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Subsampling scaling
A. Levina1,2,* & V. Priesemann2,3,*

In real-world applications, observations are often constrained to a small fraction of a system.

Such spatial subsampling can be caused by the inaccessibility or the sheer size of the system,

and cannot be overcome by longer sampling. Spatial subsampling can strongly bias inferences

about a system’s aggregated properties. To overcome the bias, we derive analytically

a subsampling scaling framework that is applicable to different observables, including

distributions of neuronal avalanches, of number of people infected during an epidemic

outbreak, and of node degrees. We demonstrate how to infer the correct distributions of the

underlying full system, how to apply it to distinguish critical from subcritical systems, and

how to disentangle subsampling and finite size effects. Lastly, we apply subsampling scaling

to neuronal avalanche models and to recordings from developing neural networks. We

show that only mature, but not young networks follow power-law scaling, indicating

self-organization to criticality during development.
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I
nferring global properties of a system from observations is
a challenge, even if one can observe the whole system. The
same task becomes even more challenging if one can only

sample a small number of units at a time (spatial subsampling).
For example, when recording spiking activity from a brain area
with current technology, only a very small fraction of all neurons
can be accessed with millisecond precision. To still infer global
properties, it is necessary to extrapolate from this small sampled
fraction to the full system.

Spatial subsampling affects inferences not only in neuroscience,
but in many different systems: In disease outbreaks, typically
a fraction of cases remains unreported, hindering a correct
inference about the true disease impact1,2. Likewise, in gene
regulatory networks, typically a fraction of connections remains
unknown. Similarly, when evaluating social networks, the data
sets are often so large that because of computational constraints
only a subset is stored and analysed. Obviously, subsampling does
not affect our inferences about properties of a single observed
unit, such as the firing rate of a neuron. However, we are often
confronted with strong biases when assessing aggregated
properties, such as distributions of node degrees, or the number
of events in a time window3–6. Concrete examples are
distributions of the number of diseased people in an outbreak,
the size of an avalanche in critical systems, the number of
synchronously active neurons, or the number of connections of
a node. Despite the clear difference between these observables, the
mathematical structure of the subsampling problem is the same.
Hence our novel inference approach applies to all of them.

Examples of subsampling biases, some of them dramatic, have
already been demonstrated in numerical studies. For example,
subsampling of avalanches in a critical model can make a simple
monotonic distribution appear multi-modal4. In general,
subsampling has been shown to affect avalanche distributions
in various ways, which can make a critical system appear sub- or
supercritical5,7–11, and sampling from a locally connected
network can make the network appear ‘small-world’6. For the
topology of networks, it has been derived that, contrary to
common intuition, a subsample from a scale-free network is not
itself scale-free3. Importantly, these biases are not due to limited
statistics (which could be overcome by collecting more data, for
example, acquiring longer recordings, or more independent
subsamples of a system), but genuinely originates from observing
a small fraction of the system, and then making inferences
including unobserved parts. Although subsampling effects are
known, in the literature there is so far no general analytical
understanding of how to overcome them. For subsampling effects
on degree distributions, Stumpf and colleagues provided a first
analytical framework, stating the problem of subsampling bias3.

In this paper, we show how to overcome subsampling effects.
To this end we develop a mathematical theory that allows to
understand and revert them in a general manner. We validate the
analytical approach using various simulated models, and finally
apply it to infer distributions of avalanches in developing neural
networks that are heavily subsampled due to experimental
constraints. Finally, we show that finite-size and subsampling
effects clearly differ, and derived a combined subsampling-finite-
size scaling relation. Together, our results introduce a novel
approach to study under-observed systems.

Results
Mathematical subsampling. To derive how spatial subsampling
affects a probability distribution of observables, we define
a minimal model of ‘mathematical subsampling’. We first
introduce the variables with the example of avalanches, which are
defined as cascades of activity propagating on a network12,13, and

then present the mathematical definition. The main object
of interest is a ‘cluster’, for example, an avalanche. The cluster
size s is the total number of events or spikes. In general, the
cluster size is described by a discrete, non-negative random
variable X. Let X be distributed according to a probability
distribution P(X¼ s)¼P(s). For subsampling, we assume for
each cluster that each of its events is independently observed
with probability p (or missed with probability 1� p). Then Xsub is
a random variable denoting the number of observed events
of a cluster, and X�Xsub the number of missed events. For neural
avalanches, this subsampling is approximated by sampling
a random fraction of all neurons. Then Xsub represents the
number of all events generated by the observed neurons within
one avalanche on the full system. Note that this definition
translates one cluster in the full system to exactly one cluster
under subsampling (potentially of size zero; this definition does
not require explicit binning, see Section ‘Impact of binning’
and Methods). We call the probability distribution of Xsub

