
COMPLEXITY OF CONSTRAINT

SATISFACTION PROBLEMS

by

Michal Rolínek

May, 2017

A thesis presented to the

Graduate School

of the

Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

ii

c© by Michal Rolínek, May, 2017

All Rights Reserved

I hereby declare that this thesis is my own work and that it does not contain other

people’s work without this being so stated; this thesis does not contain my previous

work without this being stated, and the bibliography contains all the literature that I used

in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved

by my thesis committee, and that this thesis has not been submitted for a higher degree

to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved

by the relevant publishers and co-authors.

Signature:

Michal Rolínek

May, 2017

iii

Acknowledgments

There are many individuals who made my stay at IST memorable, helped me develop

as a scientist, and offered me support. These would include my terrific office mates, my

dancing partners, my collaborators, my flatmates, my parents, my football mates and

others. I am grateful and I will, of course, let them know. However, this acknowledgement

I dedicate to just one person1.

Dear Vladimir,

You are not very sentimental, at least not on the outside, so I decided to minimize

the sugary parts. Instead, I will tell three short stories from our time together and let

them speak for themselves.

Let me go in order and start with our rotation project. Having had one free slot

for an experimental rotation, I felt like trying something more practical. After being

rejected by Gašper (Well, that had consequences!) I turned to you. Working with a

tough-looking Russian who does crazy things with images and has his own algorithm

running in MS Office sounded exciting. As the rotation approached, I was becoming

aware of your reputation and it was not very encouraging. Apparently, having an online

math discussion with you was almost impossible since you were communicating your

ideas by what was described as “incomprehensible, but probably very smart drawings”.

Of course, nothing could be further from the truth. Over the three months, we spent

countless hours in your office and became comfortable enough to call each other’s ideas

bullsh*t, in a friendly tone, if needed. At that point I was hooked, regardless of the topic.

The second story starts at a VCSP workshop in Krakow in January 2015. The news

about Theorem 2.1.19 broke out and clearly the community thought the time was ripe

1. . . and to the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement no 616160.

iv

to prove (some form of) Theorem 2.2.3. One could really feel the tension as groups of

distinguished community members sat in adjacent rooms and all were trying to prove

the same thing. In the end, we left Krakow without anybody announcing the proof, but

we all knew the race was on. The next four weeks were probably the most intense

period of my PhD.; I even caught myself composing cyclic polymorphisms on a date

(sorry Claudia!). We felt we were so close, but we couldn’t quite get it all to work. . .

It culminated when I was spending a week in Texas. The problem had no rest, we

were taking shifts based on our timezones, and kept exchanging progress. The very

final stretch is best captured by the following e-mail excerpts:

VNK: If you are not busy, could you take a look at the proof of Theorem 2.5.3

(and finish it, if you can)? I hope things work, but I don’t really know.

I need to double check, but I think I can prove everything assuming that

Theorem 2.5.3 holds.

M (DFW): I am spending my next twenty hours on planes and at airports so I

might actually have time for it.

VNK: Actually, I was wrong - obtaining the result from Theorem 2.5.3 is still

an open question...

M (LHR): So on my first flight I convinced myself that Theorem 2.5.3 is true.

I hope nothing pops up when I try to write it up on my next flight.

VNK: Great! I think I can indeed prove the rest using Theorem 2.5.3.

M (VIE): *file attached*

These 24 hours were the highlight of my life as a mathematician.

The last story is short, but it speaks volumes. It happened only once during my PhD.

that you felt the need to mentor me. Not that you would otherwise be ecstatic about

every single thing I did, however your remarks were always specific. This one time it

was different; I cannot recall the full context, but I do remember your closing line from

this exchange. It was a fantastic message and it will stay with me:

“I also sometimes get stuck on a problem and it gets frustrating. Do you know what I

do? I just keep thinking about it until I solve it!”

Thank you, Vladimir, for being exactly the advisor I needed; we’ve had great times

together.

Michal

v

Abstract

An instance of the Constraint Satisfaction Problem (CSP) is given by a finite set of

variables, a finite domain of labels, and a set of constraints, each constraint acting on

a subset of the variables. The goal is to find an assignment of labels to its variables

that satisfies all constraints (or decide whether one exists). If we allow more general

“soft” constraints, which come with (possibly infinite) costs of particular assignments,

we obtain instances from a richer class called Valued Constraint Satisfaction Problem

(VCSP). There the goal is to find an assignment with minimum total cost.

In this thesis, we focus (assuming that P 6= NP) on classifying computational com-

plexity of CSPs and VCSPs under certain restricting conditions. Two results are the core

content of the work. In one of them, we consider VCSPs parametrized by a constraint

language, that is the set of “soft” constraints allowed to form the instances, and finish

the complexity classification modulo (missing pieces of) complexity classification for

analogously parametrized CSP. The other result is a generalization of Edmonds’ perfect

matching algorithm. This generalization contributes to complexity classfications in two

ways. First, it gives a new (largest known) polynomial-time solvable class of Boolean

CSPs in which every variable may appear in at most two constraints and second, it

settles full classification of Boolean CSPs with planar drawing (again parametrized by a

constraint language).

vi

Table of Contents

Acknowledgments iii

Abstract v

1 Introduction 1

1.1 Classifying VCSPs . 2

1.2 Classifying Boolean CSPs . 3

2 Complexity of Valued CSP 5

2.1 Preliminaries . 6

2.2 Main Result . 15

2.3 Proof of Theorem 2.2.4: Reduction to a block-finite language 19

2.4 A graph of generalized operations . 21

2.5 Constructing special functions . 24

2.6 Proof of Theorem 2.3.4 . 29

3 Generalizing Edmonds’ Algorithm 35

3.1 Preliminaries . 35

3.2 Implications . 39

3.3 Even ∆-matroids and matchings . 41

3.4 Algorithm . 43

3.5 Proofs . 51

3.6 Extending the algorithm to efficiently coverable ∆-matroids 65

3.7 Discussion . 75

vii

A Appendices 83

A.1 Proofs for Section 2.4 . 83

A.2 Expressing special unary functions . 87

A.3 Non matching realizable even ∆-matroid 92

A.4 Non coverable ∆-matroid . 93

A.5 Classes of ∆-matroids that are efficiently coverable 94

1

1 Introduction

Computational problems from many different areas involve finding an assignment of

labels to a set of variables, where that assignment must satisfy some specified fea-

sibility conditions and/or optimize some specified objective function. In many such

problems, the feasibility conditions are local and also the objective function can be

represented as a sum of functions, each of which depends on some subset of the

variables. Examples include: Gibbs energy minimization, Markov Random Fields (MRF),

Conditional Random Fields (CRF), Min-Sum Problems, Minimum Cost Homomorphism,

Constraint Optimization Problems (COP) and Valued Constraint Satisfaction Problems

(VCSP) [8, 20, 56, 62, 72],.

The constraint satisfaction problem provides a common framework for many theoreti-

cal and practical problems in computer science [21, 62]. An instance of the constraint

satisfaction problem (CSP) consists of a collection of variables that must be assigned

labels from a given domain subject to specified constraints [59]. The CSP is equivalent

to the problem of evaluating conjunctive queries on databases [48], and to the homo-

morphism problem for relational structures [31]. The CSP deals only with the feasibility

issue: can all constraints be satisfied simultaneously?

There are several natural optimization versions of the CSP: MAX CSP (or MIN CSP)

where the goal is to find the assignment maximizing the number of satisfied constraints

(or minimizing the number of unsatisfied constraints) [17, 21, 44, 45], problems like

MAX-ONES and MIN-HOM where the constraints must be satisfied and some additional

function of the assignment is to be optimized [21, 46, 65], and, the most general version,

valued CSP or VCSP (also known as soft CSP), where each combination of values

for variables in a constraint has a cost and the goal is to minimize the aggregate

2

cost [15, 19, 51, 67]. Thus, an instance of the VCSP amounts to minimizing a sum of

functions, each depending on a subset of variables. By using infinite costs to indicate

infeasible combinations, VCSP can model both feasibility and optimization aspects and

so considerably generalises all the problems mentioned above [15, 19, 55]. There is

much activity and very strong results concerning various aspects of approximability of

(V)CSPs (see e.g. [5, 9, 14, 21, 25, 28, 37, 61] for a small sample), but in this thesis we

focus on solving VCSPs to optimality.

We assume throughout the thesis that P 6= NP. Since all the above problems are

NP-hard in full generality, a major line of research in CSP tries to identify the tractable

cases of such problems (see books/surveys [18, 21, 23, 55]), the primary motivation

being the general picture rather than specific applications. This is also the focus of the

thesis.

The two main ingredients of a constraint are (a) variables to which it is applied and

(b) relations/functions specifying the allowed combinations of values or the costs for

all combinations. Therefore, the main types of restrictions on CSP are (a) structural

where the hypergraph formed by sets of variables appearing in individual constraints is

restricted [36, 58], and (b) language-based where the constraint language, i.e. the set of

relations/functions that can appear in constraints, is fixed (see, e.g. [12, 18, 21, 31, 67]).

The ultimate sort of results in these directions are dichotomy results, pioneered by [63],

which characterise the tractable restrictions and show that the rest are as hard as the

corresponding general problem (which cannot generally be taken for granted). The

language-based direction is considerably more active than the structural one, there

are many partial language-based dichotomy results, e.g. [10, 11, 19, 21, 44, 45, 52,

65], but many central questions are still open. In this work, we address a language-

based restriction on VCSPs and two combined (both structural and language-based)

restrictions on CSPs with Boolean variables.

1.1 Classifying VCSPs

In Chapter 2, we study VCSPs with a fixed constraint language on a finite domain

and give complete classification of the complexity of VCSPs modulo the complexity of

3

CSPs. The results are joint work with V. Kolmogorov and A. Krokhin and appeared as a

conference paper at FOCS ’15 [49].

Clearly, for a VCSP to be tractable, it is necessary that the corresponding feasibility

CSP is tractable. We prove that any VCSP satisfying this necessary condition and an

algebraic necessary condition formulated by Kozik and Ochremiak [53] is tractable.

The classification result has the following several unexpected features. One is

that the algorithm that solves all tractable VCSPs uses feasibility checking only as a

black-box. The other is that the algorithm is simply feasibility preprocessing followed by

solving a linear programming relaxation - this was unexpected, for example, because

higher levels of the Sherali-Adams hierarchy were used in [66] to prove tractability of a

wide class of VCSPs. Finally, the proof of our result avoids structural universal algebra

present in most CSP classifications and in [53, 54].

Our dichotomy theorem generalizes the dichotomy for finite-valued CSPs from [67],

and, with the help of the CSP tractability result from [4], it also implies the tractability

of VCSPs shown tractable in [66, 68]. It is also the culmination of research into

complexity classification of language-based VCSPs in the sense that its scope cannot

be widened, the yet unclassified part of the VCSP landscape is the (non-valued) CSP.

One could, of course, extend the classification framework by looking at other forms of

algorithmic tractability, say, approximation algorithms or fixed-parameter tractability, and

such extensions will have many open questions. It is also interesting to obtain tighter

and more explicit characterisations for important special cases of VCSP (as done in [68],

for example), by deriving them from our main result or otherwise.

1.2 Classifying Boolean CSPs

The content of Chapter 3 will have more combinatorial flavor. We will discuss an

extension of a classical perfect matching algorithm and its connections to certain types

of Boolean CSPs. This joint work with A. Kazda and V. Kolmogorov was published in

SODA ’17 [47].

We address two special structural restrictions for CSPs with Boolean variables. One

is limiting to at most two constraints per variable and the other requires the constraint

4

network to have a planar representation. The first type, introduced by Feder [29], has

very natural interpretation as CSPs in which edges play the role of variables and nodes

the role of constraints, which is why we choose to refer to it as edge CSP. It was Feder

who showed the following hardness result: Assume the constraint language Γ contains

both unary constant relations. Then unless all relations in Γ are ∆-matroids, the edge

CSP with constraint language Γ has the same complexity as the unrestricted CSP with

constraint language Γ. Since then, there has also been progress on the algorithmic

side. Several tractable classes of ∆-matroids were identified [29, 30, 41, 24, 34, 26]. A

recurring theme is the connection between ∆-matroids and matching problems.

A setting for planar CSPs appears already in [22] and was recently brought back into

attention by Dvořák and Kupec [26]. In their work, they provide certain hardness results

together with a reduction of the remaining cases to Boolean edge CSP. Dvořák and

Kupec’s results imply that completing the complexity classification of Boolean planar

CSPs is equivalent to establishing the complexity of (planar) Boolean edge CSP where

all the constraints are even ∆-matroids. In their paper, Dvořák and Kupec provided

a tractable subclass of even ∆-matroids along with computer-aided evidence that the

subclass (matching realizable even ∆-matroids) covers all even ∆-matroids of arity at

most 5. However, it turns out that there exist even ∆-matroids of arity 6 that are not

matching realizable; we provide an example of such a ∆-matroid.

The main contribution of the work is a generalization of the classical Edmonds’

blossom-shrinking algorithm for matchings [27] that we use to efficiently solve edge

CSPs with even ∆-matroid constraints. This settles the complexity classification of

planar CSP. Moreover, we give an extension of the algorithm to cover a wider class of

∆-matroids. This extension subsumes (to our best knowledge) all previously known

tractable classes.

5

2 Complexity of Valued CSP

In this chapter, we prove a dichotomy-like theorem for valued CSP. This provides full

complexity classification of VCSPs modulo gaps in our understanding of (non-valued)

CSP. Before we turn to formal statements, let us shed more light on the previous

statement by providing some context.

