Lemma A1 and the convergence of the expansion (3.5).
As 𝐹(−𝑦) = 𝐹(𝑦) we note that the factor

𝜁 ↦ 𝐹
(√

8𝜋𝑖𝑃𝜁
)

gives a well-defined meromorphic function. Thus (Z0)(𝜁) is a multivalued meromorphic func-
tion with a square root singularity at 0 and with singularities for

√
8𝜋𝑖𝑃𝜁 ∈ 𝐹 where 𝐹 is the

set of poles of 𝐹(𝑦). This set was computed above (see Equation 3.2) and we conclude that the
poles of (Z0)(𝜁) occur at

𝜁𝑚 =
−𝜋𝑚2

2𝑖𝑃
=
−𝑚2

4𝑃
2𝜋
𝑖

with 𝑚 ∈ ℤ being divisible by less than or equal to 𝑛 − 3 of the functions 𝑝𝑗 . This concludes the
proof of (1.8). □
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It is of course expected that only a Chern–Simons invariant 𝜃 of a flat SU(2) connection have a
non-vanishing polynomial Z𝜃 ≠ 0, that is,

𝑅∗(𝑋) = SCS(∗(𝑋, SU(2))).

3.1 Resummation of the WRT invariant

Wenow turn to the resummation of the normalizedWRT invariant Z̃𝑘(𝑋). Recall that for𝜇 ∈ ℚ∕ℤ
we introduced the set

 (𝜇) ={𝑚 = 1,… , 2𝑃 − 1 ∶ −𝑚2∕4𝑃 = 𝜇 mod ℤ}.

We also introduce the residue operator 𝜇 which for a meromorphic function �̂� is given by

𝜇(�̂�)(𝜉) = −
∑

𝑥∈ (𝜇)
Res

⎛⎜⎜⎜⎝
exp

(
𝜉 𝑖𝑦2

8𝜋𝑃

)
(1 − 𝑒−𝜉𝑦)

𝑦

4𝑃
�̂�

(
𝑦2

𝑖8𝜋𝑃

)
, 𝑦 = 2𝜋𝑖𝑥

⎞⎟⎟⎟⎠.
Observe that by definition  (𝜇) is empty for all but finitely many 𝜇 ∈ ℚ∕ℤ and therefore 𝜇 is 0
for all but these finitely many 𝜇.

Corollary 11. The polynomials Z𝜃 and the quantum invariant Z̃𝑘(𝑋) are determined by (Z0) as
follows:

Z𝜃(𝑘) = 𝑒−2𝜋𝑖𝑘𝜃𝜃((Z0))(𝑘). (3.7)

Z̃𝑘(𝑋) = ℝ+
((Z0))(𝑘) +

∑
𝜃∈ 𝑖

2𝜋
Ω mod ℤ

𝜃((Z0))(𝑘). (3.8)

The identity (3.8) of Corollary 11 is reminiscent of the typical resummation process from resur-
gence [14, 38]. The Ohtsuki series is known to determine 𝜏𝑘(𝑋). The new insight provided by
resurgence is that it does so via resummation as stated in Corollary 11.
We now prove Corollary 11.

Proof. It easily follows from (1.7) that

𝐹(𝜁) = (Z0)
(

𝜁2

𝑖8𝑃𝜋

)
𝜁

4𝑃
. (3.9)

Recall from (3.3) that

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘) = −
∑

�̃�∈ (𝜃)
Res

(
𝐹(𝑦)𝑒𝑘g(𝑦)

1 − 𝑒−𝑘𝑦
, 𝑦 = 2𝜋𝑖�̃�

)
.

From this and Equation (3.9), one easily obtains (3.7).
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In the proof of Theorem 2 we obtained the following exact formula:

Z̃𝑘(𝑋) = ℝ+
()(𝑘) + ∑

𝜃∈CS∗
ℂ
(𝑋)

𝑒2𝜋𝑖𝑘𝜃 Z𝜃(𝑘). (3.10)

Thus, we see that (3.8) follows from this formula and (3.7). □

3.2 Resurgence of the generating function

Let 𝐺 be a simple, simply connected compact Lie group, and let 𝜏𝐺,𝑘 be the level 𝑘 Reshetikhin–
Turaev TQFT constructed from the quantum group 𝑈𝑞(𝔤), where 𝔤 is the complexification of the
Lie algebra 𝔥 of 𝐺. Let ℎ̌ be the dual Coxeter number of 𝔥, and set �̌� = 𝑘 + ℎ. For a closed oriented
3-manifold𝑀 (possibly containing a colored framed link) we consider the normalized invariant

Z𝐺,𝑘(𝑀) =
𝜏𝐺,�̌�(𝑀)

𝜏𝐺,�̌�(S
2 × S1)

.

Let 𝑧 be a formal variable and consider the generating function

Z𝐺(𝑀; 𝑧) ∈ ℂ[[𝑧]]

given by

Z𝐺(𝑀; 𝑧) =
∞∑
𝑘=0

Z𝐺,𝑘(𝑀)𝑧𝑘.

By thework of Garoufalidis,Z𝐺(𝑀; 𝑧) is known to be convergent on the unit disc.Motivated by the
paradigm of analytic continuation and resurgence, Garoufalidis posed the following conjecture.

Conjecture 1 [48]. The generating function Z𝐺(𝑀; 𝑧) has an analytic continuation toℂ ⧵ 𝑒Λwhere
𝑒Λ is a finite set containing zero and the exponentials of the negatives of the complex classical Chern–
Simons values.

In other words, the conjecture is that the generating function Z𝐺(𝑀; 𝑧) determines the germ
at zero of a resurgent function. This conjecture is formally motivated from resurgence of Laplace
integrals and the (non-rigorous) path integral formula for theWRT invariant, as explained in [48].
We now specialize to the case of the Seifert fibered homology sphere𝑋 and 𝐺 = SU(2). Set𝐾 =

𝑘 + 2 and consider the generating function for the normalized quantum invariant Z̃𝑘(𝑋) given by

Z̃(𝑋; 𝑧) =
∞∑
𝑘=0

Z̃𝐾(𝑋)𝑧
𝑘 ∈ ℂ[[𝑧]].

For 𝑠 ∈ ℂ consider the polylogarithm

Li𝑠(𝑧) =
∞∑
𝑛=1

𝑧𝑛

𝑛𝑠
. (3.11)
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For 𝑠 = −𝑚,𝑚 ∈ ℕ the polylogarithm is exact and in fact a rational function

Li−𝑚(𝑧) =

(
𝑧
𝜕
𝜕𝑧

)𝑚( 𝑧
1 − 𝑧

)
.

We introduce the following notation for the exponentials of the negatives of the classical complex
Chern–Simons values:

𝑒Λ = exp
(
−2𝜋𝑖 CS∗ℂ(𝑋)

)
.

We prove the following proposition.

Proposition 12. The generating function Z̃(𝑋; 𝑧) is the germ at zero of a holomorphic function
Z̃ ∈ (ℂ ⧵ 𝑒Λ) given by the following formula:

Z̃(𝑋; 𝑧) = ∫
∞

0

𝑒−2𝑦(Z0)(𝑦)
1 − 𝑧𝑒−𝑦

d𝑦 +
∑

𝜃∈CS∗
ℂ
(𝑋)

𝑒4𝜋𝑖𝜃
𝑛−3∑
𝑗=0

Z(𝑗)
𝜃
(0)

𝑗!

(
2𝑗 +

𝑗∑
𝑙=0

2𝑗−𝑙
(
𝑗

𝑙

)
Li−𝑙

(
𝑧𝑒2𝜋𝑖𝜃

))
.

(3.12)

Proof. From Equation (3.10), it follows that

Z̃(𝑋; 𝑧) =
∞∑
𝑘=0

𝑧𝑘 ∫
∞

0
𝑒−𝑦(𝑘+2)(Z0)(𝑦) d𝑦

+
∑

𝜃∈CSℂ(𝑋)

∞∑
𝑘=0

𝑧𝑘 Z𝜃(𝑘 + 2)𝑒2𝜋𝑖(𝑘+2)𝜃.

(3.13)

The first term can be simplified by interchanging summation and integration and then using the
geometric series expansion

∞∑
𝑘=0

𝑧𝑘 ∫
∞

0
𝑒−𝑦(𝑘+2)(Z0)(𝑦) d𝑦 = ∫

∞

0

∞∑
𝑘=0

(𝑧𝑒−𝑦)𝑘(Z0)(𝑦)𝑒−2𝑦 d𝑦

= ∫
∞

0

𝑒−2𝑦(Z0)(𝑦)
1 − 𝑧𝑒−𝑦

d𝑦.

(3.14)

This can be justified by standard complex analysis arguments. To complete the proof, we can con-
sider separately each term in (3.13) corresponding to a complex Chern–Simons value 𝜃 ∈ CSℂ(𝑋).
We get that

∞∑
𝑘=0

𝑧𝑘 Z𝜃(𝑘 + 2)𝑒2𝜋𝑖(𝑘+2)𝜃

= 𝑒4𝜋𝑖𝜃
𝑛−3∑
𝑗=0

Z(𝑗)
𝜃
(0)

𝑗!

∞∑
𝑘=0

(𝑘 + 2)𝑗(𝑒2𝜋𝑖𝜃𝑧)𝑘



RESURGENCE ANALYSIS OF QUANTUM INVARIANTS 737

= 𝑒4𝜋𝑖𝜃
𝑛−3∑
𝑗=0

Z(𝑗)
𝜃
(0)

𝑗!

(
2𝑗 +

𝑗∑
𝑙=0

2𝑗−𝑙
(
𝑗

𝑙

) ∞∑
𝑘=1

𝑘𝑙(𝑒2𝜋𝑖𝜃𝑧)𝑘
)

= 𝑒4𝜋𝑖𝜃
𝑛−3∑
𝑗=0

Z(𝑗)
𝜃
(0)

𝑗!