‘subsampled distribution’ Psub(s). An analogous treatment can be
applied to, for example, graphs. There a ‘cluster’ represents the
set of (directed) connections of a specific node, and thus X is the
degree of that node. Under subsampling, that is, considering
a random subnetwork, only connections between observed nodes
are taken into account, resulting in the subsampled degree Xsub.

As each event is observed independently, the probability of
Xsub¼ s is the sum over probabilities of observing clusters of
X¼ sþ k events, where k denotes the missed events and s the
sampled ones (binomial sampling):

PsubðsÞ¼P Xsub¼sð Þ¼
X1
k¼0

P sþ kð Þ sþ k
s

� �
ps 1� pð Þk: ð1Þ

This equation holds for any discrete P(s) defined on N0, the set of
non-negative integers. To infer P(s) from Psub(s), we develop in
the following a novel ‘subsampling scaling’ that allows to parcel
out the changes in P(s) originating from spatial subsampling. A
correct scaling ansatz collapses the Psub(s) for any sampling
probability p.

In the following, we focus on subsampling from two specific
families of distributions that are of particular importance in
the context of neuroscience, namely exponential distributions
P(s)¼Cle� ls with l40, and power laws P(s)¼Cgs� g with
g41. These two families are known to show different behaviours
under subsampling3:

1. For exponential distributions, P(s) and Psub(s) belong to the
same class of distributions, only their parameters change
under subsampling. Notably, this result generalizes to positive
and negative binomial distributions, which include Poisson
distributions.

2. Power-laws or scale-free distributions, despite their name, are
not invariant under subsampling. Namely, if P(s) follows a
power-law distribution, then Psub(s) is not a power law but
only approaching it in the limit of large cluster size (s-N).

In more detail, for exponential distributions, P(s)¼Cle� ls,
s 2 N0, subsampling with probability p results in an exponential
distribution with decay parameter lsub that can be expressed as a
function of l and p (for the full analytical derivation see
Supplementary Note 1: Subsampling of negative binomial and
exponential distributions):

lsub¼ ln
elþ p� 1

p

� �
, l¼ ln elsub � 1

� �
pþ 1

� �
: ð2Þ

Likewise, changes in the normalizing constant Cl¼ 1� e� l of
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P(s) are given by:

Cl=Clsub¼1� e� lþ pe� l¼ e� lsub þ p� pe� lsub

p
: ð3Þ

These two relations allow to derive explicitly a subsampling
scaling for exponentials, that is, the relation between P(s) and
Psub(s):

PðsÞ¼ Cl

Clsub

Psub
l

lsub
s

� �

¼ e� lsub þ p� pe� lsub

p
Psub

ln elsub p� pþ 1
� �

lsub
s

� �

¼ 1� e� lþ pe� l� �
Psub

l

ln el þ p� 1
p

� � s

0
@

1
A

¼Gðp; lÞPsub sFðp; lÞð Þ:

ð4Þ

Thus given an exponential distribution P(s) of the full system, all
distributions under subsampling can be derived. Vice versa, given
the observed subsampled distribution Psub(s), the full distribution
can be analytically derived if the sampling probability p is known.
Therefore, for exponentials, the scaling ansatz above allows
to collapse all distributions obtained under subsampling with
any p (Fig. 1a,b).

The presented formalism is analogous to the one proposed by
Stumpf et al.3. They studied which distributions changed and
which preserved their classes under subsampling. In the following
we extend that study, and then develop a formalism that allows
to extrapolate the original distribution from the subsampling, also
in the case where an exact solution is not possible.