One major knowledge gap regarding CSPs is captured by the CSP Dichotomy

Conjecture. It states that each CSP is either tractable or NP-hard, and was first

formulated by Feder and Vardi [31]. A universal-algebraic approach to this problem was

discovered in [12, 42, 43], and the precise boundary between the tractable cases and

NP-hard cases was conjectured in algebraic terms in [12], in what is now known as

the Algebraic CSP Dichotomy Conjecture (see Conjecture 2.1.21). The hardness part

was proved in [12], and it is the tractability part that is the essence of the conjecture.

This conjecture is still open in full generality and is the object of much investigation,

e.g. [2, 3, 4, 1, 6, 12, 11, 18, 40]. It is known to hold for domains with at most 3

elements [10, 63], for smooth digraphs [6], and for the case when all unary relations are

available [1, 11]. The main two polynomial-time algorithms used for CSPs are based

one on local consistency (“bounded width”) and the other on compact representation

of solution sets, such as in systems of linear equations (“few subpowers”), and their

applicability (in pure form) is fully characterized in [2, 4] and [40], respectively.

At the opposite (to CSP) end of the VCSP spectrum are the finite-valued CSPs,

in which functions do not take infinite values. In such VCSPs, the feasibility aspect

is trivial, and one has to deal only with the optimization issue. One polynomial-time

algorithm that solves tractable finite-valued CSPs is based on the so-called basic linear

programming (BLP) relaxation, and its applicability (also for the general-valued case)

6

was fully characterized in [51] (see Theorem 2.1.22). The complexity of finite-valued

CSPs was completely classified in [67], where it is shown that all finite-valued CSPs not

solvable by BLP are NP-hard.

For general-valued CSPs, full classifications are known for the Boolean case (i.e.,

when the domain is two-element) [19] and also for the case when all 0-1-valued unary

cost functions are available [52]. The algebraic approach to the CSP was extended to

VCSPs in [15, 16, 19, 53], and was also key to much progress. An algebraic necessary

condition for a VCSP to be tractable was proved by Kozik and Ochremiak in [53],

where this condition was also conjectured to be sufficient (see Theorem 2.1.19 and

Conjecture 2.1.20 below). This conjecture can be called the Algebraic VCSP Dichotomy

Conjecture, and it is a generalization of the corresponding conjecture for CSP. A large

family of VCSPs satisfying the necessary condition from [53] has recently been shown

tractable via a low-level Sherali-Adams hierarchy relaxation [66].

Our result says that any dichotomy for CSP (not necessarily the one predicted by the

Algebraic CSP Dichotomy Conjecture) will imply a dichotomy for VCSP. However, if the

Algebraic CSP Dichotomy Conjecture holds then the necessary algebraic condition of

Kozik and Ochremiak guarantees tractability of the feasibility CSP (see [53]), implying

that this algebraic condition alone is necessary and sufficient for tractability of a VCSP,

and also that all the not tractable VCSPs are NP-hard. In particular, the Algebraic CSP

Dichotomy Conjecture implies the Algebraic VCSP Dichotomy Conjecture.

On the technical level, some of our proofs (e.g. those in Section 2.6) use techniques

established in [51, 67], while others (e.g. all of Section 2.5) introduce new technical

ideas. The technique of “lifting a language” was introduced in [50].

2.1 Preliminaries

Valued Constraint Satisfaction Problems

Throughout the chapter, let D be a fixed finite set and let Q = Q ∪ {∞} denote the set

of rational numbers with (positive) infinity.

Definition 2.1.1. We denote the set of all functions f : Dn → Q by F (n)
D and let

FD =
⋃

n≥1F
(n)
D . We will often call the functions in FD cost functions over D. For every

7

cost function f ∈ F
(n)
D , let dom f = {x | f(x) <∞}. Note that dom f can be considered

both as an n-ary relation and as a n-ary function such that dom f(x) = 0 if and only if

f(x) is finite.

We will call the set D the domain, elements of D labels (for variables), and say that

the cost functions in FD take values. Note that in some papers on VCSP, e.g. [15, 66],

cost functions are called weighted relations.

Definition 2.1.2. An instance of the valued constraint satisfaction problem (VCSP) is a

function from DV to Q given by

fI(x) =
∑

t∈T

ft(xv(t,1), . . . , xv(t,nt)), (2.1)

where V is a finite set of variables, T is a finite set of constraints, each constraint is

specified by a cost function ft of arity nt and indices v(t, k), k = 1, . . . , nt. The goal is

to find an assignment (or labeling) x ∈ DV that minimizes fI . The value of an optimal

assignment is denoted by Opt(I).

Definition 2.1.3. Any set Γ ⊆ FD is called a valued constraint language over D, or

simply a language. We will denote by VCSP(Γ) the class of all VCSP instances in which

the constraint functions ft are all contained in Γ. Instances of VCSP(Γ) will sometimes

be called just Γ-instances.

Note that if every function in Γ takes values in {0,∞} (such functions are often called

crisp) then VCSP(Γ) is a pure feasibility problem, commonly known as CSP(Γ).

Example 2.1.4. Let us fix k ≥ 2 set D = {1, . . . , k}, and Γcolor = {f}, where f : D2 → Q

is defined for (x, y) ∈ D2 as

f(x, y) =




0 if x 6= y,

∞ otherwise.

Then VCSP(Γcolor), which coincides with CSP(Γcolor) in this case, models exactly k-

COLORING of graphs (edges correspond to pairs of variables constrained by f).

8

Example 2.1.5. Let D = {0, 1, 2} and Γeq = {feq}, where feq : D
3 → Q is defined for

(x, y, z) ∈ D3 as

feq(x, y, z) =




0 if x+ y + z ≡ 1 (mod 3),

∞ otherwise.

.

Then VCSP(Γeq) (as well as CSP(Γeq)) models systems of (specific) linear equations

modulo 3.

Example 2.1.6. Let Γmc be a constraint language on a Boolean domain D = {0, 1}

containing a single binary function fmc : D
2 → Q defined by

fmc(x, y) =




0 if x 6= y,

1 if x = y.

.

Then the problem VCSP(Γmc) is equivalent to the NP-Hard MAX-CUT [33].

Example 2.1.7. On a Boolean domain D = {0, 1} consider Γmis = {f, u} where

f : D2 → Q is defined as f(1, 1) =∞ and f(0, 1) = f(0, 0) = f(1, 0) = 0 and u : D → Q

is simply u(x) = 1 − x. Then the MAX-INDEPENDENT-SET graph problem is captured

in VCSP(Γmis) (binary constraints correspond to edges and the unary one is applied

to every vertex; the independent set is then the subset of vertices labelled with 1). In

fact, the opposite also holds (and is easy to see); any instance of VCSP(Γmis) can be

reduced to an instance of MAX-INDEPENDENT-SET.

In our final example, we will construct a valued constraint language that corresponds

to the (s, t)-MIN-CUT problem on directed graphs. As we define the cost functions, keep

in mind that label 0 will correspond to the source component and label 1 to the sink

component.

Example 2.1.8. Fix D = {0, 1}. For any cost w ∈ Q, w ≥ 0, let fw : D
2 → Q be given by

fw(x, y) =




w if x = 0, y = 1,

0 otherwise.

.

9

and also for a fixed d ∈ D define ud
w : D → Q by

uw(x) =




w if x = d,

0 otherwise.

.

We denote by Γcut the set of all possible fw and ud
w. Now the (s, t)-MIN-CUT can

be modeled by placing u1
∞ on the source and u0

∞ on the sink and transforming the

(weighted) graph edges into binary constraints fw.

Interestingly, also any instance of VCSP(Γcut) can be reduced to a (s, t)-MIN-CUT

instance [35].

For more examples of capturing well-known problems or subsuming previously

studied frameworks see [55].

The main goal of our line of research is to classify the complexity of problems

VCSP(Γ). Problems CSP(Γ) and VCSP(Γ) are called tractable if, for each finite Γ′ ⊆ Γ,

VCSP(Γ′) is tractable. Also, VCSP(Γ) is called NP-hard if, for some finite Γ′ ⊆ Γ,

VCSP(Γ′) is NP-hard. One advantage of defining tractability in terms of finite subsets is

that the tractability of a valued constraint language is independent of whether the cost

functions are represented explicitly (say, via full tables of values, or via tables for the

finite-valued parts) or implicitly (via oracles). Following [12], we say that VCSP(Γ) is

globally tractable if there is a polynomial-time algorithm solving VCSP(Γ), assuming all

functions in instances are given by full tables of values. For CSPs, there is no example

of CSP(Γ) that is tractable, but not globally tractable, and it is conjectured in [12] that no

such CSP(Γ) exists.

Polymorphisms, Expressibility, Cores

Let O(m)
D denote the set of all operations g : Dm → D and let OD = ∪m≥1O

(m)
D . When D

is clear from the context, we will sometimes write simply O(m) and O.

Any language Γ defined on D can be associated with a set of operations on D,

known as the polymorphisms of Γ, which allow one to combine (often in a useful way)

several feasible assignments into a new one.

10

Definition 2.1.9. An operation g ∈ O
(m)
D is a polymorphism of a cost function f ∈ FD if,

for any x1, x2, . . . , xm ∈ dom f , we have that g(x1, x2, . . . , xm) ∈ dom f where g is applied

component-wise.

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the set of

all operations on D which are polymorphisms of every f ∈ Γ.

Example 2.1.10. Let f ∈ F
(n)
{0,1} be such that f(1, . . . , 1, 0) = ∞ and f(a1, . . . , an) = 0

otherwise. It corresponds to the Horn clause (x1 ∨ . . .∨ xn−1 ∨ xn). Then it is well known

and easy to see that the binary operation min ∈ O{0,1} is a polymorphism of f .

Clearly, if g is a polymorphism of a cost function f , then g is also a polymorphism

of dom f . For {0,∞}-valued functions, which naturally correspond to relations, the

notion of a polymorphism defined above coincides with the standard notion of a poly-

morphism for relations. Note that the projections (aka dictators), i.e. operations of

the form ein(x1, . . . , xn) = xi, are polymorphisms of all valued constraint languages.

Polymorphisms play the key role in the algebraic approach to the CSP, but, for VCSPs,

more general constructs are necessary, which we now define.

Definition 2.1.11. An m-ary fractional operation ω on D is a probability distribution on

O
(m)
D . The support of ω is defined as supp(ω) = {g ∈ O

(m)
D | ω(g) > 0}.

Definition 2.1.12. A m-ary fractional operation ω on D is said to be a fractional poly-

morphism of a cost function f ∈ FD if, for any x1, x2, . . . , xm ∈ dom f , we have

∑

g∈supp(ω)

ω(g)f(g(x1, . . . , xm)) ≤
1

m
(f(x1) + . . .+ f(xm)). (2.2)

For a constraint language Γ, fPol(Γ) will denote the set of all fractional operations

that are fractional polymorphisms of each function in Γ. Also, let fPol+(Γ) = {g ∈ OD |

g ∈ supp(ω), ω ∈ fPol(Γ)}.

The intuition behind the notion of fractional polymorphism is that it allows one

to combine several feasible assignments into new feasible assignments so that the

expected value of a new assignment (non-strictly) improves the average value of the

original assignments.

11

Example 2.1.13. Suppose that ω is a binary fractional operation on D = {0, 1} such

that ω(min) = ω(max) = 1/2. Then it is well-known and easy to check that the finite-

valued functions with fractional polymorphism ω are the submodular functions. Moreover,

functions with this fractional polymorphism that are not necessarily finite-valued precisely

correspond to submodular functions defined on a ring family.

More examples of fractional polymorphisms can be found in [55, 51, 67].

We remark that, in some papers (e.g., in [15]), fractional polymorphisms (and

closely related objects called weighted polymorphisms) are defined as rational-valued

functions, which is sufficient for analysing the complexity of VCSPs with finite constraint

languages. However, real-valued fractional polymorphisms are necessary to analyse

infinite constraint languages [32, 54, 67].

The key observation in the algebraic approach to (V)CSP is that neither the com-

plexity nor the algebraic properties of a language Γ change when functions “expressible”

from Γ in a certain way are added to it.

Definition 2.1.14. For a constraint language Γ, let 〈Γ〉 denote the set of all functions

f(x1, . . . , xk) such that, for some instance I of VCSP(Γ) with objective function

fI(x1, . . . , xk, xk+1, . . . , xn),

we have

f(x1, . . . , xk) = min
xk+1,...,xn

fI(x1, . . . , xk, xk+1, . . . , xn).

We then say that Γ expresses f , and call 〈Γ〉 the expressive power of Γ.

Lemma 2.1.15 ([16, 19]). Let f ∈ 〈Γ〉. Then

1. if ω ∈ fPol(Γ) then ω is a fractional polymorphism of f and of dom f ;

2. VCSP(Γ) is tractable if and only if VCSP(Γ ∪ {f, dom f}) is tractable;

3. VCSP(Γ) is NP-hard if and only if VCSP(Γ ∪ {f, dom f}) is NP-hard.

The dichotomy problem for VCSPs can be reduced to a class of constraint languages

called rigid cores, defined below. Apart from reducing the cases that need to be

12

considered, this reduction enabled the use of much more powerful results from universal

algebra than what can be done without this restriction (see, e.g. [54]).

For a subset D′ ⊆ D, let uD′ be the function defined as follows: uD′(d) = 0 if d ∈ D′

and uD′(d) =∞ otherwise. We write ud for u{d}. Let CD = {{ud} | d ∈ D}.

Lemma 2.1.16 ([54]). For any valued constraint language Γ′ on a finite set D′, there is

a subset D ⊆ D′ and a valued constraint language Γ on D such that CD ⊆ Γ and the

problems VCSP(Γ′) and VCSP(Γ) are polynomial-time equivalent.

This language Γ is called the rigid core of Γ′, and it can be obtained from Γ′ as follows.

Let g′ be a unary operation on D′ with minimum |g′(D′)| among all unary operations

g′ ∈ fPol+(Γ′). Then D is set to be g′(D′) and Γ is set to be {f |D : f ∈ Γ′} ∪ CD. Thus,

the intuition behind moving to the rigid core is that (a) one removes labels from the

domain that can always be (uniformly) replaced in any solution to an instance without

increasing its value, and (b) one allows constraints of the form ud that can be used to fix

labels for variables, leading to applicability of more powerful algebraic results.