(
2𝑗 +

𝑗∑
𝑙=0

2𝑗−𝑙
(
𝑗

𝑙

)
Li−𝑙(𝑒

2𝜋𝑖𝜃𝑧)

)
. (3.15)

In the last equality, we used the series expansion (3.11) of the polylogarithm. By substituting the
identities (3.14) and (3.15) into (3.13), we obtain the desired identity (3.12). □

4 A RESURGENCE FORMULA FOR THE GPPV INVARIANT

We now turn to the 𝑞-series invariant Ẑ0(𝑋, 𝑞). We follow [53]. Let (Γ,𝑚) be an ordered weighted
tree, that is, Γ is a tree together with an ordering of its set of vertices𝑉 and𝑚 is a map𝑚 ∶ 𝑉 → ℤ.
Set 𝑠 = |𝑉| and let𝑀 = 𝑀(Γ,𝑚) be the 𝑠 × 𝑠 matrix with entries given by

𝑀𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑚𝑣 if 𝑣𝑖 = 𝑣𝑗 = 𝑣,

1 if 𝑣𝑖 and 𝑣𝑗 are joined by an edge,
0 otherwise.

We say𝑀 is weakly negative definite if𝑀 is invertible and𝑀−1 is negative definite on the subspace
of ℤ𝑠 spanned by vertices of degree at most 3. Let 𝑌 = 𝑌(Γ,𝑚) be the oriented 3-manifold with
surgery data 𝐿 = 𝐿(Γ,𝑚) constructed as follows. For each vertex 𝑣 the link 𝐿 has an unknotted
component 𝐿𝑣 with framing 𝑚𝑣, and 𝐿𝑣 is chained together with 𝐿𝑤 if and only if 𝑣 and 𝑤 are
joined by an edge. We call 𝑌 a plumbed manifold with plumbing graph Γ.
We recall that two plumbed 3-manifolds𝑌 and𝑌′ are diffeomorphic if and only their plumbing

graphs are related by Neumann moves.
When 𝑌 is a plumbed manifold with weakly negative definite plumbing graph and 𝑌 is not

necessarily a homology 3-sphere, the 𝑞-series invariant Ẑ𝑎(𝑌, 𝑞) depend on a label 𝑎 ∈ Spinc(𝑌).
Originally, these labels were thought to be abelian or ‘almost abelian’ flat connections (see [29]).
For a 3-manifold with 𝑏1(𝑌) = 0, the set of abelian flat connections and Spinc can be identified. As
𝑋 = Σ(𝑝1, … , 𝑝𝑛) is an integral homology 3-sphere,wehave𝑎 = 0, andneednot go deeper into this
discussion. For the sake of completeness however, we recall the GPPV-formula definition as it is
stated in terms of Spinc structures. First, we recall how Spinc structures can be described in terms
of the adjacency matrix𝑀. This is thoroughly explained in [53]. Let 𝑌 be a plumbed 3-manifold
with plumbing graph Γ. Let 𝑠 = |𝑉|. Let �⃗� ∈ ℤ𝑠 be the weight vector, that is, 𝑚𝑗 = 𝑚(𝑣𝑗). Let
𝛿 ∈ ℤ𝑠, be the degree vector, that is, 𝛿𝑗 = deg(𝑣𝑗). We have isomorphisms

Spinc(𝑌) ≃ (ℤ𝑠 + �⃗�)∕2𝑀ℤ𝑠 ≃ (ℤ𝑠 + 𝛿)∕2𝑀ℤ𝑠.

These isomorphisms are compatible with Neumann moves as explained in [53]. We now recall
the GPPV formula (4.1).

Definition 1 [55]. Let 𝑌 be a plumbed 3-manifold with weakly definite plumbing graph Γ.
Let 𝜙 denote the number of positive eigenvalues of 𝑀 and let 𝜎 denote the signature of 𝑀.



738 ANDERSEN and MISTEGÅRD

Let 𝑎 = [�⃗�] ∈ (ℤ𝑠 + 𝛿)∕2𝑀ℤ𝑠 ≃ Spinc(𝑌). The �̂�-invariant of (𝑌, 𝑎) is given by

Ẑ𝑎(𝑌; 𝑞) = (−1)𝜙𝑞
3𝜎−

∑
𝑣 𝑚𝑣
4 ⋅ 𝑣.𝑝.∮|𝑧𝑣|=1

∏
𝑣∈𝑉

d𝑧𝑣
2𝜋𝑖𝑧𝑣

(
𝑧𝑣 −

1
𝑧𝑣

)2−deg(𝑣)
Θ−𝑀
𝑎 (𝑧), (4.1)

where 𝑣 ⋅ 𝑝⋅ denotes the principal value and

Θ−𝑀
𝑎 (𝑧) =

∑
�⃗�∈2𝑀ℤ𝑠+�⃗�

𝑞−
(�⃗�,𝑀−1�⃗�))

4
∏
𝑣∈𝑉

𝑧
𝑙𝑣
𝑣 .

Remark 2. The invariance of (4.1) under Neumann moves is proved by Gukov and Manulescu in
[53].

We recall that the principal value 𝑣.𝑝. is defined such that for every sufficiently small 𝜖 > 0 we
have

𝑣 ⋅ 𝑝 ⋅ ∮|𝑧|=1 =
1
2

(
∮|𝑧|=1+𝜖 +∮|𝑧|=1−𝜖

)
.

4.1 Proof of Theorem 3

We now consider 𝑋 = Σ(𝑝1, … , 𝑝𝑛) in more detail. Choose 𝑞1, … , 𝑞𝑛 ∈ ℕ such that for each 𝑗 =
1,… , 𝑛 we have (𝑝𝑗, 𝑞𝑗) = 1, 𝑝𝑗 ⩽ 𝑞𝑗 and

𝑝0 ∶=
−1
𝑃

−
∑
𝑗=1

𝑞𝑗
𝑝𝑗

∈ ℤ<0.

Then 𝑒 = −1∕𝑃 < 0 is the Seifert Euler number. Choose a continued fraction expansion of 𝑞𝑗∕𝑝𝑗
for each 𝑗 = 1,… , 𝑛

𝑞𝑗
𝑝𝑗

= 𝑘𝑗,1 −
1

𝑘𝑗,2 −
1

⋱−𝑘𝑗,𝑠𝑗

.

As explained in [53], 𝑋 has a negative definite plumbing graph Γ defined as follows. The graph Γ
is star-shaped with 𝑛 arms and central vertex 𝑣0 with weight 𝑝0. For each 𝑗 = 1,… , 𝑛 the 𝑗th arm
has 𝑠𝑗 vertices. If these are ordered (𝑣𝑗,1, … , 𝑣𝑗,𝑠𝑗 ) with 𝑣𝑗,1 being closest to the central vertex 𝑣0,
then 𝑣𝑖,𝑗 have weight −𝑘𝑗,𝑖 . This graph is illustrated for 𝑛 = 3 in Figure 3.
Before proving Theorem 3, we first give a formula for the rational exponent Δ ∈ ℚ. For each

𝑗 = 1,… , 𝑛 let 𝑋𝑗 be the plumbed manifold whose graph Γ𝑗 is identical to Γ except that on the 𝑗th
arm, we delete the terminal vertex 𝑣𝑗,𝑠𝑗 . Define ℎ𝑗 ∈ ℕ as

ℎ𝑗 = |H1(𝑋𝑗, ℤ)|.
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p0 −k2,1 −k2,s2−k2,2

−k1,1 −k1,2 −k1,s1

−k3,1 −k3,2 −k3,s3

F IGURE 3 Plumbing graph for 𝑋 in the case 𝑛 = 3

Observe that the total number of vertices of Γ is given by𝑠 = 1 +
∑𝑛

𝑗=1 𝑠𝑗 . Define Δ ∈ ℚ by

Δ = −
1
4

(
𝑛∑
𝑗=1

ℎ𝑗 − 3𝑠 − 𝑝0 +
𝑛∑
𝑗=1

(
−

𝑃
𝑝𝑗2

+

𝑠𝑗∑
𝑖=1

𝑘𝑗,𝑖

))
. (4.2)

We now prove Theorem 3.

Proof. Recall that 𝑞 = exp(2𝜋𝑖𝜏)where 𝜏 ∈ 𝔥. For the sake of notational simplicity, we also intro-
duce the paramter ℎ = 2𝜋𝑖𝜏 so that 𝑞 = exp(ℎ). We start by proving that

I(ℎ) = Ψ(𝑞), (4.3)

where Ψ(𝑞) is the series introduced in (1.16) and I(ℎ) is the contour integral introduced in (1.17)
(with ℎ = 2𝜋𝑖𝜏). Observe that for the purpose of proving (4.3) we can and will assume that

𝜏 ∈ 𝑖ℝ>0,

because if the identity (4.3) holds true on this half-line, it has to hold on the entire upper half-plane
𝔥, since both functions are holomorphic in 𝔥.
Set

(𝜁) = 1

2
√
𝑃
(Z0)

(
𝜁

2𝜋𝑖

)
. (4.4)

For all 𝑡 ∈ ℂ with
√
𝑡 ∈ {𝑧 ∈ ℂ ∣ Re(𝑧) < 0} the normalized Borel transform  satisfies by Theo-

rem 2

(𝑡) = 1√
𝑡

∞∑
𝑚=𝑚0

𝑐𝑚 exp

(
𝑚

√
𝑡
𝑃

)
=

1√
𝑡
𝐺

(
exp

(√
𝑡
𝑃

))
, (4.5)

where for all𝑚 ∈ ℕ we have that

𝑐𝑚 = (−1)𝑛𝜒𝑚.
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F IGURE 4 The contour Δ𝑚

For each𝑚 ∈ ℤ⩾𝑚0
introduce the polynomial

𝑝𝑚(𝑤) = −
𝑤2

ℎ
+

𝑚√
𝑃
𝑤.

This is a Morse function with a unique saddle point at 𝑤𝑚 = ℎ𝑚

2
√
𝑃
and we have that

𝑝𝑚(𝑤𝑚) = ℎ
𝑚2

4𝑃
.

LetD(𝑅) be the closed ball centered at the origin with radius 𝑅 > |𝑚0|. We can deform 𝑖ℝ slightly
to a contour Δ𝑚 ⊂ {𝑧 ∈ ℂ ∶ Re(𝑧) < 0} ∪ D(𝑅), which passes through the saddle point 𝑤𝑚 and
such that the function given by

𝑤 ↦ exp(𝑝𝑚(𝑤))

has exponential decay along Δ𝑚. The orientation of Δ𝑚 is as depicted in Figure 4. We remark that
Figure 4 depicts the situation where𝑚0 ⩾ 0. Recall that if Γ is a steepest descent contour through
the unique saddle point of a degree two polynomial𝑝(𝑧) = −𝛼𝑧2 + 𝛽𝑧, thenwe have the following
exact formula known as Gaussian integration

∫Γ exp(𝑝(𝑧)) d𝑧 =
√

𝜋
𝛼
exp

(
𝛽2

4𝛼

)
.