For power-law distributions of X, Xsub is not power-law
distributed, but only approaches a power law in the tail (s-N).
An approximate scaling relation, however, collapses the tails of
distributions as follows (mathematical derivation in Supple-
mentary Note 1: Subsampling of power-law distributions). For

s-N, a power law P(s)¼Cgs� g and the distributions obtained
under subsampling can be collapsed by:

PðsÞ¼paPsub pbs
� �

; for any a; b 2 R with a� bg¼1� g: ð5Þ

For any a,b satisfying the relation above, this scaling collapses the
tails of power-law distributions. The ‘heads’, however, deviate
from the power law and hence cannot be collapsed (see deviations
at small s, Fig. 1d). These deviations decrease with increasing p,
and with g-1þ (ref. 3, Supplementary Note 1: Power-law
exponent close to unity). We call these deviations ‘hairs’ because
they ‘grow’ on the ‘heads’ of the distribution as opposed to the
tails of the distribution. In fact, the hairs allow to infer the
system size from knowing the number of sampled units if the full
systems exhibit a power-law distribution (Supplementary Note 1:
Inferring the system size from the subsampled distribution).

In real-world systems and in simulations, distributions
often deviate from pure exponentials or pure power laws14,15.
We here treat the case that is typical for finite size critical
systems, namely a power law that transits smoothly to an
exponential around s¼ scutoff (for example, Fig. 1a). Under
subsampling, scutoff

sub depends linearly on the sampling probability:
scutoff

sub ¼ p � scutoff. Hence, the only solution to the power-law
scaling relation (equation (5)) that collapses (to the best
possible degree), both, the power-law part of distributions and
the onsets of the cutoff is the one with a¼ b¼ 1:

PðsÞ � pPsub p � sð Þ: ð6Þ

As this scaling is linear in p, we call it p-scaling. A priori, p-scaling
is different from the scaling for exponentials (equation (4)).
However, p-scaling is a limit case of the scaling for exponentials
under the assumption that l � p: Taylor expansion around
l¼ 0 results in the scaling relation P(s)EpPsub(p � s), that is,
the same as derived in equation (6). Indeed, for exponentials
with l¼ 0.001 p-scaling results in a nearly perfect collapse for
all p40.01, however pr0.01 violates the l � p requirement
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Figure 1 | Mathematical subsampling of exponential and power-law distributions. (a) Subsamplings of an exponential distribution with exponent

l¼0.001. (b) Collapse of subsampled exponential distributions by subsampling scaling derived in equation (4). Inset: same with p-scaling (equation (6)).

(c) Subsampled power-law distributions with exponent g¼ 1.5. (d) Collapse of the same distributions by p-scaling (equation (6)); inset: flattened version.

Note the log-linear axes in a,b, and the double-logarithmic axes in c,d. Solid lines are analytical results (equation (1)), dots are numerical results from

subsampling 107 avalanches (realizations of the random variable X) of the corresponding original distribution. Colours indicate the sampling probability p.
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and the collapse breaks down (Fig. 1b, inset). Thus p-scaling
collapses power laws with exponential tail if l is small, and
also much smaller than the sampling probability. This condition
is typically met in critical, but not in subcritical systems
(see Supplementary Note 2: Subcritical systems).

Subsampling in critical models. Experimental conditions
typically differ from the idealized, mathematical formulation of
subsampling derived above: Distributions do not follow perfect
power laws or exponentials, and sampling is not necessarily
binomial, but restricted to a fixed set of units. To mimic
experimental conditions, we simulated avalanche generating
models with fixed sampling in a critical state, because at
criticality, subsampling effects are expected to be particularly
strong: In critical systems, avalanches or clusters of activated
units can span the entire system and thus under subsampling they
cannot be fully assessed.

We simulated critical models with different exponents of P(s)
to assess the generality of our analytically derived results. The first
model is the widely used branching model (BM)8,16–19, and the
second model is the Bak–Tang–Wiesenfeld model (BTW)13, both
studied in two variants. Both models display avalanches of
activity after one random unit (neuron) has been activated
externally (drive). In the BM, activity propagates stochastically,
that is, an active neuron activates any of the other neurons with
a probability pact. Here pact is the control parameter, and the
model is critical in the infinite size limit if one spike on average
triggers one spike in its postsynaptic pool (see Methods).
We simulated the BM on a fully connected network and on
a sparsely connected network. The avalanche size distributions of
both BM variants have an exponent E1.5 (ref. 17), and for both
variants, subsampling results are very similar (Supplementary
Note 3: Subsampling of the EHE-model and sparse branching
model). Hence in the main text we show results for the fully
connected BM, while the results for the sparsely connected
BM are displayed, together with results of a third model, the
non-conservative model from Eurich, Herrmann and Ernst
(EHE-model)20, in Supplementary Note 3: Subsampling of the
EHE-model and sparse branching model. As expected,
distributions of all critical models collapse under p-scaling.