Cyclic and symmetric operations

Several types of operations play a special role in the algebraic approach to (V)CSP.

Definition 2.1.17. An operation g ∈ O
(m)
D , m ≥ 2, is called

• idempotent if g(x, . . . , x) = x for all x ∈ D;

• Taylor if, for each 1 ≤ i ≤ m, it satisfies an identity of the form g(M1,M2, . . . ,Mm) =

g(�1,�2, . . . ,�m) where all Mj,�j are in {x, y} and Mi 6= �i.

• cyclic if g(x1, x2, . . . , xm) = g(x2, . . . , xm, x1) for all x1, . . . , xm ∈ D;

• symmetric if g(x1, x2, . . . , xm)= g(xπ(1), xπ(2), . . . , xπ(m)) for all x1, . . . , xm∈D, and

any permutation π on [m].

A fractional operation ω is said to be idempotent/cyclic/symmetric if all operations in

supp(ω) have the corresponding property.

13

It is well known and easy to see that all polymorphisms and fractional polymorphisms

of a rigid core are idempotent.

The following lemma is contained in the proof of Theorem 50 in [54].

Lemma 2.1.18. Let Γ be a (rigid)1 core on a set D. Then the following are equivalent:

1. fPol+(Γ) contains a Taylor operation of arity at least 2;

2. Γ has a cyclic fractional polymorphism of (some) arity at least 2;

3. Γ has a cyclic fractional polymorphism of every prime arity p > |D|.

The following theorem is Corollary 51 from [54].

Theorem 2.1.19 ([54]). Let Γ be a valued constraint language that is a rigid core. If

fPol+(Γ) does not contain a Taylor operation then VCSP(Γ) is NP-hard.

Kozik and Ochremiak state a conjecture (which they attribute to L. Barto) that

the above theorem describes all NP-hard valued constraint languages, and all other

languages are tractable. Using Lemma 2.1.18, we restate the original conjecture via

cyclic fractional polymorphisms.

Conjecture 2.1.20 ([53]). Let Γ be a valued constraint language that is a rigid core. If Γ

has a cyclic fractional polymorphism of arity at least 2, then VCSP(Γ) is tractable.

Note that, for a finite core Γ (but with fixed D), the above condition can be checked

in polynomial time. Indeed, if p > |D| is some fixed prime number, then it is sufficient to

check for a cyclic fractional polymorphism of arity p. Such polymorphisms, by definition,

are solutions to a system of linear inequalities. Since the number of cyclic operations of

arity p on D is constant, the system will have size polynomial in Γ and its feasibility can

be decided by linear programming.

For the case when (possibly infinite) Γ consists only of {0,∞}-valued functions,

VCSP(Γ) is actually a CSP. For such Γ, any probability distribution on polymorphisms

(of the same arity) is a fractional polymorphism. Then a theorem and a conjecture

(the latter now known as the Algebraic CSP Dichotomy Conjecture) equivalent to

1Theorem 50 in [54] in fact operates with a weaker notion of a core, which we have not defined.
However, in Appendix A.2 we extend the context and will need the full version of Lemma 2.1.18.

14

Theorem 2.1.19 and Conjecture 2.1.20 were given in [12]. One of several equivalent

forms of the Algebraic CSP Dichotomy Conjecture is as follows.

Conjecture 2.1.21 ([12, 3]). Let Γ be a valued constraint language that is a rigid core

and that consists of {0,∞}-valued functions. If Γ has a cyclic polymorphism of arity at

least 2, then VCSP(Γ) is tractable. Otherwise, VCSP(Γ) is NP-hard.

In view of this, it is natural to call Conjecture 2.1.20 the Algebraic VCSP Dichotomy

Conjecture.

Basic LP relaxation

Symmetric operations are known to be closely related to LP-based algorithms for CSP-

related problems. One algorithm in particular has been known to solve many VCSPs to

optimality. This algorithm is based on the so-called basic LP relaxation, or BLP, defined

as follows.

Let Mn = {µ ≥ 0 |
∑

x∈Dn µ(x) = 1} be the set of probability distributions over

labelings in Dn. We also denote ∆ = M1; thus, ∆ is the standard (|D| − 1)-dimensional

simplex. The corners of ∆ can be identified with elements in D. For a distribution µ ∈Mn

and a variable v ∈ {1, . . . , n}, let µ[v] ∈ ∆ be the marginal probability of distribution µ for

v:

µ[v](a) =
∑

x∈Dn:xv=a

µ(x) ∀a ∈ D.

Given a VCSP instance I in the form (2.1), we define the value BLP(I) as follows:

BLP(I) = min
∑

t∈T

∑

x∈dom ft

µt(x)ft(x) (2.3)

s.t. (µt)[k] = αv(t,k) ∀t ∈ T, k ∈ {1, . . . , nt}

µt ∈ Mnt
∀t ∈ T

µt(x) = 0 ∀t ∈ T, x /∈ dom ft

αv ∈ ∆ ∀v ∈ V

If there are no feasible solutions then BLP(I) = ∞. The objective function and all

constraints in this system are linear, therefore this is a linear program. Its size is

polynomial in the size of I, so BLP(I) can be found in time polynomial in |I|.

15

We say that BLP solves I if BLP(I) = minx∈Dn fI(x), and BLP solves VCSP(Γ) if it

solves all instances I of VCSP(Γ). If BLP solves VCSP(Γ) and Γ is a rigid core, then the

optimal solution for every instance can be found by using the standard self-reducibility

method. In this method, one goes through the variables in some order, finding d ∈ D

for the current variable v such that instances I and I + ud(v) have the same optimal

value (which can be checked by BLP), updating I := I + ud(v), and moving to the next

variable. At the end, the instance will have a unique feasible assignment whose value is

the optimum of the original instance. Note that in this case VCSP(Γ) is globally tractable.

Theorem 2.1.22 ([51]). BLP solves VCSP(Γ) if and only if, for every m > 1, Γ has a

symmetric fractional polymorphism of arity m.

Theorem 2.1.23 ([51, 67]). Let Γ be a rigid core constraint language that is finite-valued.

If Γ has a symmetric fractional polymorphism of arity 2 then BLP solves VCSP(Γ), and

so VCSP(Γ) is tractable. Otherwise, VCSP(Γ) is NP-hard.

2.2 Main Result

Definition 2.2.1. Let I be a VCSP instance over variables V with domain D. The

feasibility instance, Feas(I), associated to I is a CSP instance obtained from I by

replacing each constraint function ft with dom ft.

For a language Γ, let Feas(Γ) = {dom f | f ∈ Γ}. Then the instances of the problem

CSP(Feas(Γ)) are the instances Feas(I) where I runs through all instances of VCSP(Γ).

Definition 2.2.2. Let I be a VCSP instance over variables V with domain D. For each

variable v ∈ V , let Dv = {d ∈ D | d = σ(v) for some feasible solution σ for I}. Then

(1,∞)-minimal instance Ī associated with I is the VCSP instance obtained from I by

adding, for each v ∈ V , the constraint uDv
(xv).

Note that if Γ is a rigid core and the problem CSP(Feas(Γ)) is tractable, then, for any

instance I of VCSP(Γ), one can construct the associated (1,∞)-minimal instance in

polynomial time. Indeed, to find out whether a given d ∈ D is in Dv, one only needs

to decide whether the CSP instance obtained from Feas(I) by adding the constraint

16

ud(xv) is satisfiable. Since Γ is a rigid core, the latter instance is also an instance of

CSP(Feas(Γ)).

If Γ is a rigid core then, for VCSP(Γ) to be tractable, Γ must satisfy the assumption

of Conjecture 2.1.20, and also, clearly, the feasibility part of the problem, CSP(Feas(Γ)),

must be tractable. Our main result shows that if these necessary conditions are satisfied

then VCSP(Γ) is indeed tractable.

Theorem 2.2.3. Let Γ be a valued constraint language over domain D that is a rigid

core. If the following conditions hold then VCSP(Γ) is tractable:

1. Γ has a cyclic fractional polymorphism of arity at least 2, and

2. CSP(Feas(Γ)) is tractable.

Otherwise, VCSP(Γ) is not tractable.

In Theorem 2.2.3, the intractability part for (absence of) the first condition follows

from Theorem 2.1.19, and it is obvious for the second condition. The tractability part

follows from Theorem 2.2.4 below.

Theorem 2.2.4. Let Γ be an arbitrary language that has a cyclic fractional polymorphism

of arity at least 2. If I is an instance of VCSP(Γ) and Ī is its associated (1,∞)-minimal

instance, then Opt(I) = BLP(Ī).

Indeed, if Γ is a rigid core satisfying conditions (1) and (2) from Theorem 2.2.3 and

I is an instance of VCSP(Γ) then the equality Opt(I) = BLP(Ī) means that we can

efficiently find the optimum value for I by constructing Ī (which we can do efficiently

because Γ is a rigid core and CSP(Feas(Γ)) is tractable) and then applying BLP to Ī.

Then we can find an optimal assignment for I by self-reduction (see the discussion

before Theorem 2.1.22).

Recall the notion of global tractability from Section 2.1. The algorithm that we just

described gives the following.

Corollary 2.2.5. Let Γ be a valued constraint language over domain D that is a rigid

core. If

1. Γ has a cyclic fractional polymorphism of arity at least 2, and

17

2. CSP(Feas(Γ)) is globally tractable,

then VCSP(Γ) is globally tractable.

It also follows from Theorem 2.2.4 that, for every language Γ that has a cyclic

fractional polymorphism of arity at least 2, VCSP(Γ) is polynomial time equivalent to

CSP(Feas(Γ)). In particular, any complexity classification of CSPs, whether it is the

dichotomy as predicted by Conjecture 2.1.21 or anything else, gives a complexity

classification of VCSPs.

Let us now discuss how Theorem 2.2.3 can be combined with known CSP complexity

classifications to obtain new, previously unknown, VCSP classifications which are tighter

than Theorem 2.2.3.

As we explained in the beginning of the chapter, if the Algebraic CSP Dichotomy

Conjecture holds, then condition (2) in Theorem 2.2.3 can be omitted and all intractable

VCSPs are NP-hard. Since this conjecture holds when |D| ≤ 3 [10, 63] or when D

is arbitrary finite, but Γ contains all unary crisp functions [1, 11], we get the following

corollaries.

Corollary 2.2.6. Let |D| ≤ 3 and let Γ be a valued constraint language that is a rigid

core on D. If Γ has a cyclic fractional polymorphism then the problem VCSP(Γ) is

tractable, otherwise it is NP-hard.

For the case |D| = 2, the tractable cases can be characterised by six specific cyclic

fractional polymorphisms [19], and it was shown in [54] that the presence of any cyclic

fractional polymorphism (when |D| = 2) implies the presence of one of those six. Also,

Corollary 2.2.6 generalizes results from [70, 71] where the dichotomy was shown for

the special case when |D| = 3 and all non-crisp functions in Γ are unary. The specific

conditions for tractability in [70, 71] have not been shown to be directly implied by the

presence of a cyclic fractional polymorphism, though.

Corollary 2.2.7. Let Γ be a valued constraint language on D that contains all unary

crisp functions. If Γ has a cyclic fractional polymorphism then the problem VCSP(Γ) is

tractable, otherwise it is NP-hard.

Corollary 2.2.7 generalizes a result from [70] where the dichotomy was shown for

the special case when Γ includes all unary crisp functions and all non-crisp functions

18

in Γ are unary. Again, the specific condition for tractability in [70] is not known to be

directly implied by the presence of a cyclic fractional polymorphism.

It is shown in [54] how Theorem 2.2.3 implies the dichotomy results (including

specific conditions for tractability) for the finite-valued case from [67] (Theorem 2.1.23)

and for the case when Γ contains all unary functions taking values in {0, 1} [52]. The

algorithm for the tractable case in [52] is somewhat similar in spirit to our algorithm, and

actually inspired the latter.

Let us now explain how Theorem 2.2.3 implies the tractability result from [66] (stated

below). An idempotent operation g ∈ OD of arity at least 2 satisfying g(y, x, x . . . , x, x) =

g(x, y, x, . . . , x, x) = . . . = g(x, x, x, . . . , x, y) for all x, y ∈ D is called a weak near-

unanimity operation. The tractability result result from [66] states that if fPol+(Γ) contains

weak near-unanimity operations of all but finitely many arities, then VCSP(Γ) is tractable

(in fact, via a specific algorithm based on Sherali-Adams hierarchy, which does not follow

from our results). This condition on fPol+(Γ) is well known in the algebraic approach to

the CSP, it characterizes (when appropriately formulated) CSPs of bounded width [4].

So assume that fPol+(Γ) satisfies this condition. Since fPol+(Γ) ⊆ Pol(Γ), the set Pol(Γ)

also contains these operations, so CSP(Feas(Γ)) is tractable by [4]. Moreover, by [3],

fPol+(Γ) then also contains a cyclic operation of arity at least 2. Now (the proof of)

Theorem 50 of [54] implies that Γ has a cyclic fractional polymorphism of arity at least 2,

and then tractability of VCSP(Γ) follows from Theorem 2.2.3.

We remark that some known VCSP classifications with tighter and more explicit

characterisations of tractability can be easily derived from our main result, e.g. the

classification for the Boolean case (|D| = 2) can be easily derived following the lines

of Section 8 of [15]. However, it might take additional effort to derive some others - for

example, the dichotomy result from [68] was proved without using our theorem, and it is

not known how to derive it from our main result.