Applying Gaussian integration to the polymonials 𝑝𝑚 gives us the following identity:

(−1)𝑛Ψ(𝑞) =
∞∑

𝑚=𝑚0

𝑐𝑚𝑞
𝑚2

4𝑃 =
∞∑

𝑚=𝑚0

𝑐𝑚
1√
𝜋ℎ ∫𝑖ℝ exp (𝑝𝑚(𝑤)) d𝑤. (4.6)
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F IGURE 5 The contours Υ and Δ0

Choose a small positive parameter 𝛿 > 0 and introduce the contour

Δ0 = 𝑒𝑖𝛿𝑖ℝ+ ∪ 𝑒
−𝑖𝛿𝑖ℝ− ⊂ {𝑧 ∈ ℂ ∶ Re(𝑧) < 0}.

LetΥ ⊂ {𝑧 ∈ ℂ ∶ ℜ(𝑧) < 0} be theHankel contourwhich enclosesℝ− and satisfies
√
Υ = Δ0. The

orientation of these contours are given in Figure 5. We let

Υ± = Υ ∩ {𝑧 ∈ ℂ ∶ Im(𝑧) ∈ ℝ∓},

so that
√
Υ+ = 𝑒𝑖𝛿𝑖ℝ+ and−

√
Υ− = 𝑒−𝑖𝛿𝑖ℝ− where

√
⋅ denotes the principal branch of the square

root. Introduce the variable

𝑤2 = 𝑣.

As Δ0 is a small deformation of Δ𝑚 for each𝑚 ∈ ℤ⩾𝑚0
, we obtain

∞∑
𝑚=𝑚0

𝑐𝑚√
𝜋ℎ ∫𝑖ℝ exp(𝑝𝑚(𝑤)) d𝑤 =

∞∑
𝑚=𝑚0

∑
𝜖=±1

𝑐𝑚√
𝜋ℎ ∫Υ(𝜖)

exp

(
−𝑣
ℎ
+ 𝜖 𝑚√

𝑃

√
𝑣

)
𝜖2

√
𝑣

d𝑣

=
∑
𝜖=±1

1

2
√
𝜋ℎ ∫𝜖Υ(𝜖)

exp(−𝑣
ℎ
)√

𝑣

∞∑
𝑚=𝑚0

𝑐𝑚𝑒
𝜖
𝑚
√
𝑣√
𝑃 d𝑣

=
∑
𝜖=±1

1

2
√
𝜋ℎ ∫𝜖Υ(𝜖) exp

(
−
𝑣
ℎ

)(𝑣) d𝑣.
(4.7)

In the second equality of (4.7) we used that 𝜖
√
𝑣 ∈ {𝑧 ∈ ℂ ∶ Re 𝑧 < 0} for all 𝑣 ∈ Υ(𝜖), and the

contour −Υ(−1) denotes Υ(−1) but oriented in the direction from the origin and toward infinity.
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In the third equality of (4.7) we used Equation (4.5) and the identity

𝐺(𝑧) = 𝐺
(1
𝑧

)
,

which follows directly from the definition of 𝐺. Now introduce the variable

𝜉 =
𝑣
2𝜋𝑖

.

This identifies (up to a small deformation) the 𝑣 contourΥ+ − Υ− with the 𝜉 contour𝛤 introduced
in Figure 1.
We have ∑

𝜖=±1

1

2
√
𝜋ℎ ∫𝜖Υ(𝜖) exp

(
−
𝑣
ℎ

)(𝑣) d𝑣
=

∑
𝜖=±1

2𝜋𝑖

2
√
𝜋ℎ ∫exp(𝜖 𝜋𝑖

4
)𝑖ℝ+

exp

(
−
2𝜋𝑖𝜉

ℎ

)
(2𝜋𝑖𝜉) d𝜉

=
∑
𝜖=±1

2𝜋𝑖

2
√
𝜋ℎ

√
2𝜋𝑖

8𝜅 ∫exp(𝜖 𝜋𝑖
4
)𝑖ℝ+

exp

(
−
2𝜋𝑖𝜉

ℎ

)
(Z0)(𝜉) d𝜉. (4.8)

In the last equality of (4.8) we used Equation (4.4), which relates  and (Z0). Now recall that
𝜅 =

√
2𝜋𝑖𝑃, since𝐻 = 1 and recognize the pre-factor in the last line of (4.8) as

2𝜋𝑖

2
√
𝜋ℎ

1√
𝑃2

= (−1)𝑛
𝜆√
𝜏
,

where 𝜆 is the scalar introduced in the statement of Theorem 3. By combining Equations (4.6),
(4.7) and (4.8), we see that Equation (4.3) holds.
Write Ẑ0(𝑋; 𝑞) = Ẑ0(𝑞). We now show that

Ψ(𝑞) = 𝑞ΔẐ0(𝑞), (4.9)

whereΔ ∈ ℚ is the scalar introduced in (4.2). Thiswill establish (1.10) and thereby finish the proof.
We start with Ẑ0(𝑞). By Definition 1 and since in this case 𝜙 = 0, we have that

Ẑ0(𝑞) = 𝑞
3𝜎−

∑
𝑣 𝑚𝑣
4

∑
�⃗�∈2𝑀ℤ𝑠

𝑞−
(�⃗�,𝑀−1(⃗𝑙))

4 ∮|𝑧𝑣|=1
∏
𝑣∈𝑉

d𝑧𝑣
2𝜋𝑖𝑧𝑣

(
𝑧𝑣 −

1
𝑧𝑣

)2−deg(𝑣)
𝑧
𝑙𝑣
𝑣 . (4.10)

Here it is understood that we have taken the principal value of the integral as explained above.
Recall that for a Laurent series 𝑎(𝑧) =

∑
𝑗∈ℤ 𝑎𝑗𝑧

𝑗 we have that

𝑣.𝑝.∮|𝑧|=1
d𝑧
2𝜋𝑖𝑧

𝑎(𝑧) = 𝑎0.
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For our star-shaped plumbing graph Γ, the non-zero contributions to (4.10) comes from �⃗� ∈ 2𝑀ℤ𝑠

with 𝑙𝑤 = 0 for all of the entries corresponding to an internal vertex 𝑤 of an arm, and 𝑙𝑣 = ±1
if 𝑣 is a terminal vertex of an arm and then from the central vertex 𝑣0, which we will now
consider.
In comparing Ẑ0(𝑞)withΨ(𝑞) it is useful to introduce the integer sequence {𝑎𝑗}∞𝑗=0 determined

by

(
𝑡 − 𝑡−1

)2−𝑛
=

⎧⎪⎨⎪⎩
∑∞

𝑗=0 𝑎𝑗𝑡
2𝑗+𝑛−2, if |𝑡| < 1

∑∞
𝑗=0(−1)

𝑛𝑎𝑗𝑡
−2𝑗−𝑛+2, if |𝑡| > 1.

(4.11)

The functions 𝑎𝑗 can be explicitly evaluated: By the formula for the geometric series (1 − 𝑡)−1 =∑∞
𝑗=0 𝑡

𝑗 and Cauchy multiplication of power series, we see that

1
(1 − 𝑡)𝑚

=
∞∑
𝑗=0

( ∑
𝑗1+⋯+𝑗𝑚=𝑗

1

)
𝑡𝑗 =

∞∑
𝑗=0

(
𝑗 + 𝑚 − 1

𝑗

)
𝑡𝑗,

and therefore one sees that

𝑎𝑗 = (−1)𝑛
(
𝑗 + 𝑛 − 3

𝑗

)
.

However for the comparison of Ẑ0(𝑞) and Ψ(𝑞) given below, we do not need the closed form for
𝑎𝑗 , but rather Equation (4.11).
Write 𝑧𝑣0 = 𝑧 and 𝑙 = 𝑙𝑣0 . We obtain

𝑣.𝑝.∮|𝑧|=1
d𝑧
2𝜋𝑖𝑧

(
𝑧 − 𝑧−1

)2−𝑛
𝑧𝑙 =

⎧⎪⎪⎨⎪⎪⎩

1
2
𝑎 𝑙−𝑛+2

2
if 2 − 𝑛 − 𝑙 ∈ 2ℤ+,

1
2
(−1)𝑛𝑎 2−𝑛−𝑙

2
if 𝑙 − 𝑛 + 2 ∈ 2ℤ+,

𝑎0 if 𝑙 = 0, 𝑛 = 2.

Weknow that the adjacencymatrix𝑀 is unimodular, and so𝑀ℤ𝑠 = ℤ𝑠. Define amap �⃗� ∶ {±1} ×
ℕ × {±1}𝑛 → ℤ𝑠 as follows: For the central vertex 𝑣0 we have

�⃗�(𝜀, 𝑗, 𝜖)𝑣0 = 𝜀(−2𝑗 + 2 − 𝑛).

For𝑚 = 1,… , 𝑛 and the terminal vertex 𝑣 of the𝑚th arm, we have

�⃗�(𝜀, 𝑗, 𝜖)𝑣 = 𝜖𝑚,

and for every internal vertex 𝑤 of the arms, we have

�⃗�(𝜀, 𝑗, 𝜖)𝑤 = 0.
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With this notation, the above considerations show that

Ẑ0(𝑞) = 𝑞−
3𝑠+

∑
𝑣 𝑚𝑣
4

∑
𝜀=±1

∞∑
𝑟=0

∑
𝜖∈{±1}𝑛

(−1)
(1−𝜀)(𝑛−2)

2
𝑎𝑟
2

(
𝑛∏
𝑗=1

𝜖𝑗

)
𝑞−

⟨�⃗�(𝜀,𝑟,𝜖),𝑀−1�⃗�(𝜀,𝑟,𝜖),⟩
4 .