In the BTW, activity propagates deterministically via nearest
neighbours connections. Propagation rules reflect a typical neural
non-leaky ‘integrate-and-fire’ mechanism: Every neuron sums
(integrates) its past input until reaching a threshold, then
becomes active itself and is reset. The BTW was implemented
classically with nearest neighbour connections on a 2D grid of
size M¼ L� L either with open (BTW), or with circular (BTWC)
boundary conditions. For the BTW/BTWC the exponent of P(s)
depends on the system size, and for the size used here (M¼ 214) it
takes the known value of E1.1 (ref. 21). Thus the slope is flatter
than 1.29, which is expected for the infinite size BTW21,22.

For subsampling, N units were pre-chosen randomly.
This subsampling scheme is well approximated by binomial
subsampling with p¼N/M in the BM, because the BM runs on
a network with full or annealed connections, and hence units are
homogeneously connected. In the BTW/BTWC, subsampling
violates the binomial sampling assumption, because of the
models’ deterministic, local dynamics.

For all models, the avalanche distributions under full sampling
transit from an initial power law to an exponential at a cutoff
scutoffEM due to finite size effects (Fig. 2a). For small s, the hairs
appear in the BM, originating from subsampling power laws
(Fig. 2b, see Fig. 5a for a flattened version). These hairs are almost
absent in the BTW/BTWC, because the power-law slope is close
to unity (Supplementary Note 1: Power-law exponent close to

unity). The tails, even those of the BTWC, which have an unusual
transition at the cutoff, collapse well. The BTWC is an exception
in that it has unusual finite size effects, translating to
the characteristic tails of P(s). In fact, here the tails collapse
better when applying fixed instead of binomial subsampling.
(Fixed subsampling refers to pre-choosing a fixed set of units to
sample from; this may violate mean-field assumptions.) This is
because loosely speaking, binomial subsampling acts as a low pass
filter on P(s), smearing out the peaks, while fixed subsampling
conserves the shape of the tails better here, owing to the
compactness of the avalanches specifically in the 2D,
locally connected BTWC. Overall, despite the models’ violation
of mean-field assumptions, the analytically motivated p-scaling
ansatz allows to infer P(s) from subsampling, including the
detailed shapes of the tail.

Distinguishing critical from subcritical systems. Distinguishing
between critical and subcritical systems under subsampling
is particularly important when testing the popular hypothesis
that the brain shows signatures of ‘critical dynamics’. Criticality
is a dynamical state that maximizes information processing
capacity in models, and therefore is a favourable candidate for
brain functioning18,23–25. Typically, testing for criticality in
experiments is done by assessing whether the ‘neural avalanche’
distributions follow power laws12. Here, subsampling plays
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Figure 2 | Subsampling scaling in critical and subcritical models.

The three columns show results for the branching model (BM), the

Bak–Tang–Wiesenfeld model (BTW), and the BTW with periodic boundary

conditions (BTWC). (a) Avalanche size distribution Psub(s) for different

degrees of subsampling, as denoted in the legend. (b) Same distributions as

in a, but with p-scaling. (Note that scaling by N leads to a collapse

equivalent to scaling by p¼N/M at fixed system size M). (c) Scaled

distributions from subcritical versions of the models. Here, results for the

BTWC are extremely similar to those of the BTW and are thus omitted.

Dashed lines indicate power-law slopes of � 1.5 and � 1.1 for the BM and

BTW/BTWC, respectively, for visual guidance.
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a major role, because at criticality avalanches can propagate over
the entire network of thousands or millions of neurons, while
millisecond precise sampling is currently constrained to about
100 neurons. Numerical studies of subsampling reported
contradictory results4,5,8–10. Therefore, we revisit subsampling
with our analytically derived scaling, and compare scaling for
critical and subcritical states.

In contrast to critical systems, subcritical ones lack large
avalanches, and the cutoff of the avalanche size distribution is
independent of the system size (if M is sufficiently large). As a
consequence, the distributions obtained under subsampling do
not collapse under p-scaling. In fact, there exists no scaling
that can collapse all subsampled distributions (for any p)
simultaneously, as outlined below, and thereby p-scaling can be
used to distinguish critical from non-critical systems.