19

2.3 Proof of Theorem 2.2.4: Reduction to a block-finite

language

We will prove Theorem 2.2.4 by constructing, from a given (feasible) instance I, a finite

valued constraint language Γ′ on some finite set D′ and an instance I ′ of VCSP(Γ′)

such that Opt(I) = Opt(Ī) = Opt(I ′) = BLP(I ′) = BLP(Ī). The first equality is

immediate from the definition Ī, the second one will follow trivially from the construction

of Γ′ and I ′, and the last equality holds by Lemma 2.3.1 below, while the key equality

Opt(I ′) = BLP(I ′) will follow from the fact that BLP solves VCSP(Γ′) that we prove,

using Theorem 2.1.22, in Theorem 2.3.4. The construction is inspired by [50], where a

similar technique of “lifting” a language was used in a different context.

Let V be the set of variables of instance I, and let

fI(x) =
∑

t∈T

ft(xv(t,1), . . . , xv(t,nt)) ∀x : V → D (2.4)

be its objective function. For the (1,∞)-minimal instance Ī, the objective function is

fĪ(x) =
∑

t∈T

ft(xv(t,1), . . . , xv(t,nt)) +
∑

v∈V

uDv
(xv) ∀x : V → D (2.5)

Now let D′
v = {(v, a) | a ∈ Dv} be a unique copy of Dv. We now define a new

language Γ′ over domain D′ =
⋃

v∈V D′
v as follows:

Γ′ =
⋃

t∈T

{
f
〈v(t,1),...,v(t,nt)〉
t , dom f

〈v(t,1),...,v(t,nt)〉
t

}
∪

⋃

v∈V

{
uD′

v

}
∪ {=D′}

where functions uD′
v

are as defined above, =D′ is the binary {0,∞}-valued function

corresponding to the equality relation, and, for an n-ary function f over D and variables

v1, . . . , vn ∈ V , we define function f 〈v1,...,vn〉 : (D′)n → Q as follows:

f 〈v1,...,vn〉(x) =




f(x̂) if x = ((v1, x̂1), . . . , (vn, x̂n))

∞ otherwise
∀x ∈ (D′)n

The above mentioned instance I ′ of VCSP(Γ′) is obtained from Ī by replacing each

20

function ft with f
〈v(t,1),...,v(t,nt)〉
t and replacing each function uDv

with uD′
v
.

It is straightforward to check that there is a one-to-one correspondence between the

sets of feasible solutions to BLP relaxations for I ′ and Ī, and that this correspondence

also preserves the values of the solutions.

Lemma 2.3.1. We have BLP(I ′) = BLP(Ī).

Lemma 2.3.2. If Γ has a cyclic fractional polymorphism of arity m > 1 then Γ′ has the

same property.

Proof. Let ω be a cyclic fractional polymorphism of Γ. Fix an arbitrary element d′ ∈ D′.

For each operation g ∈ supp(ω), define the operation g′ on D′ as follows:

g′(x1, . . . , xm) =




(v, g(x̂1, . . . , x̂m)) if x1=(v, x̂1), . . . , xm=(v, x̂m) for some v∈V

d′ otherwise

Clearly, each operation g′ is cyclic. Consider the fractional operation ω′ on D′ such

that ω(g′) = ω(g) for all g ∈ supp(ω). It is straightforward to check that ω′ is a fractional

polymorphism of Γ′.

To prove Theorem 2.2.4, it remains to show that Opt(I ′) = BLP(I ′). We will prove

the more general fact that BLP solves VCSP(Γ′). The properties of the language Γ′ that

we use for this (apart from having a cyclic fractional polymorphism) are given below in

Definition 2.3.3.

Definition 2.3.3. A finite language Γ is called block-finite if its domain D can be parti-

tioned into disjoint subsets {Dv | v ∈ V } such that

(a) For any a ∈ Dv with v ∈ V there exists a polymorphism ga ∈ O
(1) of Feas(Γ) such

that ga(b) = a for all b ∈ Dv.

(b) For any n-ary function f ∈ Γ, the relation dom f (viewed as a function Dn →

{0,∞}) belongs to Γ. Furthermore, the binary equality relation on D, denoted as

=D: D
2 → {0,∞}, also belongs to Γ.

(c) Any n-ary function f ∈ Γ − {=D} satisfies dom f ⊆ Dv1 × . . . × Dvn for some

v1, . . . , vn ∈ V .

21

It is easy to see that the language Γ′ defined in previously in this section is block-finite.

It obviously has properties (b) and (c), and it has property (a) because the instance I ′ is

(1,∞)-minimal. Indeed, if a = (v, d) ∈ D′
v then, by definition, I has a feasible solution

σ : V → D with σ(v) = d. Define function ga as follows: for each a′ = (v′, d′) ∈ D′, set

ga(a
′) = (v′, σ(v′)). It is easy to check that ga has the required properties.

From now on, we forget about the original language Γ from the previous section

and about the specific language Γ′ and work with an arbitrary block-finite language that

has a cyclic fractional polymorphism of arity at least 2. For simplicity, we denote our

language by Γ. Note that Γ is not necessarily a (rigid) core, but this property is not

required in Theorem 2.1.22. By Theorem 2.1.22, in order to prove Theorem 2.2.4, it

remains to show the following.

Theorem 2.3.4. Suppose that a block-finite language Γ admits a cyclic fractional poly-

morphism ν of arity at least 2. Then, for every m ≥ 2, Γ admits a symmetric fractional

polymorphism ωsym

m of arity m.

In the rest of the chapter we prove Theorem 2.3.4. This will be done in two steps: (i)

using the existence of ν, prove the existence of ωsym

2 ; (ii) using the existence of ωsym

m−1 for

some m ≥ 3, prove the existence of ωsym

m . The claim will then follow by induction on m.

Note that for finite-valued languages step (i) was proved in [67] (or rather a very

closely related statement), while step (ii) was established in [51]. However, in both cases

it was essential that the language is finite-valued. The arguments in [51, 67] seem to

break down when infinities are allowed. For example, we were unable to extend the

approach in [67] that exploits the connectivity of a certain graph on D. Partial results

from this attempt can be found in Appendix A.2. To deal with block-finite languages,

we will introduce (in Section 2.5) a new technical tool where we first prove, via Farkas

Lemma, the existence of a certain function with special properties in 〈Γ〉.

2.4 A graph of generalized operations

In this section we describe a basic tool that will be used for constructing new fractional

polymorphisms, namely a graph of generalized operations introduced in [51].

22

Let O(m→m) be the set of mappings g : Dm → Dm and let 1 ∈ O(m→m) be the

identity mapping. Consider a sequence x of m labelings x ∈ [Dn]m; this means that

x = (x1, . . . , xm) where xi ∈ Dn (think of x as an m× n matrix whose rows are x1, . . . ,

xm). For an n-ary function f , we define fm(x) = 1
m
(f(x1) + . . .+ f(xm)) (thus fm(x) is

the average value of f on the rows of x). For a mapping g = (g1, . . . , gm) ∈ O
(m→m), we

also denote xgi = gi(x) for i ∈ [m] and g(x) = (xg1, . . . , xgm) (so g(x) is an m× n matrix

where row i is obtained by column-wise application of gi to x).

A probability distribution ρ over O(m→m) will be called a (generalized) fractional

polymorphism of Γ of arity m→ m if each function f ∈ Γ satisfies

∑

g∈supp(ρ)

ρ(g)fm(g(x)) ≤ fm(x) ∀x ∈ [dom f]m (2.6)

We will sometimes represent fractional polymorphisms of arity m and generalised

fractional polymorphisms of arity m→ m as vectors in RO(m)
and RO(m→m)

, respectively.

For g ∈ O(m) and g ∈ O(m→m), we denote the corresponding characteristic vectors by χg

and χg respectively. It can be checked that a generalized fractional polymorphism ρ of

arity m→ m can be converted into a fractional polymorphism ρ′ of arity m, as follows:

ρ′ =
∑

g=(g1,...,gm)∈supp(ρ)

ρ(g)

m
(χg1 + . . .+ χgm).

We will use the following construction in several parts of the proof. Assume that

we have some probability distribution ω with a finite support such that (i) each element

s ∈ supp(ω) corresponds to an element ofO(m→m) denoted as 1
s, and (ii) this distribution

satisfies the following property for each f ∈ Γ:

∑

s∈supp(ω)

ω(s)fm(1s(x)) ≤ fm(x) ∀x ∈ [dom f]m (2.7a)

Condition (2.7a) then can be rephrased as saying that vector
∑

s∈supp(ω) ω(s)χ1s is a

fractional polymorphism of Γ of arity m → m. We will also consider the following

condition:

∑

s∈supp(ω)

ω(s)f(x1
si) ≤ fm−1(x−i) ∀x ∈ [dom f]m, i ∈ [m] (2.7b)

23

where x−i ∈ [dom f]m−1 denotes the sequence of m − 1 labelings obtained from x by

removing the i-th labeling. Note that condition (2.7b) implies (2.7a) (since summing

(2.7b) over i ∈ [m] and dividing by m gives (2.7a)). The second condition will be used

only in one of the results; unless noted otherwise, ω is only assumed to satisfy (2.7a).

For a mapping g ∈ O(m→m) denote gs = 1
s ◦ g. (This notation is consistent with

the earlier one since 1
s ◦ 1 = 1

s for any s). We use gs1...sk to denote (. . . (gs1)...)sk =

1
sk ◦ . . . ◦ 1s1 ◦ g. Next, define a directed graph (G, E) as follows:

• G = {1s1...sk | s1, . . . , sk ∈ supp(ω), k ≥ 0} is the set of all mappings that can be

obtained from 1 by applying operations from supp(ω);

• E = {(g,gs) | g ∈ G, s ∈ supp(ω)}.

This graph can be decomposed into strongly connected components, yielding a directed

acyclic graph (DAG) on these components. We define Sinks(G, E) to be the set of those

strongly connected components H ⊆ G of (G, E) that are sinks of this DAG (i.e. have

no outgoing edges). Any DAG has at least one sink, therefore Sinks(G, E) is non-empty.

We denote G∗ =
⋃

H∈Sinks(G,E) H ⊆ G and Rangen(G∗) = {g∗(x) | g∗ ∈ G∗, x ∈ [Dn]m}.

Also, for a tuple x̂ ∈ Dm we will denote G(x̂) = {g(x̂) | g ∈ G} ⊆ Dm.

The following facts can easily be shown (see Appendix A.1).

Proposition 2.4.1. (a) If g,h ∈ G then h ◦ g ∈ G. Moreover, if g ∈ H ∈ Sinks(G, E) then

h ◦ g ∈ H.

(b) Consider connected components H′,H ∈ Sinks(G, E). For each g′ ∈ H′ there exists

g ∈ H satisfying g ◦ g′ = g′.

(c) For each x ∈ Rangen(G∗) and H ∈ Sinks(G, E) there exists g ∈ H satisfying g(x) = x.

Proposition 2.4.2. Suppose that x̂ ∈ Range1(G∗) and x ∈ G(x̂).

(a) There holds x ∈ Range1(G∗).

(b) There exists g ∈ G such that g(x) = x̂.

We now state main theorems related to the graph (G, E), that are slight extensions

of the results in [51]. Their proofs use the same techniques as [51] and can be found in

Appendix A.1.

24

Theorem 2.4.3. Let Ĝ be a subset of G satisfying the following property: for each g ∈ G

there exists a path in (G, E) from g to some node ĝ ∈ Ĝ. Then there exists a fractional

polymorphism ρ of Γ of arity m→ m with supp(ρ) = Ĝ.

We will use this result either for the set Ĝ = G or for the set Ĝ = G∗; clearly, both

choices satisfy the condition of the theorem. The first choice gives that Γ admits a

fractional polymorphism ρ with supp(ρ) = G; therefore, if g ∈ G, f ∈ 〈Γ〉 and x ∈

[dom f]m then g(x) ∈ [dom f]m.

Theorem 2.4.4. Consider function f ∈ 〈Γ〉 of arity n and labelings x ∈Rangen(G∗) ∩

[dom f]m.

(a) There holds fm(g(x)) = fm(x) for any g ∈ G.

(b) Suppose that condition (2.7b) holds. Then there exists a probability distribution λ

over G∗ (which is independent of f, x) such that fλ
i′ (x) = fλ

i′′(x) for any i′, i′′ ∈ [m]

where

fλ
i (x) =

∑

g∈G∗

λgf(x
gi) (2.8)

2.5 Constructing special functions

In this section, we construct special functions in 〈Γ〉 that play an important role in the

proof of Theorem 2.3.4.

For a sequence x = (x1, . . . , xm) ∈ Dm and a permutation π of [m], we define

xπ = (xπ(1), . . . , xπ(m)). Similarly, for a mapping g = (g1, . . . , gm) ∈ O
(m→m) define

gπ = (gπ(1), . . . , gπ(m)). Let Ω be the set of mappings g ∈ O(m→m) that satisfy the

following condition:

gπ(x) = g(xπ) for any x ∈ Dm and any permutation π of [m]. (2.9)

Equivalently, gπ(i)(x) = gi(x
π) for any i ∈ [m].

Proposition 2.5.1. If g,h ∈ Ω, then g ◦ h ∈ Ω.

25

Proof. Just note that

(g ◦ h)π (x) = gπ (h(x)) = g (hπ(x)) = g (h(xπ)) = (g ◦ h) (xπ)

for any x ∈ Dm.

Consider all generalized fractional polymorphisms ω of Γ of arity m→ m satisfying

supp(ω) ⊆ Ω. At least one such polymorphism exists, namely ω = χ1 where 1 ∈ O(m→m)

is the identity mapping. Among such ω’s, pick one with the largest support. It exists due

to the following observation: if ω′, ω′′ are generalized fractional polymorphisms of Γ of

arity m→ m then so is the vector ω = 1
2
[ω′ + ω′′], and supp(ω) = supp(ω′) ∪ supp(ω′′).