If we apply the symmetry that simultaneously changes the sign of all 𝜖𝑗 and 𝜀, then we obtain

Ẑ0(𝑞) = (−1)𝑛𝑞−
3𝑠+

∑
𝑣 𝑚𝑣
4

∞∑
𝑟=0

∑
𝜖∈{±1}𝑛

𝑎𝑟

(
𝑛∏
𝑗=1

𝜖𝑗

)
𝑞−

⟨�⃗�(−1,𝑟,𝜖),𝑀−1�⃗�(−1,𝑟,𝜖),⟩
4 .

The quadratic form

�⃗� ↦ ⟨�⃗�, 𝑀−1�⃗�⟩∕4
was computed for 𝑛 = 3 in [53] in their proof of Proposition 4.8. The size of the matrix 𝑀−1 is
irrevelant to their computation, and their formula can be generalized to our case to give the for-
mula

Ẑ0(𝑞) = (−1)𝑛𝑞−Δ
∞∑
𝑟=0

∑
𝜖∈{±1}𝑛

𝑎𝑟

(
𝑛∏
𝑗=1

𝜖𝑗

)
𝑞
𝑃
4

(
2𝑟+(𝑛−2)+

∑𝑛
𝑗=1 𝜖𝑗

1
𝑝𝑗

)2

.

We now compute Ψ(𝑞). For |𝑧| < 1 we have

𝐺(𝑧) =
𝑛−2∏
𝑗=1

(
𝑧

𝑃
𝑝𝑗 − 𝑧

− 𝑃
𝑝𝑗

)(
𝑧𝑃 − 𝑧−𝑃

)2−𝑛
=

∞∑
𝑟=0

∑
𝜖∈{±1}𝑛

𝑎𝑟

(
𝑛∏
𝑗=1

𝜖𝑗

)
𝑧
2𝑃𝑟+𝑃(𝑛−2)+

∑𝑛
𝑗=1 𝜖𝑗

𝑃
𝑝𝑗 .

It follows that

Ψ(𝑞) = (−1)𝑛
∞∑
𝑟=0

∑
𝜖∈{±1}𝑛

𝑎𝑟

(
𝑛∏
𝑗=1

𝜖𝑗

)
𝑞

(
2𝑃𝑟+𝑃(𝑛−2)+

∑𝑛
𝑗=1

𝜖𝑗
𝑃
𝑝𝑗

)2
4𝑃 .

This shows (4.9). □

We obtain the following corollary.

Corollary 13. Let Z0 ∈ 𝑥−1∕2ℂ[[𝑥−1]] be the normalization of the Ohtsuki series from Theorem 2.
We have an asymptotic expansion

𝑞ΔẐ0(𝑋; 𝑞) ∼𝑞→1
2𝜆√
𝜏
Z0(1∕𝜏).
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Proof. This is a consequence of the integral formula (1.10) from Theorem 3

𝑞ΔẐ0(𝑋; 𝑞) =
𝜆√
𝜏 ∫𝛤 exp(−𝜁∕𝜏)(Z0)(𝜁) d𝜁

=
𝜆√
𝜏

∑
𝜖∈{±1}

𝛤𝜖
((Z0))(1∕𝜏)

and Borel–Laplace resummation, which is stated as Theorem A2. □

Let us now recall previous work on the 𝑞-seriesΨ. We start with the case 𝑛 = 3, for whichmore
is known. As alreadymentioned in the introduction, Lawrence and Zagier have shown in [74] that
the quantum invariant 𝜏𝑘(𝑋) can be recovered as the radial limit ofΨ(𝑞), as 𝑞 tends to exp(2𝜋𝑖∕𝑘).
This was generalized to 𝑛 = 4 by Hikami in [59] but with corrections terms appearing. The series
Ψ have interesting arithmetic properties; the coefficients 𝜒(𝑚) are periodic functions of period 2𝑃
and Ψ is the so-called Eichler integral of a mock modular form with weight 3∕2. As mentioned
in the introduction the connection between quantum invariants and number theory was further
pursued by Hikami in a number of articles [57–61, 63]. For general 𝑛 ⩾ 3 we mention again the
work [47] of Fuji, Iwaki, Murakami and Terashima, which was discussed in the introduction.
Let us now discuss what was previously known about the 𝑞-series invariant Ẑ0(𝑋). In [53] it

was shown that when 𝑋 is a Brieskorn sphere Σ(𝑝1, 𝑝2, 𝑝3), (that is, 𝑛 = 3) then Ẑ0(𝑋) is a linear
combination of so-called false theta functions. The 𝑞-series invariant Ẑ0 was also considered for
certain Seifert fibered manifolds (with up to 𝑛 = 4 singular fibers) in the work [30], as well as a
proposed analog of Ẑ0 for higher rank gauge group — see also [84] for further developments in
this direction. In this paper, we work exclusively with 𝐺 = SU(2)).
In connection with the work [74], Zagier invented the notion of a quantummodular form. This

notion was generalized by Bringmann et al. in [22], where they introduce the notion of a higher
depth quantummodular form. For any 𝑛 ⩾ 3, it is known, thatΨ is a linear combination of deriva-
tives of quantum modular forms [23, 24]. It is interesting to observe that Ψ is obtained from the
Borel transform through a resummation process reminiscent of the median resummation of [32].
Moreover, as explained in [28] it is expected that for a general 3-manifold𝑀, mock/false modu-
lar form duality is related to 𝑍𝑎(𝑀; 𝑞), that is, there exists an associated pair of a so-called Mock
modular form and a so-called false modular form, and these are related by a 𝑞 ↦ 𝑞−1 transforma-
tion and have the same transseries expression near 𝑞 → 1. This is quite possibly connected to [48,
Conjecture 2] (called the symmetry conjecture). Let us also mention the work [36] by Dimofte–
Garoufalidis, which connects modularity in quantum topology with complex Chern–Simons the-
ory.

5 THE ASYMPTOTIC EXPANSION OF THE GPPV INVARIANT

The invention of Ẑ was party motivated by an attempt to generalize the following discovery of
Lawrence and Zagier. Set 𝑞𝑘 = exp(2𝜋𝑖∕𝑘). For 𝑛 = 3 they proved in [74] the identity (for some
𝜎 ∈ ℚ)

𝜏𝑘(Σ(𝑝1, 𝑝2, 𝑝3))(𝑞𝑘 − 1)𝑞𝜎𝑘 = −
1
2
lim
𝑞→𝑞𝑘

∞∑
𝑚=𝑚0

𝜒𝑚𝑞
𝑚2

4𝑃 .
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For a closed oriented 3-manifold 𝑌 consider the normalized WRT invariant

ZCS(𝑌; 𝑘) =
𝜏𝑘(𝑌)

𝜏𝑘(S
2 × S1)

.

Conjecture 2 (The radial limit conjecture [53]). Let 𝑌 be a closed oriented 3-manifold with
𝑏1(𝑌) = 0. Set 𝑇 = Spinc(𝑌)∕ℤ2. For every 𝑎 ∈ 𝑇, there exists invariants

Δ𝑎 ∈ ℚ, 𝑐 ∈ ℤ+, Ẑ𝑎(𝑞) ∈ 2−𝑐𝑞Δ𝑎ℤ[[𝑞]],

with the following properties. The series Ẑ𝑎(𝑞) is convergent inside the unit disc {𝑞 ∶ |𝑞| < 1}, and for
infinitely many 𝑘 ∈ ℕ the radial limits lim𝑞↑exp(2𝜋𝑖∕𝑘) Ẑ𝑎(𝑞) exists and we have that

ZCS(𝑌; 𝑘) = (𝑖
√
2𝑘)−1

∑
𝑎,𝑏∈𝑇

𝑒2𝜋𝑖𝑘𝑙𝑘(𝑎,𝑎)|𝑏|−1𝑆𝑎,𝑏 lim
𝑞↑exp(2𝜋𝑖∕𝑘)

Ẑ𝑏(𝑞).

Here𝑥 is the ℤ2-stabilizer of 𝑥 and

𝑆𝑎,𝑏 =
𝑒2𝜋𝑖𝑘𝑙(𝑎,𝑏) + 𝑒−2𝜋𝑖𝑘𝑙(𝑎,𝑏)|𝑎|√|H1(𝑌; 𝑍)| .

Remark 3. Conjecture 2 appeared in slightly different form in [28, 54, 55].

The level 𝑘WRT invariant 𝜏𝑘(𝑀) of a closed oriented 3-manifold𝑀 can be seen as a function of
the 𝑘-root of unity 𝑞𝑘 = exp(2𝜋𝑖∕𝑘), and as such it is a function of a certain subset of the boundary
of the unit disc D = {𝑞 ∶ |𝑞| < 1}. Assume 𝑏1(𝑀) = 0 and define the 𝑘-dependent 𝑞-series

Ẑ𝑘(𝑀; 𝑞) = (𝑖
√
2𝑘)−1

∑
𝑎,𝑏∈𝑇

𝑒2𝜋𝑖𝑘 𝑙𝑘(𝑎,𝑎)|𝑏|−1𝑆𝑎,𝑏Ẑ𝑏(𝑞).
Then Ẑ𝑘(𝑀; 𝑞) is convergent for 𝑞 ∈ D and the radial limit conjecture states

lim
𝑞↑𝑞𝑘

Ẑ𝑘(𝑀; 𝑞) = 𝜏𝑘(𝑀).

Thus Ẑ𝑘(𝑀; 𝑞) can be seen as an analytic extension of 𝜏𝑘(𝑀) to the interior of the unit disc as
illustrated in Figure 6.

F IGURE 6 Analytic extension of 𝜏𝑘(𝑀)
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5.1 Proof of Theorem 4

To simplify notation, we write

Ẑ0(𝑋; 𝑞) = Ẑ(𝑞).

Recall the decomposition (2.4) of the normalized quantum invariant Z̃𝑘(𝑋) into an integral part
ZI and a residue part Z𝑅. In Lemma 14, we prove the existence of an analogous decomposition for
Ẑ0(𝑞) into a Laplace integral part  and a residue part 𝑅

𝑞ΔẐ0(𝑞) = (𝜏) + 𝑅(𝜏), (5.1)

where we recall that 𝑞 = 𝑒2𝜋𝑖𝜏. We present in Proposition 15 a standard result in complex analysis
[74], which asserts that a 𝑞-series with periodic coefficients of mean value zero has an asymp-
totic expansion, as 𝑞 tends to a root of unity. We then show in Proposition 16 that 𝑅 satisfy this
hypothesis. Finally, we apply Proposition 15 to prove Theorem 4.