The violation of p-scaling in subcritical systems arises from
the incompatible requirement for scaling at the same time the
power-law part, the exponential tail and the cutoff onset scutoff

sub . On

the one hand, the exponential tail becomes increasingly steeper with
distance from criticality (larger l), so that the relation loo p
required for p-scaling (equation (6)) does not hold anymore for
small p (more details in Supplementary Note 2: Subcritical systems).
Thus, a collapse of the tails would require the scaling ansatz for
exponentials (equation (4)). On the other hand, slightly subcritical
models still exhibit power-law behaviour up to a cutoff scutoff:¼ c
that is typically much smaller than the system size cooMð Þ. To
properly scale this part of the distribution, p-scaling is required.
Likewise, the onset of the cutoff scales under subsampling with
p: scutoff

sub ¼ c � p, requiring a scaling of the s-axis in the same manner
as in the p-scaling. Thus, because the exponential decay requires
different scaling than the power law and scutoff

sub , no scaling ansatz
can collapse the entire distributions from ‘head to tail’.

Impact of binning. The main focus of this paper is to show
how distributions of avalanches, node degrees or other ‘clusters’
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change under spatial subsampling, and how to infer the dis-
tribution of the fully sampled system from the subsampled one.
To this end, it is essential that the clusters are extracted unam-
biguously, that is, one cluster in the full system translates
to exactly one cluster (potentially of size zero) under
subsampling. This condition is easily realized for the degree of a
node: One simply takes into account only those connections that
are realized with other observed nodes. For avalanches, this
condition can also be fulfilled easily if the system shows
a separation of time scales (STS), that is, the pauses between
subsequent avalanches are much longer than the avalanches
themselves. With an STS, temporal binning12 can be used to
unambiguously extract avalanches under subsampling. However,
the chosen bin size must neither be too small nor too large: If too
small, a single avalanche on the full system can be ‘cut’ into
multiple ones when entering, leaving and re-entering the
recording set. This leads to steeper Psub(s) with smaller bin
size (Fig. 3a). In contrast, if the bin size is too large, subsequent
avalanches can be ‘merged’ together. For a range of intermediate
bin sizes, however, Psub(s) is invariant to changes in the bin size.
In Fig. 3a, the invariance holds for all bin sizes 32obin sizeoN.
The result does not depend on the topology of the network
(compare Fig. 3a for a network with sparse topology and Fig. 3d
for fully connected network). If a system, however, lacks an STS,
then Psub(s) is expected to change for any bin size. This may
underlie the frequently observed changes in Psub(s) in neural
recordings4,7,12,26–28, as discussed in ref. 8.

To demonstrate the impact of the bin size on p-scaling, we
here used the BM, which has a full STS, that is, the time
between subsequent avalanches is mathematically infinite. When
sampling N¼ 27 out of the M¼ 214 units, then Psub(s) deviates
from a power law for small bin sizes and only approaches a power
law with the expected slope of 1.5 for bin sizes larger than eight
steps (Fig. 3a). The same holds for subsampling of any N:
With sufficiently large bin sizes, Psub(s) shows the expected

approximate power law (Fig. 3b). In contrast, for small bin sizes
avalanches can be cut, and hence Psub(s) deviates from a power
law (Fig. 3c). This effect was also observed in refs 8,9, where the
authors used small bin sizes and hence could not recover power
laws in the critical BM under subsampling, despite an STS. Thus
in summary, p-scaling only collapses those Psub(s), where
avalanches were extracted unambiguously, that is, a sufficiently
large bin size was used (compare Fig. 3e,f).

The range of bin sizes for which Psub(s) is invariant depends on
the specific system. For the experiments we analysed in the
following section, we found such an invariance for bin sizes from
0.25 to 8 ms if Psub(s) follows a power law, indicating indeed the
presence of an STS (Fig. 4d). Thus our choice of 1 ms bin size
suggests an unambiguous extraction of avalanches and in this
range p-scaling works as predicted theoretically.