Let us apply the construction of Section 2.4 starting with the chosen distribution ω,

where for g ∈ supp(ω) we define operation 1
g ∈ O(m→m) via 1

g = g. Let the resulting

graph be (G, E). It is straightforward to check that condition (2.7a) holds: it simply

expresses the fact that ω is a generalized fractional polymorphsism of Γ of arity m→ m.

Proposition 2.5.2. It holds that supp(ω) = G.

Proof. If g ∈ supp(ω) then g = 1
g ∈ G. Conversely, suppose that g ∈ G. We can write

g = 1
gk ◦ . . . ◦ 1g1 = gk ◦ · · · ◦ g1 with g1, . . . ,gk ∈ supp(ω) ⊆ Ω. Since Ω is closed

under composition by Proposition 2.5.1, we get g ∈ Ω. By Theorem 2.4.3 there exists

a generalized fractional polymorphism ρ with supp(ρ) = G, and so g ∈ supp(ρ). By

maximality of ω we get g ∈ supp(ω).

In the remainder of this section we prove the following theorem.

Theorem 2.5.3. For any x̂ ∈ Dm there exists a function f ∈ 〈Γ〉 of arity m with

argmin f = G(x̂).

Proof. Let Γ+ be the set of pairs (f, x) with f ∈ Γ and x ∈ [dom f]m. Let Ω′ ⊆ Ω be

the set of mappings g ∈ Ω that satisfy g(x) ∈ [dom f]m for all (f, x) ∈ Γ+. Note that

26

G = supp(ω) ⊆ Ω′. By the choice of ω, the following system does not have a solution

with rational ρ:

ρ(g) ≥ 0 ∀g ∈ Ω′ (2.10a)
∑

g∈Ω′

ρ(g)fm(x)−
∑

g∈Ω′

ρ(g)fm(g(x)) ≥ 0 ∀(f, x) ∈ Γ+ (2.10b)

∑

g∈Ω′−G

−ρ(g) < 0 (2.10c)

Next, we use the following well-known result (see, e.g. [64]).

Lemma 2.5.4 (Farkas Lemma). Let A be a p× q matrix and b be a p-dimensional vector.

Then exactly one of the following is true:

• There exists λ ∈ Rq such that Aλ = b and λ ≥ 0.

• There exists µ ∈ Rp such that µTA ≥ 0 and µT b < 0.

If A and b are rational then λ and µ can also be chosen in Qq and Qp, respectively.

By this lemma, the following system has a solution with rational λ ≥ 0:

λ(g) +
∑

(f,x)∈Γ+

λ(f, x)(fm(x)− fm(g(x)) = 0 ∀g ∈ G (2.11a)

λ(g) +
∑

(f,x)∈Γ+

λ(f, x)(fm(x)− fm(g(x)) = −1 ∀g ∈ Ω′ −G (2.11b)

We will now define several instances of VCSP(Γ) where it will be convenient to use

constraints with rational positive weights; these weights can always be made integer by

multiplying the instances by an appropriate positive integer, which would not affect the

reasoning, but make notation cumbersome.

We will define a Γ-instance I with m|D|m variables V = {(i, z) | i ∈ [m], z ∈ Dm}. The

labelings V → D for this instance can be identified with mappings g = (g1, . . . , gm) ∈

O(m→m), if we define g(i, z) = gi(z) for the coordinate (i, z) ∈ V. We define the cost

function of I as follows:

fI(g) =
∑

(f,x)∈Γ+,λ(f,x) 6=0

λ(f, x)fm(g(x)) ∀g ∈ O(m→m) (2.12)

27

From (2.11) we get

fI(1) = fI(g)− λ(g) ≤ fI(g) < ∞ ∀g ∈ G (2.13a)

fI(1) < fI(g)− λ(g) ≤ fI(g) < ∞ ∀g ∈ Ω′ −G (2.13b)

Furthermore, fm(·) is invariant with respect to permuting its arguments, and thus

fI(g) = fI(g
π) ∀g ∈ O(m→m), permutation π of [m] (2.13c)

Let T be the set of tuples (i, j, x, y) where i, j ∈ [m], x, y ∈ Dm and i = π(j), y = xπ

for some permutation π of [m]. Define another Γ-instance I ′ with variables V and the

cost function

fI′(g) = fI(g) +
∑

(i,j,x,y)∈T

=D (g(i, x),g(j, y)) +
∑

(f,x)∈Γ+

(dom f)m(g(x)) ∀g ∈ O(m→m)

(2.14)

where =D is the equality relation on D. The instance I ′ is a Γ-instance because of

condition (b) in the definition of a block-finite language. Note that the second term

in (2.14) for g = (g1, . . . , gm) equals 0 if gπ(j)(x) = gj(x
π) for all j ∈ [m], x ∈ Dm and

permutation π of [m]. Otherwise the second term equals∞. In other words, the second

term is zero if and only if mapping g satisfies condition (2.9), i.e. if and only if g ∈ Ω.

Similarly, the third term in (2.14) is zero if g ∈ Ω′, and∞ if g ∈ Ω− Ω′. We obtain that

fI′(1) ≤ fI′(g) < ∞ ∀g ∈ G (2.15a)

fI′(1) < fI′(g) < ∞ ∀g ∈ Ω′ −G (2.15b)

fI′(g) = ∞ ∀g ∈ O(m→m) − Ω′ (2.15c)

These equations imply that 1 ∈ argmin fI′ ⊆ G. We will show next that argmin fI′ =

G.

For an index k ∈ Z let k̄ ∈ [m] be the unique index with k̄− k = 0 (mod m). Let πk be

the cyclic permutation of [m] with πk(1) = k̄. In particular, π1 is the identity permutation.

Also, for k ∈ Z let ek ∈ O(m) be the projection to the k̄-th coordinate. For a mapping

g = (g1, . . . , gm) ∈ O
(m→m) and a tuple z ∈ Dm we will denote g(k, z) = g(k̄, z) ∈ D.

28

From the definition, for any permutation π of [m] and any (i, z) ∈ V we have gπ(i, z) =

(gπ(1), . . . , gπ(m))(i, z) = gπ(i)(z) = g(π(i), z). In particular, gπj(i, z) = g(i+ j − 1, z).

From (2.13c) we have fI(1
π1) = . . . = fI(1

πm) = fI(1). Recall that fI ∈ 〈Γ〉 admits

a generalized fractional polymorphism ω with supp(ω) = G. Applying this polymorphism

gives
∑

g∈supp(ω)

ω(g)fm
I (g(1π1 , . . . ,1πm)) ≤ fm

I (1π1 , . . . ,1πm) = fI(1) (2.16)

Here we view 1
π1 , . . . ,1πm (and later gπ1 , . . . ,gπm) as labelings for the instance I, while

g is a mapping in O(m→m) acting on the first m labelings coordinate-wise. We claim that

g(1π1 , . . . ,1πm) = (gπ1 , . . . ,gπm) for each g = (g1, . . . , gm) ∈ supp(ω). Indeed, we need

to show that gj(1π1 , . . . ,1πm) = gπj for each j ∈ [m]. Let us prove this for coordinate

(i, z) ∈ V. We can write

gj(1
π1(i, z), . . . ,1πm(i, z)) = gj(e

i(z), . . . , ei+m−1(z))

= gj(z
πi) = gπi(j)(z) = g(i+ j − 1, z) = gπj(i, z)

which proves the claim. We can now rewrite (2.16) as follows:

∑

g∈supp(ω)

ω(g)fm
I (gπ1 , . . . ,gπm) ≤ fI(1) (2.17)

Using (2.13c) and the fact that fI(g) = fI′(g) for each g ∈ supp(ω) = G, we obtain

∑

g∈supp(ω)

ω(g)fI′(g) ≤ fI′(1) (2.18)

Since 1 ∈ argmin fI′, we conclude that G = supp(ω) ⊆ argmin fI′. Therefore,

argmin fI′ = G.

We can finally prove Theorem 2.5.3. We define function f ∈ 〈Γ〉 with m variables as

follows:

f(x) = min
g∈O(m→m):g(x̂)=x

fI′(g) ∀x ∈ Dm

Consider tuple x ∈ Dm. We have x ∈ argmin f if and only if there exists g ∈

argmin fI′ = G with g(x̂) = x. The latter condition holds if and only if x ∈ G(x̂).

29

2.6 Proof of Theorem 2.3.4

We will prove the following result.

Theorem 2.6.1. Assume that one of the following holds:

(a) m = 2 and Γ admits a cyclic fractional polymorphism of arity at least 2.

(b) m ≥ 3 and Γ admits a symmetric fractional polymorphism of arity m− 1.

Let f ∈ 〈Γ〉 be a function of arity m with argmin f = G(x̂), where x̂ ∈ Range1(G∗). Then

for every distinct pair of indices i, j ∈ [m] there exists x ∈ argmin f with xi = xj.

We claim that this will imply Theorem 2.3.4. Indeed, we can use the following

observation.

Proposition 2.6.2. Suppose that x̂ ∈ Range1(G∗), and there exists x ∈ G(x̂) with

xi = xj for some i, j ∈ [m]. Then x̂i = x̂j.

Proof. By Proposition 2.4.2(b), there exists g ∈ G such that g(x) = x̂. Let π be the

permutation of [m] that swaps i and j. By the choice of x, we have xπ = x. We can write

x̂j = gj(x) = gπ(i)(x) = gi(x
π) = gi(x) = x̂i. This proves the claim.

Corollary 2.6.3. If the precondition of Theorem 2.6.1 holds, then Γ admits a symmetric

fractional polymorphism of arity m.

Proof. Using Theorem 2.5.3, Theorem 2.6.1 and Proposition 2.6.2, we conclude that

for any x̂ ∈ Range1(G∗) we have x̂1 = . . . = x̂m. Indeed, by Theorem 2.5.3 there exists

a function f ∈ 〈Γ〉 with G(x̂) = argmin f . Theorem 2.6.1 implies that the precondition of

Proposition 2.6.2 holds for any distinct pair of indices i, j ∈ [m], and therefore x̂i = x̂j.

By Theorem 2.4.3, there exists a generalized fractional polymorphism ρ of Γ of arity

m → m with supp(ρ) = G∗. Vector
∑

g=(g1,...,gm)∈G∗ ρ(g) 1
m
[χg1 + . . . + χgm] is then an

m-ary fractional polymorphism of Γ; all operations in its support are symmetric because

G∗ ⊆ Ω and x̂1 = . . . = x̂m for any x̂ ∈ Range1(G∗).

It remains to prove Theorem 2.6.1. A proof of parts (a) and (b) of Theorem 2.6.1 is

given later in this section. In both parts we will need the following result; it exploits the

fact that Γ is block-finite.

30

Lemma 2.6.4. Suppose that x̂ ∈ Range1(G∗), x ∈ G(x̂) and f is an m-ary function in

〈Γ〉 with argmin f = G(x̂). Then (a, . . . , a) ∈ dom f for any a ∈ {x1, . . . , xm}.

Proof. We say that a tuple z ∈ Dm is proper if z1, . . . , zm ∈ Dv for some v ∈ V . We will

show that x is proper; the lemma will then follow from condition (a) from the definition of

a block-finite language and the fact that x ∈ dom f .

Fix an arbitrary element a ∈ D, and define mapping g ∈ O(m→m) as follows:

g(z) =




z if z is proper

(a, . . . , a) otherwise

We claim that g ∈ Ω. Indeed, consider z ∈ Dm. If g(z) = z, the condition (2.9) holds

trivially. Otherwise, we can easily check that

gπ(z) = (a, . . . , a)π = (a, . . . , a) = g(zπ)

and so the condition (2.9) holds either way.

Let us now show that the vector ρ = χg is a generalized fractional polymorphism

of Γ of arity m → m. Checking inequality (2.6) for binary equality relation f = (=D)

is straighforward. Consider function f ∈ Γ − {=D}. Since Γ is block-finite, we have

dom f ⊆ Dv1 × . . .×Dvn for some v1, . . . , vn ∈ V . This implies that for any x ∈ [dom f]m

we have g(x) = x (this can be checked coordinate-wise). Therefore, we have an equality

in (2.6).

By the results above we obtain that g ∈ G. We are now ready to prove that x is

proper. Suppose that this is not true, then g(x) = (a, . . . , a). We have x̂ ∈ Range1(G∗)

and x ∈ G(x̂), so by Proposition 2.4.2(a) we conclude that x ∈ Range1(G∗). We also

have (a, . . . , a) ∈ G(x), so Proposition 2.6.2 gives that x1 = . . . = xm. This means that x

is proper, which contradicts the earlier assumption.

Case m = 2: proof of Theorem 2.6.1(a)

We start with the following observation.

Proposition 2.6.5. If (a, b) ∈ G(x̂) then (b, a) ∈ G(x̂).

31

Proof. Consider mapping 1̄ = (e22, e
1
2), where ek2 ∈ O

(2) is the projection to the the k-th

variable. It can be checked that 1̄ ∈ Ω, and χ1̄ is a generalized fractional polymorphism

of Γ of arity 2→ 2. Therefore, 1̄ ∈ G.

We have (a, b) = g(x̂) for some g ∈ G. We also have (b, a) = (1̄◦g)(x̂) and 1̄◦g ∈ G,

and therefore (b, a) ∈ G(x̂).