5.1.1 The decomposition of the GPPV invariant

Recall that 𝑞 = exp(2𝜋𝑖𝜏)with 𝜏 ∈ 𝔥where 𝔥 denotes the upper half-plane, and recall the defini-
tions of 𝐹 ∈ (ℂ) and g ∈ ℂ[𝑥] given in (2.3). Let Γ̃+ = 𝑒

𝜋𝑖
4 .

Lemma 14. Introduce the holomorphic functions , 𝑅 ∈ (𝔥) given by

(𝜏) = 2𝜆√
𝜏 ∫𝛤+ 𝑒

−𝑥∕𝜏(Z0)(𝑥) d𝑥,

𝑅(𝜏) = −
2𝜆√
𝜏

∞∑
𝑚=0

Res

(
exp

(
g(𝜉)
𝜏

)
𝐹(𝜉), 𝜉 = 2𝜋𝑖𝑚

)
.

Then we have that

𝑞ΔẐ0(𝑞) = (𝜏) + 𝑅(𝜏). (5.2)

For 𝜏 in the first quadrant 𝔥+ = {𝑧 ∈ 𝔥 ∣ ℜ(𝑧) > 0} we have that

(𝜏) = 2𝜆√
𝜏 ∫

∞

0
𝑒−𝑥∕𝜏(Z0)(𝑥) d𝑥. (5.3)

Proof of Lemma 14. Recall the contour formula from Theorem 3

𝑞ΔẐ0(𝑞) = I(𝜏) =
𝜆√
𝜏 ∫𝛤 exp(−𝑥∕𝜏)(Z0)(𝑥) d𝑥.
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Under the coordinate change

𝑥 = 𝑦2

the contour 𝛤 corresponds to the contour

𝛹 = 𝑒𝑖𝜋
3
8 ℝ+ + 𝑒𝑖𝜋

1
8 ℝ+

Therefore we have that

𝑞ΔẐ0(𝑞) =
𝜆√
𝜏 ∫𝛹 exp(−𝑦

2∕𝜏)(Z0)(𝑦2)2𝑦 d𝑦.

Introduce the meromorphic function 𝐵 ∈ (ℂ) given for all 𝑦 ∈ ℂ by

𝐵(𝑦) = 2𝑦(Z0)(𝑦2). (5.4)

By Theorem 2 we have that

𝐵(𝑦) =
2𝜅
𝜋𝑖
𝐺
(
exp

(𝜅𝑦
𝑃

))
=
2𝜅
𝜋𝑖
𝐹
(𝜅𝑦
2

)
. (5.5)

From (5.5) we see that 𝐵 is periodic with period 𝜅, that is, for all𝑚 ∈ ℤ we have that

𝐵(𝑦 + 𝜅𝑚) = 𝐵(𝑦). (5.6)

Let  be the set of poles of 𝐵. It follows from Theorem 2 that  is a subset of the axis 𝑒𝜋𝑖∕4ℝ and
that

{−𝜔2 ∣ 𝜔 ∈ } = 2𝜋𝑖 CSℂ(𝑋) + 2𝜋𝑖ℤ.

Write

𝛹± = 𝑒𝑖𝜋(
1
4
∓ 1
8
)ℝ+.

We will now apply Cauchy’s residue theorem to move 𝛹− across 𝑒𝑖𝜋∕4ℝ+ to 𝛹+ in order to obtain
the formula (5.2). Deform 𝛹± on the complement of a neighborhood around the origin to two
curves 𝐿±, which are parallel to 𝑒𝑖𝜋∕4ℝ+ outside this neighborhood of the origin, as indicated in
Figure 7. Set

𝐿 = 𝐿+ ∪ 𝐿−.

We first show that

∫𝛹 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 = ∫𝐿 exp(−𝑦

2∕𝜏)𝐵(𝑦) d𝑦, (5.7)
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F IGURE 7 The contours 𝐿±, 𝐿𝑚± and 𝛹± and the subset of poles 𝑚 drawn rotated, such that 𝜅ℝ+ points
straight up

and then we show that the right-hand side of (5.7) can be rewritten as a sum of residues. Let 𝑅 > 0
be a positive constant, and let 𝑅± be the arc segment of the circle of radius 𝑅, which connects
𝛹± and 𝐿±. Because 𝐿± is parallel to 𝜅ℝ+ outside a neighborhood of the origin, there exists a real
positive constant 𝑏0 > 0 such that every 𝑦 ∈ 𝑅± is of the form

𝑦 = 𝜅𝑎 ± 𝑏, (𝑎, 𝑏) ∈ ℝ+ × [𝑏0, +∞)

and therefore exists a positive real constant𝐴 > 0 independent of 𝑅, which gives an upper bound

|||| 1
1 − 𝑒−𝜅𝑦

|||| < 1
1 − exp (−ℜ(𝜅)𝑏0)

∶= 𝐴 > 0

for all 𝑦 ∈ 𝑅+. It follows that we obtain a uniform estimate

𝐵(𝑦) = 2𝑛−2
2𝜅
𝜋𝑖

∏𝑛
𝑗=1 sinh(

𝜅𝑦
2𝑝𝑗

)(
𝑒𝜅𝑦∕2(1 − 𝑒−𝑦𝜅)

)𝑛−2
= 𝑂

(
𝑒−𝑦𝜅∕2

𝑛∏
𝑗=1

sinh

(
𝜅𝑦

2𝑝𝑗

))
= 𝑂(𝑒𝐴1𝑅)

(5.8)

for all 𝑦 ∈ 𝑅+ for a real constant𝐴1. For fixed 𝜏, there exists a positive real constant𝐴2 > 0 giving
a uniform bound on 𝑅+

𝑒−𝑦
2∕𝜏 = 𝑂(𝑒−𝐴2𝑅

2
). (5.9)
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By combining the estimates (5.8) and (5.9), and using that the arc length of 𝑅± is proportional to
𝑅, we obtain the estimate

∫𝑅+ exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 = 𝑂(𝑅𝑒−𝐴2𝑅

2+𝐴1𝑅).

By similar reasoning, there exist constants 𝐵2 > 0, 𝐵1 ∈ ℝ giving the estimate

∫𝑅− exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 = 𝑂(𝑅𝑒−𝐵2𝑅

2+𝐵1𝑅).

Thus we obtain that

lim
𝑅→∞

∑
𝜖∈{±1}

∫𝑅𝜖 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 = 0, (5.10)

which gives the desired identity (5.7).
We now turn to the computation of ∫𝐿 exp(−𝑦2∕𝜏)𝐵(𝑦) d𝑦. For each 𝑚 ∈ ℕ, let 𝐿𝑚 be a small

line segment with

𝐿𝑚 ∩ 𝑒𝑖𝜋∕4ℝ+ = {𝑚𝜅},

and which meets 𝑒𝑖𝜋∕4ℝ+ in a right angle. We can arrange that 𝐿𝑚 is of fixed length and that 𝐿𝑚
meet 𝐿± in a point. Thus we have

𝐿𝑚 = 𝐿0 + 𝑚𝜅.

Let 𝐿𝑚± be the bounded component of 𝐿± ⧵ 𝐿𝑚, and let 𝑚 ⊂  be the set of poles of 𝐵 that lie
within the bounded component of the complement of the contour

𝛹𝑚 = 𝐿𝑚+ ∪ 𝐿𝑚 ∪ 𝐿𝑚−

(see Figure 7). Equip 𝛹𝑚 with the counter clockwise orientation. An application of Cauchy’s
residue theorem now gives

2𝜋𝑖
∑
𝜔∈𝑚

Res(𝑒−𝑦
2∕𝜏𝐵(𝑦), 𝑦 = 𝜔) = ∫𝛹𝑚 exp(−𝑦

2∕𝜏)𝐵(𝑦) d𝑦

= ∫𝐿𝑚 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 +

∑
𝜖∈{±1}

𝜖 ∫𝐿𝑚𝜖 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦. (5.11)

Because 𝐵 is 𝜅 periodic as stated in (5.6) and 𝐿𝑚 = 𝐿0 + 𝑚𝜅, we see that that there exists 𝐶 > 0
giving a uniform bound

𝐶 > sup{|𝐵(𝑦)| ∣ 𝑦 ∈ ∪𝑚∈ℕ𝐿𝑚}.
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Because of this universal bound, it is easy to see that

lim
𝑚→∞∫𝐿𝑚 exp(−𝑦

2∕𝜏)𝐵(𝑦) d𝑦 = 0.

It follows that the right-hand side of (5.11) converges to

∑
𝜖∈{±1}

∫𝐿𝜖 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦 =

∑
𝜖∈{±1}

𝜖 ∫𝛹𝜖 exp(−𝑦
2∕𝜏)𝐵(𝑦) d𝑦.

This also implies that the sum of residues is convergent.
Let us now recall a simple transformation law for residues. Let 𝑧0 ∈ ℂ and let 𝑓 ∈ 𝑧0

(ℂ)
be the germ of a meromorphic function with a pole at 𝑧0. Assume 𝑤0 ∈ ℂ and that 𝑧 ∈ 𝑤0

(ℂ)
satisfies 𝑧(𝑤0) = 𝑧0, �̇�(𝑤0) ≠ 0. If either 𝑧0 is a simple pole, or 𝑧(𝑤) is linear in 𝑤, then we have
that

Res(𝑓(𝑧(𝑤)), 𝑤 = 𝑤0) =
Res(𝑓(𝑧), 𝑧 = 𝑧(𝑤0))

�̇�(𝑤0)
. (5.12)

Introduce the variable

𝜉 =
𝜅𝑦

2
.