Subsampled neural recordings. We applied p-scaling to neural
recordings of developing networks in vitro to investigate whether
their avalanches indicated a critical state. To this end, we
evaluated recordings from N¼ 58 multi-units (see Methods29).
This is only a small fraction of the entire neural network, which
comprised ME50,000 neurons; thus the avalanche size
distribution obtained from the whole analysed data is already
a subsampled distribution Psub(s). To apply p-scaling, we
generated a family of distributions by further subsampling,
that is, evaluating a subset N0oN of the recorded units. In
critical systems, p-scaling is expected to collapse this family of
distributions if avalanches are defined unambiguously, as outlined
above.

Interestingly, for early stages of neural development, p-scaling
does not collapse Psub(s), but for the more mature networks we
found a clear collapse (Fig. 4). Thus developing neural networks
start off with collective dynamics that is not in a critical state, but
with maturation approach criticality30,31. Some of the mature
networks show small bumps in Psub(s) at very large avalanche
sizes (sE5,0003s/NE60). These very large avalanches comprise
only a tiny fraction of all avalanches (about 2 in 10,000). At first
glance, the bumps are reminiscent of supercritical systems.
However, supercritical neural models typically show bumps at
system or sampling size (s¼N), not at those very large sizes.
We demonstrate the data from all experiments and discuss
these deviations in more detail in Supplementary Note 4: Detailed
discussion of the experimental results, and suggest that the
bumps are more likely to originate from neurophysiological finite
size effects.

For the full, mature network, our results predict that P(s)
would extend not only over three orders of magnitude as here,
but over six, because pE10� 3. Our analysis of neural recordings
illustrates how further spatial subsampling allows to infer
properties of the full system, even if only a tiny fraction of its
collective dynamics has been observed, simply by sampling even
less (N0oN) of the full system.

Subsampling versus finite size scaling. In the real world we are
often confronted with data affected by both subsampling and
finite system size effects, that is, observations originated from a
small part of a large, but not infinite system. Thus we need to deal
with a combination of both: subsampling effects as a result of
incomplete data acquisition and finite-size effects inherited from
the full system. To disentangle influences from system size
and system dynamics, finite size scaling (FSS) has been
introduced32,33. It allows to infer the behaviour of an infinite
system from a set of finite systems. At a first glance, finite size and
subsampling effects may appear to be very similar. However, if
they were, then distributions obtained from sampling N units
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Figure 5 | Changes in Psub(s) mediated by system size (M) and sampling

size (N). (a,b) Scaled and flattened avalanche size distribution (Psub(s)) for

the branching model (BM, left) and the Bak–Tang–Wiesenfeld model with

circular boundary conditions (BTWC, right); flattening is achieved by

multiplying Psub(s) with a power law with appropriate slope g. We used

g¼ 1.5 and g¼ 1 for the BM and BTWC, respectively. (a) Psub(s) for different

samplings (N¼ 24
y214) from models with fixed size M¼ 214. Note the

‘hairs’ in the BM induced by subsampling. (b) Psub(s) from sampling a fixed

number of N¼ 26 neurons from models of different sizes (M¼ 26
y214).

Note the difference in distributions despite the same number of sampled

neurons, demonstrating that finite size effects and subsampling effects are

not the same.
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from any system with NrM would be identical, that is,
independent of M. This is not the case, as, for example, the
distributions for fixed N¼ 26 clearly depend on M (Fig. 5b).
In fact, in both models the tails clearly inherit signatures of the
full system size. Moreover, in the BM, subsampling a smaller
fraction p¼N/M of a system increases the ‘hairs’, an effect
specific to subsampling, not to finite size (see the increasing
convexity of the flat section with decreasing p in the BM, Fig. 5b).

Importantly, as shown above, for critical systems one can
always scale out the impact of subsampling, and thereby infer
the distribution of the full system, including its size-specific
cutoff shape (Fig. 5a). Hence, it is possible to combine FSS
and subsampling scaling (detailed derivations are in Supple-
mentary Note 5: Combining subsampling scaling and finite-size
scaling): Consider a critical system, where FSS is given by:
MbP(sMn; M)¼ g(s), here g(s) is a universal scaling function.
Then FSS can be combined with subsampling scaling to obtain a
universal subsampling-finite-size scaling:

NMb� 1Psub sNMn� 1; M;N
� �

¼gðsÞ: ð7Þ

Using equation (7) allows to infer the distribution for arbitrary
subsampling (N) of any system size (M), Fig. 6.