Denote A = {x1 | x ∈ G(x̂)} ⊆ D, and let a be an element in A that minimizes

f(a, a). Note that (a, a) ∈ dom f by Lemma 2.6.4. Condition argmin f = G(x̂) and

Proposition 2.6.5 imply that (a, b), (b, a) ∈ argmin f for some b ∈ A. By assumption, Γ

admits a cyclic fractional polymorphism ν of some arity r ≥ 2. Let us apply it to tuples

(a, b), (b, a), (a, a), . . . , (a, a), where (a, a) is repeated r − 2 times:

∑

h∈supp(ν)

ν(h)f(h(a, b, a, . . . , a), h(b, a, a, . . . , a)) ≤
2

r
f(a, b) +

r − 2

r
f(a, a) (2.19)

We have h(a, b, a, . . . , a) = h(b, a, a, . . . , a) since ν is cyclic; denote this element as

ah. We claim that ah ∈ A for any h ∈ supp(ν). Indeed, consider a unary function

uA(x1) = minx2 f(x1, x2). It can be checked that argmin uA = A. Then the presence of

uA in 〈Γ〉 implies that after applying ν to (a, b, a, . . . , a) one gets

∑

h∈supp(ν)

ν(h)uA(ah) ≤
r − 1

r
uA(a) +

1

r
uA(b) = min uA

and thus indeed ah ∈ argmin uA = A for any h ∈ supp(ν).

By the choice of a we have f(a, a) ≤ f(ah, ah) for any h ∈ supp(ν). From (2.19) we

thus get

f(a, a) ≤
2

r
f(a, b) +

r − 2

r
f(a, a) (2.20)

and so f(a, a) ≤ f(a, b), implying (a, a) ∈ argmin f .

Case m ≥ 3: proof of Theorem 2.6.1(b)

We define binary function f̄ ∈ 〈Γ〉 as follows: f̄(a, b) = minx∈Dm:xi=a,xj=b f(x).

If z = (z1, . . . , zm) is some sequence of size m and k is an index in [m] then we will

use z−k to denote the subsequence of z of size m − 1 obtained by deleting the k-th

32

element.

Let ω̃ be a symmetric fractional polymorphism of Γ of arity m − 1. Following the

construction in [51], we define graph (G̃, Ẽ) as described in Section 2.4, starting with

the distribution ω̃ where for s ∈ supp(ω̃) mapping 1
s ∈ O(m→m) is defined as follows:

1
s(x) = (s(x−1), . . . , s(x−m)) ∀x ∈ Dm

It can be checked that if g = (g1, . . . , gm) ∈ G̃ and s ∈ supp(ω̃) then gs = (s ◦ g−1, . . . , s ◦

g−m). It can also be checked that condition (2.7b) holds for any f ∈ Γ: it corresponds to

the fractional polymorphism ω̃ applied to m− 1 tuples x−i ∈ [dom f]m−1.

Proposition 2.6.6. There holds G̃ ⊆ G.

Proof. We claim that 1s ∈ Ω for any s ∈ supp(ω̃). Indeed, for a permutation π of [m] and

x ∈ Dm we can write

1
s(xπ) = (s(xπ

−1), . . . , s(x
π
−m)) = (s(x−π(1)), . . . , s(x−π(m))) = (1s)π(x),

where the second equality uses that s is symmetric. Since each g ∈ G̃ has the form

g = 1
sk ◦ . . . ◦ 1s1 for some s1, . . . , sk ∈ supp(ω̃) and Ω is closed under composition by

Proposition 2.5.1, we get G̃ ⊆ Ω.

Applying Theorem 2.4.3 (with G̃ as both G and Ĝ), we obtain a generalized fractional

polymorphism ρ̃ with supp(ρ̃) = G̃ ⊆ Ω. By maximality of ω we get the desired G̃ =

supp(ρ̃) ⊆ supp(ω) = G.

For each g ∈ G̃ and k ∈ [m] let us define labeling x[gk] ∈ D2 as follows: set x = g(x̂),

and then

• If k = i, set x[gk] = (xi, xj). We have x[gi] ∈ argmin f̄ since x ∈ G(x̂) = argmin f .

• If k = j, set x[gk] = (xj, xi).

• If k 6= i and k 6= j, set x[gk] = (xk, xk). We have x[gk] ∈ dom f̄ by Lemma 2.6.4.

Proposition 2.6.7. Suppose that g ∈ G̃ and gs = h where s ∈ supp(ω̃) (so that h ∈ G̃).

Then

1
s(x[g1], . . . , x[gm]) = (x[h1], . . . , x[hm]).

33

Proof. Denote x = g(x̂) and y = h(x̂). We have y = 1
s(x), or yk = s(x−k) for any

k ∈ [m]. Also,

x[gk] =





(xi, xj) if k = i

(xj, xi) if k = j

(xk, xk) if k 6= i and k 6= j

x[hk] =





(yi, yj) if k = i

(yj, yi) if k = j

(yk, yk) if k 6= i and k 6= j

It can be checked coordinate-wise (using that s is symmetric) that

x[hk] = s((x[g1], . . . , x[gm])−k)

for any k ∈ [m]. This gives the claim.

Denote G̃∗ =
⋃

H∈Sinks(G̃,Ẽ) H ⊆ G̃. Let us fix an arbitrary g̃ ∈ G̃∗, and define x̃ =

(x[g̃1], . . . , x[g̃m]) ∈ [D2]m.

Proposition 2.6.8. For any g ∈ G̃ there holds g ◦ g̃ ∈ G̃. Furthermore, g(x̃) =

(x[(g◦g̃)1], . . . , x[(g◦g̃)m]).

Proof. The first claim is by Proposition 2.4.1(a); let us show the second one. Let d(1,g)

be the shortest distance from 1 to g in the graph (G̃, Ẽ). (By the definition of this graph,

we have 0 ≤ d(1,g) < ∞ for any g ∈ G̃, and 1 ∈ G̃.) We will use induction on d(1,g).

The base case d(1,g) = 0 (i.e. g = 1) holds by construction. Suppose that the claim

holds for all mappings g ∈ G̃ with d(1,g) = k ≥ 0, and consider mapping h ∈ G̃ with

d(1,h) = k + 1. There must exist mapping g ∈ G̃ and operation s ∈ supp(ω̃) such that

d(1,g) = k and gs = h. Observe that (g ◦ g̃)s = 1
s ◦ g ◦ g̃ = gs ◦ g̃ = h ◦ g̃. We can thus

write

h(x̃) = (1s ◦ g)(x̃) = 1
s(g(x̃))

(1)
= 1

s(x[(g◦g̃)1], . . . , x[(g◦g̃)m])
(2)
= (x[(h◦g̃)1], . . . , x[(h◦g̃)m])

where (1) holds by the induction hypothesis and (2) is by Proposition 2.6.7.

Proposition 2.6.9. There holds x̃ ∈ Range2(G̃∗) ∩ [dom f̄]m.

34

Proof. By Proposition 2.4.1(b) there exists g ∈ G̃∗ with g◦g̃ = g̃. Using Proposition 2.6.8,

we can write g(x̃) = (x[(g◦g̃)1], . . . , x[(g◦g̃)m]) = (x[g̃1], . . . , x[g̃m]) = x̃. This shows that

x̃ ∈ Range2(G̃∗).

Now let us show x[g̃k] ∈ dom f̄ for each k ∈ [m]. It suffices to prove it for k = j (for

other indices k the claim holds by construction). We have g̃ ∈ H for some strongly

connected component H ∈ Sinks(G̃, Ẽ). There is a path from g̃ to g̃ in (H, E[H]),

therefore there exists mapping h ∈ H ⊆ G̃∗ and s ∈ supp(ω̃) with hs = g̃. Define

x = (x[h1], . . . , x[hm]), then by Proposition 2.6.7 we have 1
s(x) = x̃. In particular,

x[g̃j] = s(x−j). Also, we have x−j ∈ [dom f̄]m−1 by construction. Since Γ admits ω̃ and

s ∈ supp(ω̃), we conclude that x[g̃j] ∈ dom f̄ .

Pick k ∈ [m]− {i, j}. By Theorem 2.4.4(b) we obtain that there exists a probability

distribution λ over G̃∗ such that f̄λ
i (x̃) = f̄λ

k (x̃). Using Proposition 2.6.8, we can rewrite

this condition as
∑

g∈G̃∗

λgf̄(x
[(g◦g̃)i]) =

∑

g∈G̃∗

λgf̄(x
[(g◦g̃)k])

Every tuple x[(g◦g̃)i] on the LHS belongs to argmin f̄ . Therefore, every tuple x[(g◦g̃)k] on

the RHS corresponding to mapping g ∈ G̃∗ with λg > 0 also belongs to argmin f̄ .

We proved that there exists x ∈ argmin f with xi = xj.

35

3 Generalizing Edmonds’ Algorithm

3.1 Preliminaries

Let us begin by giving a specialized definition Boolean CSP, so that we do not need to

rely on (much) more general Definitions 2.1.1, 2.1.2, 2.1.3.

Definition 3.1.1. A Boolean CSP instance I is a pair (V, C) where V is the set of

variables and C the set of constraints of I. A k-ary constraint C ∈ C is a pair (σ,RC)

where σ ⊆ V is a set of size k (called the scope of C) and RC ⊆ {0, 1}
σ is a relation

on {0, 1}. A solution to I is a mapping f̂ : V → {0, 1} such that for every constraint

C = (σ,RC) ∈ C, f̂ restricted to σ lies in RC .

If all constraint relations of I come from a set of relations Γ (called the constraint

language), we say that I is a Γ-instance. For Γ fixed, we will denote the problem of

deciding if a Γ-instance given on input has a solution by CSP(Γ).

Note that the above definition is not fully general in the sense that it does not allow

one variable to occur multiple times in a constraint ; we have chosen to define Boolean

CSP in this way to make our notation a bit simpler. This can be done without loss of

generality as long as Γ contains the equality constraint (i.e. {(0, 0), (1, 1)}): If a variable,

say v, occurs in a constraint multiple times, we can add extra copies of v to our instance

and join them together by the equality constraint to obtain a slightly larger instance that

satisfies our definition.

For brevity of notation, we will often not distinguish a constraint C ∈ C from its

constraint relation RC ; the exact meaning of C will always be clear from the context.

36

Even though in principle different constraints can have the same constraint relation, our

notation would get cumbersome if we wrote RC everywhere.

The main point of interest is classifying the computational complexity of CSP(Γ).

Constraints of an instance are specified by lists of tuples in the corresponding relations

and thus those lists are considered to be part of the input. We will say that Γ contains

the unary constant relations if {(0)}, {(1)} ∈ Γ (these relations allow us to fix the value

of a certain variable to 0 or 1).

For Boolean CSPs (where variables are assigned Boolean values), the complexity

classification of CSP(Γ) due to Schaefer has been known for a long time [63]. Our main

focus is on restricted forms of the CSP. In particular, we are interested in structural

restrictions, i.e. in restrictions on the constraint network. With such limitation the Boolean

case becomes complicated again. (As a side note, we expect similar problems for larger

domains to be very hard to classify. For example, Dvořák and Kupec note that one

can encode four-coloring of planar graphs as a class of planar CSPs. Such CSPs are

always satisfiable but for a highly non-trivial reason, namely the Four color theorem.)

A natural structural restriction would be to limit the number of constraints in whose

scope a variable can lie. When k ≥ 3 and Γ contains all unary constants, then CSP(Γ)

with each variable in at most k constraints is polynomial time equivalent to unrestricted

CSP(Γ), see [24, Theorem 2.3]. This leaves instances with at most two occurrences

per variable in the spotlight. To make our arguments clearer, we will assume that each

variable occurs exactly in two constraints (following [29], we can reduce decision CSP

instances with at most two appearances of each variable to instances with exactly

two appearances by taking two copies of the instance and identifying both copies of v

whenever v is a variable that originally appeared in only a single constraint).

Definition 3.1.2 (Edge CSP). Let Γ be a constraint language. Then the problem

CSPEDGE(Γ) is the restriction of CSP(Γ) to those instances in which every variable is

present in exactly two constraints.

Perhaps a more natural way to look at an instance I of an edge CSP is to consider

a graph whose edges correspond to variables of I and nodes to constraints of I.

Constraints (nodes) are incident with variables (edges) they interact with. In this

(multi)graph, we are looking for a satisfying Boolean edge labeling. Viewed like this,

37

edge CSP becomes a counterpart to the usual CSP where variables are typically

identified with nodes and constraints with (hyper)edges. The idea of “switching” the role

of (hyper)edges and vertices already appeared in the counting CSP community under

the name Holant problems [13].

This type of CSP is sometimes called “binary CSP” in the literature [26]. However,

this term is very commonly used for CSPs whose all constraints have arity at most two

[69]. In order to resolve this confusion (and for the reasons described in the previous

paragraph), we propose the term “edge CSP”.

As we said above, we we will only consider Boolean edge CSP, often omitting the

word “Boolean” for space reasons. The following Boolean-specific definitions will be

useful to us:

Definition 3.1.3. Let f : V → {0, 1} and v ∈ V . We will denote by f ⊕ v the mapping

V → {0, 1} that agrees with f on V \ {v} and has value 1 − f(v) on v. For a set

S = {s1, . . . , sk} ⊆ V we let f ⊕ S = f ⊕ s1 ⊕ · · · ⊕ sk. Also for f, g : V → {0, 1} let

f ∆ g ⊆ V be the set of variables v for which f(v) 6= g(v).

Definition 3.1.4. Let V be a set. A non-empty subset M of {0, 1}V is called a ∆-matroid

if whenever f, g ∈M and v ∈ f ∆ g, then there exists u ∈ f ∆ g such that f ⊕{u, v} ∈M .

If moreover, the parity of the number of ones over all tuples of M is constant, we have

an even ∆-matroid (note that in that case we never have u = v so f ⊕ {u, v} reduces to

f ⊕ u⊕ v).

The strongest hardness result on Boolean edge CSP is from Feder.

Theorem 3.1.5 ([29]). If Γ is a constraint language containing unary constant relations

such that CSP(Γ) is NP-Hard and there is R ∈ Γ which is not a ∆-matroid, then

CSPEDGE(Γ) is NP-Hard.

Tractability was shown for special classes of ∆-matroids, namely binary [34, 24],

co-independent [29], compact [41], and local [24] (see the definitions in the respective

papers). All the proposed algorithms are based on variants of searching for augmenting

paths. In this work we propose a more general algorithm that involves both augmenta-

tions and contractions. In particular, we prove the following.