Using the relation (5.5) between 𝐵 and 𝐹, the relation (5.4) between 𝐵 and(Z0) and the transfor-
mation law (5.12) we obtain

𝑞ΔẐ0(𝑞) =
𝜆
𝜏 ∫𝛹 exp

(
−
𝑦2

𝜏

)
𝐵(𝑦) d𝑦

=
2𝜆
𝜏

(
∫𝛹+ exp

(
−
𝑦2

𝜏

)
𝐵(𝑦) d𝑦 − 2𝜋𝑖

∑
𝜔∈

Res(𝑒−𝑦
2∕𝜏𝐵(𝑦), 𝑦 = 𝜔)

)

=
2𝜆
𝜏

(
∫Γ+ exp

(
−
𝑥
𝜏

)(Z0)(𝑥) d𝑥 − ∞∑
𝑚=1

Res(𝑒−g(𝜉)∕𝜏𝐹(𝜉), 𝜉 = 2𝜋𝑖𝑚)

)
= (𝜏) + 𝑅(𝜏).

Finally, we prove (5.3) for 𝜏 ∈ 𝔥+. First observe that for 𝑥 and 𝜏 in the upper right half-plane we
have

ℜ(𝑥∕𝜏) > 0. (5.13)

Push the contour Γ̃+ to ℝ+. If the integral is invariant under this deformation of the contour, we
obtain the desired identity. To see that the integral is invariant under this deformation of the con-
tour, we apply a limiting argument, together with Cauchy’s residue formula. To that end, let 𝑅 > 0
be a positive parameter, and let𝐶𝑅 be the arc segment of the circle of radius𝑅, which connects𝑅 to
𝑅𝑒𝑖𝜋

3
4 and stays in the upper half-plane. As we are notmoving the contour across any singularities
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of (Z0), the only difficulty is to show that

lim
𝑅→+∞∫𝐶𝑅 𝑒

−𝑥∕𝜏(Z0)(𝑥) d𝑥 = 0. (5.14)

As 𝐶𝑅 remain at least a fixed distance away from the axis of poles of (Z0)(𝑥), limit (5.14) follows
by (5.13) together with arguments similar to the arguments giving limit (5.10). □

5.1.2 Asymptotic expansions of 𝑞-series with periodic coefficients

Let 𝐵𝑚(𝑥) denote the𝑚th Bernoulli polynomial, that is,

𝑡𝑒𝑡𝑥

𝑒𝑡 − 1
=

∞∑
𝑚=0

𝐵𝑚(𝑥)

𝑚!
𝑡𝑚. (5.15)

We recall the following result.

Proposition 15 [62, 74]. Let𝐶 ∶ ℤ → ℂ be a periodic function with period𝑀 andmean value equal
to zero

𝑀∑
𝑚=1

𝐶(𝑛) = 0.

Consider the 𝐿-series 𝐿(𝑠, 𝐶), which forℜ(𝑠) > 1 is defined by

𝐿(𝑠, 𝐶) =
∞∑
𝑚=1

𝐶(𝑚)

𝑚𝑠
.

This 𝐿-series admits an analytic extension to all of ℂ and for 𝑟 ∈ ℕ

𝐿(−𝑟, 𝐶) = −
𝑀𝑟

𝑟 + 1

𝑀∑
𝑚=1

𝐶(𝑚)𝐵𝑟+1

(𝑚
𝑀

)
. (5.16)

For any polynomial 𝑄 of degree 𝑑

𝑄(𝑥) =
𝑑∑

𝑢=0

𝑞𝑢𝑥
𝑢 ∈ ℂ[𝑥]

the following asymptotic expansions hold for real and positive 𝑡

∞∑
𝑚=1

𝑒−𝑡𝑚
2
𝐶(𝑚)𝑄(𝑚) ∼

𝑡→0

𝑑∑
𝑢=0

∞∑
𝑟=0

𝑞𝑢𝐿(−2𝑟 − 𝑢, 𝐶)
(−𝑡)𝑟

𝑟!
. (5.17)

Proof. The existence of the analytic extension of the 𝐿-series of𝐶, as well as the explicit evaluation
(5.16) are proven in [74].
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In [62, 74] the following asymptotic expansions are proven

∞∑
𝑚=1

𝐶(𝑚)𝑒−𝑡𝑚
2

∼
𝑡→0

∞∑
𝑟=0

𝐿(−2𝑟, 𝐶)
(−𝑡)𝑟

𝑟!
,

∞∑
𝑚=1

𝑚𝐶(𝑚)𝑒−𝑡𝑚
2

∼
𝑡→0

∞∑
𝑟=0

𝐿(−2𝑟 − 1, 𝐶)
(−𝑡)𝑟

𝑟!
.

(5.18)

We have

∞∑
𝑚=1

𝑒−𝑡𝑚
2
𝐶(𝑚)𝑄(𝑚) =

∞∑
𝑗=0

𝜕𝑗

𝜕(−𝑡)𝑗

∞∑
𝑚=0

(𝑞2𝑗+1𝑚 + 𝑞2𝑗)𝑒
−𝑡𝑚2

,

where it is understood that 𝑞𝑙 = 0 for 𝑙 > 𝑑. The expansion (5.17) follows formally from differ-
entiating the expansions given in (5.18). This differentiation is valid because Poincaré asymptotic
expansions of analytic functionswhich are valid on suitable sectors can be termwise differentiated.
Clearly, 𝑡 ↦

∑
𝑚⩾0 𝐶(𝑚)𝑄(𝑚) exp(−𝑡𝑚

2) is an analytic function of 𝑡 in a small tubular neighbor-
hood of (0,1], and from the proof given in [74] it is clear that the asymptotic expansions (5.18) are
valid on such a small sector. □

Recall the definition of the meromorphic function 𝐹 given in (2.3). Next we prove that the
coefficients of the principal part of 𝐹 at poles are periodic functions with mean value equal to
zero.

Proposition 16. For 𝑗 = 1, 2, … , 𝑛 − 2 define 𝑓𝑗 ∶ ℤ → ℂ as the coefficients of the principal part of
𝐹 at 2𝜋𝑖𝑚 for𝑚 ∈ ℤ, for example, for 𝑦 near 2𝜋𝑖𝑚

𝐹(𝑦) =
𝑛−2∑
𝑗=1

𝑓𝑗(𝑚)(𝑦 − 2𝜋𝑖𝑚)−𝑗 + reg.

Then each 𝑓𝑗 is 2𝑃-periodic and if 𝑃 is even, then we have for each even 𝑘 ∈ ℤ∑
𝑚=1,…,2𝑃

𝑒𝑘g(2𝜋𝑖𝑚)𝑓𝑗(𝑚) = 0. (5.19)

Proof. The periodicity of the functions𝑓𝑗, 𝑗 = 1,… , 𝑛 − 3 followdirectly from the 4𝜋𝑖𝑃-periodicity
of 𝐹.
We now prove (5.19) assuming 𝑃 is even - which is equivalent to exactly one the 𝑝𝑗 being even.

Using the definition (2.3) of 𝐹 we obtain

𝐹(𝑦 + 2𝜋𝑖𝑃) =
1
4
sinh(𝑦∕2 + 𝜋𝑖𝑃)2−𝑛

𝑛∏
𝑗=1

sinh(𝑦∕𝑝𝑗 + 𝜋𝑖𝑃∕𝑝𝑗)

= (−1)𝑛𝑃(−1)
∑𝑛
𝑗=1

𝑃
𝑝𝑗 𝐹(𝑦) = −𝐹(𝑦).
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This implies that for each 𝑗 = 1,… , 𝑛 − 3 and𝑚 = 1,… , 𝑃 we have

𝑓𝑗(𝑚 + 𝑃) = −𝑓𝑗(𝑚).

On the other hand, we have for integral𝑚

g(2𝜋𝑖(𝑃 + 𝑚)) =
𝑖(2𝜋𝑖(𝑃 + 𝑚))2

8𝜋𝑃
=
−𝑖𝜋𝑚2

2𝑃
∓ 𝑖𝜋𝑚𝑃 −

𝑖𝜋𝑃
2

= g(2𝜋𝑖(𝑃 ∓ 𝑚)) mod 𝜋𝑖ℤ.

It follows that for even 𝑘 we have a pairwise cancellation:

2𝑃∑
𝑚=1

𝑒𝑘g(2𝜋𝑖𝑚)𝑓𝑗(𝑚) =
𝑃∑

𝑚=1

𝑒𝑘g(2𝜋𝑖𝑚)𝑓𝑗(𝑚) + 𝑒𝑘g(2𝜋𝑖(𝑚+𝑃))𝑓𝑗(𝑚 + 𝑃)

=
𝑃∑

𝑚=1

𝑒𝑘g(2𝜋𝑖𝑚)𝑓𝑗(𝑚) − 𝑒𝑘g(2𝜋𝑖𝑚)𝑓𝑗(𝑚) = 0.

This concludes the proof. □

5.1.3 The asymptotic expansion of the GPPV invariant

Recall the definition the functions 𝐹 and g given in (2.3). Let 𝑚 ∈ ℕ. For 𝑦 close to 2𝜋𝑖𝑚 we use
the notation of Proposition 16 and write

𝐹(𝑦) =
𝑛−2∑
𝑗=1

𝑓𝑗(𝑚)(𝑦 − 2𝜋𝑖𝑚)−𝑗 + reg.,

where each 𝑓𝑗 ∶ ℤ → ℂ is 2𝑃-periodic. For each 𝑙 ∈ ℕ there exists a uniquely determined polyno-
mial

𝑃𝑙(𝑥, 𝑦) ∈ 𝑄[𝜋𝑖, 𝑥, 𝑦]

such that

1
𝑙!
𝜕𝑙𝑒g(𝑦)∕𝜏

𝜕𝑦𝑙
(2𝜋𝑖𝑚) = 𝑒g(2𝜋𝑖𝑚)∕𝜏𝑃𝑙(𝜏

−1,𝑚). (5.20)

There exist uniquely determined complex coefficients 𝑝𝑙,𝑢,𝑣, with

𝑃𝑙(𝜏
−1,𝑚) =

∑
𝑢,𝑣

𝑝𝑙,𝑢,𝑣𝜏
−𝑢𝑚𝑣.

Recall that 𝐵𝑚(𝑥) denotes the𝑚th Bernoulli polynomial and is defined by (5.15). Define for each
𝜃 ∈ CSℂ(𝑋) the following polynomials with coefficients in power series

𝑅𝜃(𝑘, 𝑡) =
∑

𝑚=1,…,2𝑃,
g(2𝜋𝑖𝑚)≡2𝜋𝑖𝜃

∑
𝑗,𝑢,𝑣

𝑓𝑗(𝑚)𝑘
𝑢𝑝𝑗−1,𝑢,𝑣

∞∑
𝑟=0

(2𝑃)2𝑟+𝑣

2𝑟 + 𝑣 + 1
𝐵2𝑟+𝑣+1

(𝑚
2𝑃

) (−𝑡)𝑟
𝑟!