Discussion
The present study analytically treats subsampling scaling for
power laws (with cutoff), exponential distributions, and negative
and positive binomial distributions. For all other distributions,
utmost care has to be taken when aiming at inferences about the
full system from its subsampling. One potential approach is to
identify a scaling ansatz numerically, that is, minimizing the
distance between the different Psub(s) numerically, in analogy to
the approach for avalanche shape collapse7,26,34–36. We found
that for our network simulations such a numerical approach
identified the same scaling parameters as our analytic derivations
(Supplementary Note 6: Numerical estimation of optimal
scaling). However, given the typical noisiness of experimental
observations, a purely numerical approach should be taken with
a grain of salt, as long as it is not backed up by a circular form
analytical solution.

Our analytical derivations assumed annealed sampling,
which in simulations was well approximated by pre-choosing
a random subset of neurons or nodes for sampling. Any sampling
from randomly connected networks is expected to lead to
the same approximation. However, in networks with, for
example, local connectivity, numerical results depend strongly
on the choice of sampled units4. For example, for windowed

subsampling (that is, sampling a local set of units) a number of
studies reported strong deviations from the expected power laws
in critical systems or scale-free networks4–6. In contrast, random
subsampling, as assumed here for our analytical derivations,
only leads to minor deviations from power laws (hairs). Thus to
diminish corruption of results by subsampling, future
experimental studies on criticality should aim at implementing
random instead of the traditional windowed sampling,
for example, by designing novel electrode arrays with pseudo-
random placement of electrodes on the entire area of the network.
In this case, we predict deviations from power laws to be minor,
that is, limited to the ‘hairs’ and the cutoff.

We present here first steps towards a full understanding of
subsampling. With our analytical, mean-field-like approach to
subsampling we treat two classes of distributions and explore
corresponding simulations. In future, extending the presented
approach to a window-like sampling, more general forms of
correlated sampling, and to further classes of distributions will
certainly be of additional importance to achieve unbiased
inferences from experiments and real-world observations.

Methods
Analytical derivations. The analytical derivations are detailed in the
Supplementary Information.

Bak–Tang–Wiesenfeld model. The BTW model13 was realized on a 2D grid of
L� L¼M units, each unit connected to its four nearest neighbours. Units at the
boundaries or edges of the grid have either 3 or 2 neighbours, respectively
(open boundary condition). Alternatively, the boundaries are closed circularly,
resulting in a torus (circular or periodic boundary condition, BTWC). Regarding
the activity, a unit at the position (x, y) carries a potential z(x, y, t) at time
t, (z, tAN0). If z crosses the threshold of 4 at time t, its potential is redistributed or
‘topples’ to its nearest neighbours:

if zðx; y; tÞ � 4 :

zðx; y; tþ 1Þ¼zðx; y; tÞ� 4

zðx� 1; y� 1; tþ 1Þ¼zðx� 1; y� 1; tÞþ 1

z(x±1, y±1) refers to the 4 nearest neighbours of z(x, y). The BTW/BTWC is in
an absorbing (quiescent) state if z(x, y)o4, for all (x, y). From this state,
an ‘avalanche’ is initiated by setting a random unit z(x, y) above threshold:
z(x, y, tþ 1)¼ z(x, y, t)þ 4. The activated unit topples as described above and
thereby can make neighbouring units cross threshold. These in turn topple, and
this toppling cascade propagates as an avalanche over the grid until the model
reaches an absorbing state. The size s of an avalanche is the total number of
topplings. Note that the BTW/BTWC are initialized arbitrarily, but then run for
sufficient time to reach a stationary state. Especially in models with large M this can
take millions of time steps.

The BTW and the BTWC differ in the way how dissipation removes potential
from the system. Whereas in the BTW potential dissipates via the open boundaries,
in the BTWC an active unit is reset without activating its neighbours with a tiny
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probability, pdis¼ 10� 5. For BTW an additional dissipation in a form of small
pdis can be added to make the model subcritical.

Branching model. The BM corresponds to realizing a classical branching process
on a network of units8,17,18. In the BM, an avalanche is initiated by activating one
unit. This unit activates each of the k units it is connected to with probability pact at
the next time step. These activated units, in turn, can activate units following the
same principle. This cascade of activations forms an avalanche which ends when by
chance no unit is activated by the previously active set of units. The control
parameter of the BM is s¼ pact � k. For s¼ 1, the model is critical in the infinite
size limit. We implemented the model with full connectivity (k¼M) and with
sparse, annealed connectivity (k¼ 4). The BM can be mathematically rigorously
associated with activity propagation in an integrate and fire network37,38.