38

Theorem 3.1.6. If Γ contains only even ∆-matroid relations, then CSPEDGE(Γ) can be

solved in polynomial time.

Our algorithm will in fact be able to solve even a certain optimization version of the

edge CSP (corresponding to finding a maximum matching). This is discussed in detail

in Section 3.4.

In Section 3.6 we show that if a class of ∆-matroids is efficiently coverable, then it

defines a tractable CSP. The whole construction is similar to, but more general than,

C-zebra ∆-matroids introduced in [30]. We note here also that the class of coverable

∆-matroids is natural in the sense of being closed under direct products and identifying

variables (in other words, gadget constructions).

Definition 3.1.7. Let M be a ∆-matroid. We say that α, β ∈ M are even-neighbors if

there exist distinct variables u, v ∈ V such that β = α⊕ u⊕ v and α⊕ u 6∈M . We say

we can reach γ ∈ M from α ∈ M if there is a chain α = β0, β1, . . . , βn = γ where each

pair βi, βi+1 are even-neighbors.

Definition 3.1.8. We say that M is coverable if for every α ∈M there exists Mα such

that:

1. Mα is an even ∆-matroid (over the same ground set as M),

2. Mα contains all β ∈M that can be reached from α (including α itself),

3. whenever γ ∈M can be reached from α and γ⊕u⊕v ∈Mα\M , then γ⊕u, γ⊕v ∈

M .

It is easy to see that every even ∆-matroid M is coverable. We simply take Mα = M

for every α ∈M .

In our algorithm, we will need to have access to the sets Mα, so we need to assume

that all our ∆-matroids, in addition to being coverable, come from a class of ∆-matroids

where the sets Mα can be determined quickly. This is what efficiently coverable means

(for a formal definition see Definition 3.6.1).

The following theorem is a strengthening of a result from [30]:

Theorem 3.1.9. If Γ contains only efficiently coverable ∆-matroid constraints, then

CSPEDGE(Γ) can be solved in polynomial time.

39

Again, the algorithm will solve even a certain optimization version of the edge CSP.

As we show in Appendix A.5, efficiently coverable ∆-matroid classes include nu-

merous known tractable classes of ∆-matroids: C-zebra ∆-matroids [30] for any C

subclass of even ∆-matroids (where we assume, just like in [30], that we are given

the zebra representations on input) as well as co-independent [29], compact [41], lo-

cal [24], and binary [34, 24] ∆-matroids. To our best knowledge these are all the known

tractable classes and according to [24] the classes other than C-zebras are pairwise

incomparable.

3.2 Implications

In this section we explain how our result implies full complexity classification of planar

Boolean CSPs.

Definition 3.2.1. Let Γ be a constraint language. Then CSPPLANAR(Γ) is the restriction of

CSP(Γ) to the set of instances for which there exists a planar graph G(V,E) such that

v1, . . . , vk is a face of G (with nodes listed in counter-clockwise order) if and only if there

is a unique constraint imposed on the tuple of variables (v1, . . . , vk).

It is also noted in [26] that checking whether an instance has a planar representation,

as well as finding it, can be done efficiently (see e.g.. [38]) and hence it does not

matter if we are given a planar drawing of G as a part of the input or not. The planar

restriction does lead to new tractable cases, for example planar NAE-3-SAT (Not-All-

Equal 3-Satisfiability) [60]. For more results on planar CSPs, particularly related to

approximation, see [22].

Definition 3.2.2. A relation R is called self-complementary if for all T ∈ {0, 1}n we have

T ∈ R if and only if T ⊕ {1, 2, . . . , n} ∈ R (i.e. R is invariant under simultaneous flipping

of all entries of a tuple).

Definition 3.2.3. For a tuple of Boolean variables T = (x1, . . . , xn), let dT = (x1 ⊕

x2, . . . , xn ⊕ x1). For a relation R and a set of relations Γ, let dR = {dT : T ∈ R} and

dΓ = {dR : R ∈ Γ}.

40

Since self-complementary relations don’t change when we flip all their coordinates,

we can describe a self-complementary relation by looking at the differences of neigh-

boring coordinates; this is exactly the meaning of dR. Note that these differences are

realized over edges of the given planar graph.

Knowing this, it is not so difficult to imagine that via switching to the planar dual of G,

one can reduce a planar CSP instance to some sort of edge CSP instance. This is in

fact part of the following theorem from [26]:

Theorem 3.2.4. Let Γ be such that CSP(Γ) is NP-Hard. Then:

1. If there is R ∈ Γ that is not self-complementary, then CSPPLANAR(Γ) is NP-Hard.

2. If every R ∈ Γ is self-complementary and there exists R ∈ Γ such that dR is not

even ∆-matroid, then CSPPLANAR(Γ) is NP-Hard.

3. If every R ∈ Γ is self-complementary and whose dR is an even ∆-matroid, then

CSPPLANAR(Γ) is polynomial-time reducible to

CSPEDGE(dΓ ∪ {EV EN1, EV EN2, EV EN3})

where EV ENi = {(x1, . . . xi) : x1 ⊕ · · · ⊕ xi = 0}.

Using Theorem 3.1.6, we can finish this classification:

Theorem 3.2.5 (Dichotomy for CSPPLANAR). Let Γ be a constraint language. Then

CSPPLANAR(Γ) is solvable in polynomial time if either

1. CSP(Γ) is solvable in polynomial time or;

2. Γ contains only self-complementary relations R such that dR is an even ∆-matroid.

Otherwise, CSPPLANAR(Γ) is NP-Hard.

Proof. By Theorem 3.2.4 the only unresolved case reduces to solving

CSPEDGE(dΓ ∪ {EV EN1, EV EN2, EV EN3}).

Since the relations EV ENi are even ∆-matroids for every i, this is polynomial-time

solvable thanks to Theorem 3.1.6.

41

3.3 Even ∆-matroids and matchings

In this section we highlight the similarities and dissimilarities between even ∆-matroid

CSPs and matching problems. These similarities will guide us on our way through the

rest of the chapter.

Example 3.3.1. For n ∈ N consider the “perfect matching” relation Mn ⊆ {0, 1}
n

containing precisely the tuples in which exactly one coordinate is set to one and all

others to zero. Note that Mn is an even ∆-matroid for all n. Then the instance I of

CSPEDGE({Mn : n ∈ N}) (represented in Figure 3.1) is equivalent to deciding whether the

graph of the instance has a perfect matching (every node is adjacent to precisely one

edge with label 1).

One may also construct an equivalent instance I ′ by “merging” some parts of the

graph (in Figure 3.1 those are X and Y) to single constraint nodes. The constraint

relations imposed on the “supernodes” record sets of outgoing edges which can be

extended to a perfect matching on the subgraph induced by the “supernode”. For

example, in the instance I ′ the constraints imposed on X and Y would be (with variables

ordered as in Figure 3.1):

X = {10000, 01000, 00100, 00010, 11001, 10101, 10011},

Y = {001, 010, 100, 111}.

It is easy to check that both X and Y are even ∆-matroids.

One takeaway from this example is that any algorithm that solves edge CSP for the

even ∆-matroid case has to work for perfect matchings in graphs as well. Another is the

construction of even ∆-matroids X and Y which can be generalized as follows.

Definition 3.3.2 (Matching realizable relations). Let G be a graph and let v1, . . . , va ∈

V (G) be distinct nodes of G. For an a-tuple T = (x1, . . . , xa) ∈ {0, 1}
a, we denote by GT

the graph obtained from G by deleting all nodes vi such that xi = 1. Then we can define

M(G, v1, . . . , va) = {T ∈ {0, 1}
a : GT has a perfect matching}.

42

M3

M3

M2

M4

M3M3

M3
M2

M3M2

M3

M3

M3

M3

M2

M4

X Y

X
Y

I I ′

Figure 3.1: On the left we see an instance I that is equivalent to testing for perfect
matching of the given graph. On the right is an equivalent instance I ′ with contracted
“supernodes” X and Y .

We say that a relation R ∈ {0, 1}a is matching realizable if R = M(G, v1, . . . , va) for

some graph G and nodes v1, . . . , va ∈ V (G).

Every matching realizable relation is an even ∆-matroid [26]. Also, it should be

clear from the definition and the preceding example that CSPEDGE(Γ) is tractable if Γ

contains only matching realizable relations (assuming we know the graph G and the

nodes v1, . . . , va for each relation): One can simply replace each constraint node with

the corresponding graph and then test for existence of perfect matching.

The authors of [26] also verify that every even ∆-matroid of arity at most 5 is matching

realizable. However, as we prove in Appendix A.3, this is not true for higher arities.

Proposition 3.3.3. There exists an even ∆-matroid of arity 6 which is not matching

realizable.

Proposition 3.3.3 shows that we cannot hope to simply replace the constraint nodes

by graphs and run the Edmonds’ algorithm. The ∆-matroid constraints can exhibit new

and more complicated behavior than just matchings in graphs, as we shall soon see.

In fact, there is a known exponential lower bound for solving edge CSP with matroid

constraints (matroids being special cases of even ∆-matroids) given by oracles (i.e. not

lists of tuples) [7], which rules out any polynomial time algorithm that would work in the

oracle model. In particular, we are convinced that our method of contracting blossoms

can not be significantly simplified while still staying polynomial time computable.

43

3.4 Algorithm

Setup

We can draw edge CSP instances as constraint graphs: The constraint graph GI =

(V ∪ C, E) of I is a bipartite graph with partitions V and C. There is an edge {v, C} ∈ E

if and only if v belongs to the scope of C. Throughout the rest of the chapter we

use lower-case letters for variable nodes in V (u, v, x, y, . . .) and upper-case letters for

constraint nodes in C (A,B,C, . . .). Since we are dealing with edge CSP, the degree of

each node v ∈ V in GI is exactly two and since we don’t allow a variable to appear in

a constraint twice, GI has no multiple edges. For such instances I we introduce the

following terminology and notation.

Definition 3.4.1. An edge labeling of I is a mapping f : E → {0, 1}. For a constraint

C ∈ C with the scope σ we will denote by f(C) the tuple in {0, 1}σ such that f(C)(v) =

f({v, C}) for all v ∈ σ. Edge labeling f will be called valid if f(C) ∈ C for all C ∈ C.

Variable v ∈ V is called consistent in f if f({v, A}) = f({v,B}) for the two distinct

edges {v, A}, {v,B} ∈ E of GI . Otherwise, v is inconsistent in f .

A valid edge labeling f is optimal if its number of inconsistent variables is minimal

among all valid edge labelings of I. Otherwise f is called non-optimal.

Note that I has a solution if and only if an optimal edge labeling f of I has no

inconsistent variables.

The main theorem we prove is the following strengthening of Theorem 3.1.6.

Theorem 3.4.2. Given an edge CSP instance I with even ∆-matroid constraints, an

optimal edge labeling f of I can be found in time polynomial in |I|.

Walks and blossoms When studying matchings in a graph, paths and augmenting

paths are important. We will use analogous objects, called f -walks and augmenting

f -walks, respectively.

Definition 3.4.3. A walk q of length k in the instance I is a sequence q0C1q1C2 . . . Ckqk

where the variables qi−1, qi lie in the scope of the constraint Ci, and each edge {v, C} ∈ E

44

is traversed at most once: vC and Cv occur in q at most once, and they do not occur

simultaneously.

Note that q can be viewed as a walk in the graph GI that starts and ends at nodes

in V . Since each node v ∈ V has degree two in GI , the definitions imply that v can

be visited by q at most once, with a single exception: we may have q0 = qk = v, with

q = vC . . .Dv where C 6= D. We allow walks of length 0 (i.e. single vertex walks) for

formal reasons.

A subwalk of q, denoted by q[i,j], is the walk qiCi+1 . . . Cjqj (again, we need to

start and end in a variable). The inverse walk to q, denoted by q−1, is the sequence

qkCk . . . q1C1q0. Given two walks p and q such that the last node of p is the first node of

q, we define their concatenation pq in the natural way. If p = α1 . . . αk and q = β1 . . . β`

are sequences of nodes of a graph where αk and β1 are different but adjacent, we will

denote the sequence α1 . . . αkβ1 . . . β` also by pq (or sometimes as p, q).

If f is an edge labeling of I and q a walk in I, we denote by f ⊕ q the mapping that

takes f and flips the values on all variable-constraint edges encountered in q, i.e.

(f ⊕ q)({v, C}) =




1−f({v, C}) if q contains vC or Cv

f({v, C}) otherwise
(3.1)

Definition 3.4.4. Let f be a valid edge labeling of an instance I. A walk

q = q0C1q1C2 . . . Ckqk

with q0 6= qk will be called an f -walk if

1. variables q1, . . . , qk−1 are consistent in f , and

2. f ⊕ q[0,i] is a valid edge labeling for any i ∈ [1, k].

If in addition variables q0 and qk are inconsistent in f then q will be called an augmenting

f -walk.

Later we will show that a valid edge labeling f is non-optimal if and only if there exists

an augmenting f -walk. Note that one direction is straightforward: If p is an augmenting

f -walk, then f ⊕ p is valid and has 2 fewer inconsistent variables than f .

45

Another structure used by the Edmonds’ algorithm [27] for matchings is a blossom.

The precise definition of a blossom in our setting (Definition 3.5.9) is a bit technical.

Informally, an f -blossom is a walk b = b0C1b1C2 . . . Ckbk with b0 = bk such that:

1. variable b0 = bk is inconsistent in f while variables b1, . . . , bk−1 are consistent, and

2. f ⊕ b[i,j] is a valid edge labeling for any non-empty proper subinterval [i, j] $ [0, k],

3. there are no bad shortcuts inside b (we will make this precise later).