,
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Ž𝜃(𝑘, 𝑡) =
∑

𝑚=1,…,2𝑃,
g(2𝜋𝑖𝑚)≡2𝜋𝑖𝜃

∑
𝑗,𝑢,𝑣

𝑓𝑗(𝑚)𝑘
𝑢𝑝𝑗−1,𝑢,𝑣

∞∑
𝑟=1

(2𝑃)2𝑟+𝑣

2𝑟 + 𝑣 + 1
𝐵2𝑟+𝑣+1

(𝑚
2𝑃

) (−𝑡)𝑟
𝑟!

(5.21)

Observe

Ž𝜃(𝑘, 𝑡) = 𝑅𝜃(𝑘, 𝑡) − 𝑅𝜃(𝑘, 0),

that is, Ž𝜃 is equal to 𝑅𝜃 minus the constant in the parameter 𝑡.
We can now prove Theorem 4.

Proof of Theorem 4. Recall the decompsition√
𝜏

𝜆
𝑞ΔẐ = (𝜏) + 𝑅(𝜏)

given in Equation (5.2) in Lemma 14. Recall the decomposition of the normalized quantum invari-
ant

Z𝑘(𝑋) = ZI(𝑘) + Z𝑅(𝑘)

given in (2.4). This decomposition together with Equation (1.4), which relates the normalized
quantum invariant Z̃𝑘(𝑋) to theWRT invariant 𝜏𝑘(𝑋), shows the radial limit identity can be proved
by proving the following two limits:

ZI(𝑘) = lim
𝜏↑1∕𝑘

√
𝜏

2𝜆
(𝜏), Z𝑅(𝑘) = lim

𝜏↑1∕𝑘
,

√
𝜏

2𝜆
𝑅(𝜏).

Observe that as 𝑋 is an integral homology sphere, the only Spinc structure is 𝑎 = 0, and therefore
the radial limit conjecture reduces (up to a scalar factor) to Equation (1.13). We first focus on the
integral part (𝜏). For every 𝑘 ∈ ℕ∗ the integral part (𝜏) extends continuously to 𝜏 = 1∕𝑘 and it
follows from Equations (2.4), (3.6) and (5.3) that

(2𝜆
√
𝑘)−1(1∕𝑘) = ℝ+

((Z0))(𝑘) = ZI(𝑘).

Now recalling that 𝜏𝑘,𝑡 = (𝑘 − 𝑖 2𝑃𝑡
𝜋
)−1, we see that the non-trivial parts left in order to prove the

asymptotic expansion (1.12) stated in Theorem 4 are the asymptotic expansion√
𝜏𝑘,𝑡

2𝜆
𝑅(𝜏𝑘,𝑡) ∼

𝑡→0

∑
𝜃∈CSℂ(𝑋)

𝑒2𝜋𝑖𝑘𝜃𝑅𝜃(𝑘, 𝑡), (5.22)

and the identity ∑
𝜃∈CSℂ(𝑋)

𝑒2𝜋𝑖𝑘𝜃𝑅𝜃(𝑘, 0) = Z𝑅(𝑘). (5.23)
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We start with the expansion (5.22). To ease notation we set

g(2𝜋𝑖𝑚) = 𝜃𝑚.

We have

Res(𝐹(𝑦)𝑒g(𝑦)∕𝜏, 2𝜋𝑖𝑚) = 𝑒𝜃𝑚∕𝜏
𝑛−3∑
𝑗=1

𝑓𝑗(𝑚)𝑃𝑗−1(𝜏
−1,𝑚).

and accordingly √
𝜏

2𝜆
𝑅(𝜏) = −

∞∑
𝑚=0

𝑒𝜃𝑚∕𝜏
𝑛−3∑
𝑗=1

𝑓𝑗(𝑚)𝑃𝑗−1(𝜏
−1,𝑚).

Note that 𝜏𝑘,𝑡 ∈ 𝔥 for 𝑡 ∈ (0, 1). The function g has the following transformation property

g(𝑦 + 4𝜋𝑖𝑚𝑃) =
𝑖(𝑦 + 4𝜋𝑖𝑚𝑃)2

8𝜋𝑃
= g(𝑦) − 𝑚𝑦 − 2𝜋𝑖𝑚2𝑃.

Because of this, and the 2𝑃 periodicity of the functions 𝑓𝑗 , we can write√
𝜏

2𝜆
𝑅(𝜏) = −

∞∑
𝑚=0

𝑒−𝑡𝑚
2
𝑒𝑘g(2𝜋𝑖𝑚)

𝑛−3∑
𝑗=1

𝑓𝑗(𝑚)𝑃𝑗−1(𝜏
−1,𝑚)

= −
𝑛−2∑
𝑗=1

∑
𝑢,𝑣

∞∑
𝑚=0

𝑒−𝑡𝑚
2
𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑝𝑗−1,𝑢,𝑣𝜏

−𝑢𝑚𝑣.

Now for each 𝑗, 𝑢 = 0,… , 𝑛 − 3 we can apply Proposition 15 to the 2𝑃-periodic function of mean
value zero given by

𝐶𝑗(𝑚) = 𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)

and the polynomial

𝑄𝑗,𝑢(𝑚) =
∑
𝑣

𝑝𝑗−1,𝑢,𝑣𝑚
𝑣.

The fact that each 𝐶𝑗 is of mean value equal to zero follows from Proposition 16. The result of
applying Proposition 15 is√

𝜏

2𝜆
𝑅(𝜏) ∼

𝑡→0
−

∑
𝑗,𝑢,𝑣

∞∑
𝑟=0

𝑘𝑢𝑝𝑗−1,𝑢,𝑣𝐿(−2𝑟 − 𝑣, 𝐶𝑗)
(−𝑡)𝑟

𝑟!

=
∑
𝑗,𝑢,𝑣

∞∑
𝑟=0

𝑘𝑢𝑝𝑗−1,𝑢,𝑣
(2𝑃)2𝑟+𝑣

2𝑟 + 𝑣 + 1

2𝑃∑
𝑚=1

𝐶𝑗(𝑚)𝐵2𝑟+𝑣+1

(𝑚
2𝑃

) (−𝑡)𝑟
𝑟!

=
2𝑃∑
𝑚=1

∑
𝑗,𝑢,𝑣

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑘
𝑢𝑝𝑗−1,𝑢,𝑣

∞∑
𝑟=0

(2𝑃)2𝑟+𝑣

2𝑟 + 𝑣 + 1
𝐵2𝑟+𝑣+1

(𝑚
2𝑃

) (−𝑡)𝑟
𝑟!

.

This establishes the asymptotic expansion (5.22).
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We now turn to the identity (5.23). Set

𝑅0(𝑘) =
∑

𝜃∈CSℂ(𝑋)

𝑒2𝜋𝑖𝑘𝜃𝑅𝜃(𝑘, 0) =
2𝑃∑
𝑚=1

∑
𝑗,𝑢,𝑣

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑝𝑗−1,𝑢,𝑣𝑘
𝑢 (2𝑃)

𝑣

𝑣 + 1
𝐵𝑣+1

(𝑚
2𝑃

)
. (5.24)

Let 𝑥 be a complex coordinate near 0 and set 𝑦𝑚 = 𝑥 + 2𝜋𝑖𝑚 for𝑚 = 1, 2, … , 2𝑃. Recall that

Z𝑅(𝑘) = −
2𝑃−1∑
𝑚=1

Res

(
𝐹(𝑦) exp (𝑘g(𝑦))
1 − exp(−𝑘𝑦)

, 𝑦 = 2𝜋𝑖𝑚

)
.

We have that

g(𝑦𝑚) = g(𝑥 + 2𝜋𝑖𝑚) =
𝑖(𝑥 + 2𝜋𝑖𝑚)2

8𝜋𝑃
= g(2𝜋𝑖𝑚) + g(𝑥) − 𝑥𝑚

2𝑃
,

and accordingly

exp(𝑘g(𝑦𝑚)) = exp (𝑘𝜃𝑚 + 𝑘g(𝑥)) ⋅ exp
(
−𝑘

𝑥𝑚
2𝑃

)
. (5.25)

Recall that the polynomials 𝑃𝑙 defined in (5.20) as the coefficients of the Taylor series of 𝑒𝑘g(𝑦).
Therefore it follows from Cauchy’s formula for multiplication of power series, the formula for the
Taylor expansion of the exponential and the identity (5.25) that the following holds for all 𝑘,𝑚:

𝑃𝑐(𝑘,𝑚) =
∑

𝑎+𝑏=𝑐

𝑃𝑎(𝑘, 0)

(
−𝑚𝑘
2𝑃

)𝑏
1
𝑏!
.

Writing this out in terms of coefficients gives

∑
𝑐,𝑢,𝑣

𝑝𝑐,𝑢,𝑣𝑘
𝑢𝑚𝑣 =

∑
𝑎+𝑏=𝑐

∑
𝑠

𝑝𝑎,𝑠,0

(
(−1)

2𝑃

)𝑏
1
𝑏!
𝑘𝑠+𝑏𝑚𝑏.

This is equivalent to the identities

𝑝𝑗,𝑢,0

(−1
2𝑃

)𝑣 1
𝑣!

= 𝑝𝑗+𝑣,𝑢+𝑣,𝑣. (5.26)

Recall the definition (5.15) of the Bernoulli polynomials 𝐵𝑚. Write

−
𝐹(𝑦𝑚) exp (𝑘g(𝑦𝑚))
1 − exp(−𝑘𝑦𝑚)

= 𝐹(𝑦𝑚) exp (𝑘(g(𝑥) + 𝜃𝑚)
exp

(
−𝑘𝑥𝑚
2𝑃

)
exp(−𝑘𝑥) − 1

=

(
𝑛−3∑
𝑗=1

𝑓𝑗(𝑚)𝑥
−𝑗 + reg.