For implementation of the BM with full connectivity (k¼M¼ 214), note that
the default pseudo-random number generator (PRNG) of Matlab(R) (R2015b) can
generate avalanche distributions that show strong noise-like deviations from the
expected power-law distribution. These deviations cannot be overcome by
increasing the number of avalanches, but by specifying a different PRNG. We used
the ‘Multiplicative Lagged Fibonacci’ PRNG for the results here, because it is fairly
fast.

Subcritical models. To make the models subcritical, in the BM s was set to
s¼ 0.9, and in the BTW/BTWC the dissipation probability pdis was set to
pdis¼ 0.1, which effectively corresponds to s¼ 0.9, because 90% of the events are
transmitted, while 10% are dissipated.

Avalanche extraction in the models. The size s of an avalanche is defined as the
total number of spikes from the seed spike until no more units are active. Under
subsampling, this translates to the total number of spikes that occur on the
pre-chosen set of sampled units (fixed subsampling). In principle, the avalanches
could also have been extracted using the common binning approach12, as all
the models were simulated with a separation of time scales (STS), that is, the
time between subsequent avalanches is by definition much longer than the
longest-lasting avalanche. Hence applying any bin size that is longer than
the longest avalanche, but shorter than the pauses between avalanches would
yield the same results for any subsampling.

Data acquisition and analysis. The spike recordings were obtained by Wagenaar
et al.29 from an in vitro culture of ME50,000 cortical neurons. Details on the
preparation, maintenance and recording setting can be found in the original
publication. In brief, cultures were prepared from embryonic E18 rat cortical tissue.
Recording duration of each data set was at least 30 min. The recording system
comprised an 8� 8 array of 59 titanium nitride electrodes with 30 mm diameter
and 200mm inter-electrode spacing, manufactured by Multichannel Systems
(Reutlingen, Germany). As described in the original publication, spikes were
detected online using a threshold-based detector as upward or downward
excursions beyond 4.5 times the estimated RMS noise39. Spike waveforms were
stored, and used to remove duplicate detections of multiphasic spikes. Spike sorting
was not employed, and thus spike data represent multi-unit activity.

For the spiking data, avalanches were extracted using the classical binning
approach as detailed in refs 8,12. In brief, temporal binning is applied to the
combined spiking activity of all channels. Empty bins by definition separate one
avalanche from the next one. The avalanche size s is defined as the total number of
spikes in an avalanche. The bin size applied here was 1 ms, because this reflects the
typical minimal time delay between a spike of a driving neuron and that evoked in
a monosynaptically connected receiving neuron, and because 1 ms is in the middle
of the range of bin sizes that did not change the avalanche distribution Psub(s)
(Fig. 4d).

Application of p-scaling by definition requires that one avalanche in the full
system translates to one avalanche (potentially of size zero) under subsampling,
that is, an avalanche must not be ‘cut’ into more than one, for example, when
leaving and re-entering the recording set. This can be achieved in experiments that
have a separation of time scales by applying a sufficiently large bin size, because this
allows for an unambiguous avalanche extraction8. Indeed, the in vitro recordings
we analyse here appear to show a separation of time scales: We found that varying
the applied bin size around 1 ms hardly changed Psub(s) (Fig. 4d). In contrast, using
too small bin sizes would have led to ‘cutting’ avalanches, which impedes the
observation of power laws, and consequently prevents the collapse (illustrated for
the BM, Fig. 3).

Data availability. We evaluated ten recordings for each day, because then the
naı̈ve probability of finding the expected behaviour consistently in all of them by
chance is at most p¼ (1/2)10o0.001. The experimental data were made available
online by the Potter group29. In detail, we downloaded from the dense condition
the in vitro preparations 2-1, 2-3, 2-4, 2-5, 2-6, 6-1, 6-2, 6-3, 8-1, 8-2, 8-3, and for
each preparation one recording per week (typically days 7, 14, 21, 28, 34/35, but for
some experiments one or two days earlier), except for experiment 6-2 where we

only got the first three weeks, and 6-3 where we got the last two weeks. We
analysed and included into the manuscript all recordings that we downloaded.
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