)(
𝑒𝑘𝜃𝑚

∞∑
𝑎=0

𝑃𝑎(𝑘, 0)𝑥
𝑎

)⎛⎜⎜⎜⎝
∞∑
𝑏=0

𝐵𝑏

(
𝑚
2𝑃

)
𝑏!

(−𝑘𝑥)𝑏−1
⎞⎟⎟⎟⎠.
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By comparingwithEquation (5.24) and using the facts that𝐹 has amultiple order zero atmultiples
of 4𝜋𝑖𝑃 and that we know that the 𝑘−1 term cancels in Z𝑅(𝑘), we obtain the desired identity

Z𝑅(𝑘) =
2𝑃∑
𝑚=1

𝑛−2∑
𝑗=1

∑
𝑎+𝑏=𝑗,
𝑎⩾0,𝑏⩾1

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑃𝑎(𝑘, 0)
𝐵𝑏

(
𝑚
2𝑃

)
𝑏!

(−𝑘)𝑏−1

=
2𝑃∑
𝑚=1

𝑛−2∑
𝑗=1

∑
𝑎+𝑏=𝑗,
𝑎⩾0,𝑏⩾1

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑃𝑎(𝑘, 0)
(−1
2𝑃

)𝑏−1 𝑘𝑏−1

(𝑏 − 1)!

(2𝑃)𝑏−1

𝑏
𝐵𝑏

(𝑚
2𝑃

)

=
2𝑃∑
𝑚=1

𝑛−2∑
𝑗=1

∑
𝑎+𝑏=𝑗,
𝑎⩾0,𝑏⩾1

∑
𝑠

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑝𝑎,𝑠,0

(−1
2𝑃

)𝑏−1 𝑘𝑠+𝑏−1
(𝑏 − 1)!

(2𝑃)𝑏−1

𝑏
𝐵𝑏

(𝑚
2𝑃

)

=
2𝑃∑
𝑚=1

𝑛−2∑
𝑗=1

∑
𝑠,𝑎+𝑏=𝑗,
𝑎⩾0,𝑏⩾1

∑
𝑠

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑝𝑎+𝑏−1,𝑠+𝑏−1,𝑏−1𝑘
𝑠+𝑏−1 (2𝑃)

𝑏−1

𝑏
𝐵𝑏

(𝑚
2𝑃

)
(5.27)

=
2𝑃∑
𝑚=1

𝑛−2∑
𝑗=1

∑
𝑢,𝑣

𝑒𝑘𝜃𝑚𝑓𝑗(𝑚)𝑝𝑗−1,𝑢,𝑣𝑘
𝑢 (2𝑃)

𝑣

𝑣 + 1
𝐵𝑣+1

(𝑚
2𝑃

)
(5.28)

=𝑅0(𝑘).

In (5.27) we used the identity (5.26), and in (5.28) we set 𝑢 = 𝑠 + 𝑏 − 1 and 𝑣 = 𝑏 − 1. This finishes
the proof. □

APPENDIX: RESURGENCE AND RESUMMATION

A.1 Resurgent functions and the Borel transform

The theory of resurgencewas originally developed byÉcalle in [40, 41]. See [80] for an introduction
to the mathematical theory of resurgence and see [39] for an introduction to the general use of
resurgence in quantum field theory. Garoufalidis [48] and Witten [95] were the pioneers of the
use of resurgence in quantum Chern–Simons theory.

Definition A1. For a Riemann surface 𝐶 with universal covering space

𝜋 ∶ �̃� → 𝐶

the group of resurgent functions is(𝐶) = (�̃�).

One source of resurgent functions are the Borel transforms of Laplace integrals. We now intro-
duce the Borel transform. Let Γ ∈ (ℂ) be the Gamma function, which for 𝑧 ∈ ℂwith Re(𝑧) > 0
is defined by

Γ(𝑧) = ∫
∞

0
𝑒−𝑡𝑡𝑧−1 d𝑡.
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DefinitionA2. Let {𝛼𝑗}∞𝑗=0 be an increasing sequence of positive real numbers, {𝛽𝑗}
∞
𝑗=0

a sequence
of non-negative integers and {𝑐𝑗}∞𝑗=0 a sequence of complex numbers. Consider the formal series

�̃�(𝜆) =
∞∑
𝑗=0

𝑐𝑗𝜆
−𝛼𝑗 log(𝜆)𝛽𝑗 .

The Borel transform of �̃�(𝜆) is given by the formal series

(�̃�)(𝜁) =
∞∑
𝑗=0

𝑐𝑗(−1)
𝛽𝑗 𝜕𝛽𝑗

𝜕𝛼𝑗
𝛽𝑗

(
𝜁𝛼𝑗−1

Γ(𝛼𝑗)

)
.

A.2 Borel–Laplace resummation

We now discuss in more detail the relation between the Borel transform and the Laplace trans-
form, which we now introduce. Let 𝛾 ⊂ ℂ be an oriented contour. Let g be a measurable function
defined in a neighborhood of 𝛾. Denote by 𝛾(g) the Laplace transform given by

𝛾(g)(𝜆) = ∫𝛾 exp(−𝜆 ⋅ 𝑧)g(𝑧) d𝑧, (A1)

for all 𝜁 ∈ ℂ such that the integral is absolutely convergent. Here we think of 𝜆 ∈ ℂ∗ as a large
modulus asymptotics parameter. For any 𝛼 ∈ ℂ∗ we let the contour 𝛼ℝ+ be oriented in the direc-
tion of 𝛼 unless we state otherwise.
That the transforms  and ℝ+

are formally inverses of each other should be understood as
follows. If 𝛼 ∈ ℂ satisfies Re(𝛼) > −1 and 𝑙 ∈ ℕ then

ℝ+

(
𝜁𝛼 log(𝜁)𝑙

)
=

d𝑙

d𝛼𝑙

(
Γ(𝛼 + 1)

𝜆𝛼+1

)
.

We may introduce a polynomial 𝑄𝛼,𝑙 ∈ ℂ[𝑥] of degree 𝑙 such that

ℝ+

(
𝜁𝛼 log(𝜁)𝑙

)
= 𝜆−𝛼−1𝑄𝛼,𝑙(log(𝜆)). (A2)

Let 𝑧 ∈ ℂ with Re(𝑧) > 0 and let𝑚 ∈ ℕ. We then have that

ℝ+
◦(𝜆−𝑧 log(𝜆)𝑚) = 𝜆−𝑧 log(𝜆)𝑚,

◦ℝ+
(𝜁𝑧−1 log(𝜁)𝑚) = 𝜁𝑧−1 log(𝜁)𝑚.

(A3)

LemmaA1. Let𝐵 ∶ ℝ+ → ℂ be ameasurable function and assume the integral definingℝ+
(𝐵)(𝜆)

is absolutely convergent forRe(𝜆) > 0. Assume that there exists an increasing sequence {𝛼𝑗}∞𝑗=0 of real
numbers strictly greater than −1 and a sequence {𝛽𝑗}∞𝑗=0 of positive integers giving an asymptotic
expansion

𝐵(𝑡) ∼𝑡→0

∞∑
𝑗=0

𝑏𝑗𝑡
𝛼𝑗 log(𝑡)𝛽𝑗 .
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Then the following hold:

(i) there exists for large 𝜆 an asymptotic expansion �̃�(𝜆) of the form

ℝ+
(𝐵)(𝜆) ∼𝜆→∞ �̃�(𝜆),

where

�̃�(𝜆) =
∑
𝛼,𝛽

𝑏𝑗𝜆
−𝛼𝑗−1𝑄𝛼𝑗,𝛽𝑗 (log(𝜆))

and 𝑄𝛼𝑗,𝛽𝑗 ∈ ℂ[𝑥] is the degree 𝛽𝑗 polynomial introduced in (A2);
(ii) the Borel transform of �̃� is equal to the expansion of 𝐵

(�̃�)(𝑡) =
∞∑
𝑗=0

𝑏𝑗𝑡
𝛼𝑗 log(𝑡)𝛽𝑗 .

Proof. The lemma is an elementary consequence of Equations (A2) and (A3). □

The following theorem explains Borel–Laplace resummation. The content of Theorem A2 is
standard in resurgence, and a proof can be found in, for example, [90].

Theorem A2. Let

�̃�(𝜆) =
∞∑
𝑗=0

𝑐𝑗𝜆
−𝛼𝑗 log(𝜆)𝛽𝑗 (A4)

be a formal series as in Definition A2. Assume that

∙ there exists a sector 𝑆 ⊂ ℂ, such that for all 𝜁 ∈ 𝑆 of sufficiently small modulus the Borel trans-
form(�̃�)(𝜁) converges to a holomorphic function �̂�(𝜁) (possibly upon choosing a branch of log(𝜁)
defined on 𝑆), and that

∙ the function �̂� extends by analytic continuation along a half axis Γ(𝜃) = 𝑒2𝜋𝑖𝜃ℝ+ ⊂ 𝑆 (for some
𝜃 ∈ [0, 1] say) and there exists a constant 𝐶 > 0 such that in a neighborhood of Γ(𝜃) we have
�̂�(𝑧) = 𝑂(exp(𝐶|𝑧|)).

Then the following hold.

(i) The Laplace transform Γ(𝜃)(�̂�) is holomorphic on the open unbounded set {𝜆 ∈ ℂ ∣ |𝜆| >
𝐶, ∀𝑠 ∈ 𝑆 ⧵ {0} Re(𝜆𝑠) > 0}.

(ii) The Laplace transform Γ(𝜃)(�̂�) has �̃� as its large 𝜆 asymptotic expansion

Γ(𝜃)(�̂�)(𝜆) ∼𝜆→∞ �̃�(𝜆).

One of the goals of Ecalle’s theory [40, 41] is to consider the case where the formal series �̃�
(A4) is obtained as a formal solution to some dynamical problem, which can be for instance an
ODE or a difference equation (with a singularity at 𝜆−1 = 0). In such situations, the function
Γ(𝜃)◦(�̃�) will be a holomorphic solution, and resurgence is developed as a tool to analyze the
monodromy (known as Stokes phenomena), which occur upon varying the choice of direction 𝜃 in
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which the Laplace transform is performed. For future studies related to the radial limit conjecture
(Conjecture 2), we also mention the work of Marmi and Sauzin [77].
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