Algorithm description

We are given an instance I of edge CSP with even ∆-matroid constraints together with

an edge labeling f and we want to either show that f is optimal or improve it. Our

algorithm will explore the graph (V ∪ C, E) building a directed forest T . Each variable

node v ∈ V will be added to T at most once. Constraint nodes C ∈ C, however, can be

added to T multiple times. To tell the copies of C apart (and to keep track of the order in

which we built T), we will mark each C with a timestamp t ∈ N; the resulting node of T

will be denoted as Ct ∈ C×N. Thus, the forest will have the form T = (V (T)∪C(T), E(T))

where V (T) ⊆ V and C(T) ⊆ C × N.

The roots of the forest T will be the inconsistent nodes of the instance (for current f);

all non-root nodes in V (T) will be consistent. The edges of T will be oriented towards

the leaves. Thus, each non-root node α ∈ V (T) ∪ C(T) will have exactly one parent

β ∈ V (T) ∪ C(T) with βα ∈ E(T). For a node α ∈ V (T) ∪ C(T) let walk(α) be the the

unique path in T from a root to α. Note that walk(α) is a subgraph of T . Sometimes we

will treat walks in T as sequences of nodes in V ∪ C discussed in Section 3.4 (i.e. with

timestamps removed); such places should be clear from the context.

We will grow the forest T in a greedy manner as shown in Algorithm 1. The structure

of the algorithm resembles that of the Edmonds’ algorithm for matchings [27], with the

following important distinctions: First, in the Edmonds’ algorithm each “constraint node”

(i.e. each node of the input graph) can be added to the forest at most once, while in

Algorithm 1 some constraints C ∈ C can be added to T and “expanded” multiple times

(i.e. E(T) may contain edges Csu and Ctw added at distinct timestamps s 6= t). This is

because we allow more general constraints. In particular, if C is a “perfect matching”

46

Algorithm 1 Improving a given edge labeling
Input: Instance I, valid edge labeling f of I.
Output: A valid edge labeling g of I with fewer inconsistent variables than f , or “No” if
no such g exists.

1. Initialize T as follows: set timestamp t = 1, and for each inconsistent variable
v ∈ V of I add v to T as an isolated root.

2. Pick an edge {v, C} ∈ E such that v ∈ V (T) but there is no s such that vCs ∈ E(T)
or Csv ∈ E(T). (If no such edge exists, then output “No” and terminate.)

3. Add new node Ct to T together with the edge vCt.

4. Let W be the set of all variables w 6= v in the scope of C such that f(C)⊕v⊕w ∈ C.
For each w ∈ W do the following (see Figure 3.2):

(a) If w /∈ V (T), then add w to T together with the edge Ctw.

(b) Else if w has a parent of the form Cs for some s, then do nothing.

(c) Else if v and w belong to different trees in T (i.e. originate from different roots),
then we have found an augmenting f -walk. Let p = walk(Ct) walk(w)−1,
output f ⊕ p and exit.

(d) Else if v and w belong to the same tree in T , then we have found a blossom.
Form a new instance Ib and new valid edge labeling f b of Ib by contracting

this blossom. Solve this instance recursively, use the resulting improved edge
labeling for Ib (if it exists) to compute an improved valid edge labeling for I,
and terminate. All details are given in Sec. 3.4.

5. Increase the timestamp t by 1 and goto step 2.

constraint (i.e. C = {(a1, . . . , ak) ∈ {0, 1}
k : a1 + . . . + ak = 1}) then Algorithm 1 will

expand it at most once. (We will not use this fact, and thus omit the proof.)

Note that even when we enter a constraint node for the second or third time, we

“branch out” based on transitions vCw available before the first visit, even though the

tuple of C might have changed in the meantime. This could cause one to doubt that

Algorithm 1 works at all.

A vague answer to this objection is that we grow T very carefully: While the Edmonds’

algorithm does not impose any restrictions on the order in which the forest is grown,

we require that all valid children w ∈ W be added to T simultaneously when exploring

edge {v, C} in step 4. Informally speaking, this will guarantee that forest T does not

have “shortcuts”, a property that will be essential in the proofs. The possibility of having

shortcuts is something that is not present in graph matchings and is one of the properties

47

A

B

C

D
E

F

z

y

xw

v

u

t

s

r
q

E1 D2

r y x

A3 B4

u s v

C5

v x

zt

Figure 3.2: A possible run of Algorithm 1 on the instance I ′ from Example 3.3.1 (with
renamed constraint nodes) where the edge labeling f is marked by thick (1) and thin (0)
half-edges. We see that the algorithm finds a blossom when it hits the variable v the
second time in the same tree. However, had we first processed the transition Cx (which
we could have done), we would have found an augmenting path p = walk(C5) walk(x)−1

(where walk(x)−1 ends in z).

of even ∆-matroids responsible for the considerable length of the correctness proofs.

In the following theorem, we collect all pieces we need to show that Algorithm 1 is

correct and runs in polynomial time:

Theorem 3.4.5. If I is a CSP instance, f is a valid edge labeling of I, and we run

Algorithm 1, then the following is true:

1. The mapping f ⊕ p from step 4c is a valid edge labeling of I with fewer inconsis-

tencies than f .

2. When contracting a blossom as described Section 3.4 Ib is an edge CSP instance

with even ∆-matroid constraints and f b is a valid edge labeling to Ib.

3. The recursion in 4d will occur at most O(|V |) many times.

4. In step 4d, f b is optimal for Ib if and only if f is optimal for I. Moreover, given a

valid edge labeling gb of Ib with fewer inconsistent variables than f b, we can in

polynomial time output a valid edge labeling g of I with fewer inconsistent variables

than f .

5. If the algorithm answers “No” then f is optimal.

48

C ′

Rs
r

v

w

.

.

.

Ct

Rs
r

v

w
C ′

Rs

r

v

w

Ct

Figure 3.3: The two cases of step 4d. On the left, α = r is a variable, while on the right
α = Rs is a constraint and the thick edges denote p = walk(r). The dashed edges are
orientations of edges from E that are not in the digraph T , but belong to the blossom.

Contracting a blossom (step 4d)

We now elaborate step 4d of Algorithm 1. First, let us describe how to obtain the

blossom b. Let α ∈ V (T) ∪ C(T) be the lowest common ancestor of nodes v and w in T .

Two cases are possible.

1. α = r ∈ V (T). Variable node r must be inconsistent in f because it has

outdegree two and thus is a root of one of the trees in the forest. We let

b = walk(Ct) walk(w)−1 in this case.

2. α = Rs ∈ C(T). Let r be the child of Rs in T that is an ancestor of v. Replace edge

labeling f with f ⊕ walk(r) (variable r then becomes inconsistent). Now define

walk b = pq−1r where p is the walk from r to Ct in T and q is the walk from Rs to w

in T (see Figure 3.3).

Lemma 3.4.6 (To be proved in Section 3.5). Assume that Algorithm 1 reaches step 4d

and one of the cases described in the above paragraph occurs. Then:

1. in the case 2 the edge labeling f ⊕ walk(r) is valid, and

2. in both cases the walk b is an f -blossom (for the new edge labeling f , in the second

case). (Note that we have not formally defined f -blossoms yet; they require some

machinery that will come later – see Definition 3.5.9.)

49

To summarize, at this point we have a valid edge labeling f of instance I and an

f -blossom b = b0C1b1 . . . Ckbk. Let us denote by L the set of constraints in the blossom,

i.e. L = {C1, . . . , Ck}.

We construct a new instance Ib and its valid edge labeling f b by contracting the

blossom b as follows: we take I, add one |L|-ary constraint N to I, delete the variables

b1, . . . , bk, and add new variables {vC : C ∈ L} (see Figure 3.4). The scope of N is

{vC : C ∈ L} and the matroid of N consists of exactly those maps α ∈ {0, 1}L that send

one vC to 1 and the rest to 0.

In addition to all this, we replace each blossom constraint D ∈ L by the constraint

Db whose scope is σ \ {b1, . . . , bk} ∪ {vD} where σ is the scope of D. The constraint

relation of Db consists of all maps β for which there exists α ∈ D such that α agrees

with β on σ \ {b1, . . . , bk} and one of the following occurs (see Figure 3.5):

1. β(vD) = 0 and α agrees with f(D) on all variables in {b1, . . . , bk} ∩ σ, or

2. β(vD) = 1 and there is exactly one variable z ∈ {b1, . . . , bk} ∩ σ such that β(z) 6=

f(D)(z).

The lemma below follows from a more general result shown e.g. in [29, Theorem 4]

(there is also a straightforward elementary proof which we include in Section 3.5).

Lemma 3.4.7. Each Cb
i is an even ∆-matroid.

We define the edge labeling f b of Ib as follows: for constraints A /∈ {C1, . . . , Ck, N}

we set f b(A) = f(A). For each C ∈ L, we let f b(Cb)(v) = f(C)(v) when v 6= vC , and

f b(Cb)(vC) = 0. Finally, we let f b(N)(vC) = 1 for C = C1 and f b(N)(vC) = 0 for all other

Cs. (The last choice is arbitrary; initializing f b(N) with any other tuple in N would work

as well).

It is easy to check that f b is valid for Ib. Furthermore, vC1 is inconsistent in f b while

for each C ∈ L \ {C1} the variable vC is consistent.

Observation 3.4.8. In the situation described above, the instance Ib will have at most

as many variables as I and one constraint more than I. Edge labelings f and f b have

the same number of inconsistent variables.

50

C1

C2

C3

C4C5

C6

C7

b0 b1

b2

b3

b4

b5

b6

Cb
1

Cb
2

Cb
3

Cb
4Cb

5

Cb
6

Cb
7

vC1

vC2

vC3

vC4

vC5

vC6

vC7

N

Figure 3.4: A blossom (left) and a contracted blossom (right) in the case when all
constraints C1, . . . , Ck are distinct. If some constraints appear in the blossom multiple
times then the number of variables vCi

will be smaller than k (see Figure 3.5).

Corollary 3.4.9 (Theorem 3.4.5(3)). When given an instance I, Algorithm 1 will recur-

sively call itself O(|V |) many times.

Proof. Since C and V are partitions of GI and the degree of each v ∈ V is two, the

number of edges of GI is 2|V |. From the other side, the number of edges of GI is equal

to the sum of arities of all constraints in I. Since we never consider constraints with

empty scopes, the number of constraints of an instance is at most double the number of

variables of the instance.

Since each contraction adds one more constraint and never increases the number of

variables, it follows that there can not be a sequence of consecutive contractions longer

than 2|V |, which is O(|V |).

The following two lemmas, which we prove in Section 3.5, show why the procedure

works. In both lemmas, we let (I, f) and (Ib, f b) denote the instance and the valid edge

labeling before and after the contraction, respectively.

Lemma 3.4.10. In the situation described above, if f b is optimal for Ib, then f is optimal

for I.

Lemma 3.4.11. In the situation described above, if we are given a valid edge labeling

gb of Ib with fewer inconsistencies than f b, then we can find in polynomial time a valid

edge labeling g of I with fewer inconsistencies than f .

51

D

bi−1

bi

bj−1

bj

D ZD N

Db

bi−1

bi

y

z

y

z

{ }
ZD =

λi−1λiλj−1λj0

bj−1

bj vD

λi−1λiλj−1λj1

λi−1λiλj−1λj1

λi−1λiλj−1λj1

λi−1λiλj−1λj1

Figure 3.5: Modification of a constraint node D that appears in a blossom b twice,
i.e. when we have b = . . . bi−1Dbi . . . bj−1Dbj . . . (and so D = Ci = Cj). Variables y
and z are not part of the walk. The construction of Db described in the text can be
alternatively viewed as attaching a “gadget” constraint ZD as shown in the figure. Here
ZD is an even ∆-matroid with five tuples that depend on the values λk = f({bk, D}) and
λk = 1− λk.

Time complexity of Algorithm 1

To see that Algorithm 1 runs in time polynomial in the size of I, consider first the case

when step 4d does happen. In this case, the algorithm runs in time polynomial in the

size of I, since it essentially just searches through the graph GI .

Moreover, from the description of contracting a blossom in part 3.4, it is easy to

see that one can compute Ib and f b from I and f in polynomial time and that Ib is not

significantly larger than I: Ib has at most as many variables as I and the contracted

blossom constraints Cb are not larger than the original constraints C. Finally, Ib does

have one brand new constraint N , but N contains only O(|V |) many tuples. Therefore,

we have |Ib| ≤ |I| + O(|V |) where |V | does not change. By Corollary 3.4.9, there will

be at most O(|V |) contractions in total, so the size of the final instance I? is at most

|I|+O(|V |2), which is easily polynomial in |I|.

All in all, Algorithm 1 will give its answer in time polynomial in |I|.

3.5 Proofs

In this section, we flesh out detailed proofs of the statements we gave above. In the

whole section, I will be an instance of a Boolean edge CSP whose constraints are even

∆-matroids.

52

In Sec. 3.5 we establish some properties of f -walks, and show in particular that

a valid edge labeling f of I is non-optimal if and only if there exists an augmenting

f -walk in I. In Sec. 3.5 we introduce the notion of an f -DAG, prove that the forest

T constructed during the algorithm is in fact an f -DAG, and describe some tools for

manipulating f -DAGs. Then in Sec. 3.5 we analyze augmentation and contraction

operations, namely prove Theorem 3.4.5(1) and Lemmas 3.4.6, 3.4.10, 3.4.11 (which

imply Theorem 3.4.5(2, 4). Finally, in Sec. 3.5 we prove Theorem 3.4.5(5).

For edge labelings f, g, let f ∆ g ⊆ E be the set of edges in E on which f and g differ.

Observation 3.5.1. If f and g are valid edge labelings of instance I then they have the

same number of inconsistencies modulo 2.

Proof. We use induction on |f ∆ g|. The base case |f ∆ g| = 0 is trivial. For the induction

step let us consider valid edge labelings f, g with |f ∆ g| ≥ 1. Pick an edge {v, C} ∈

f ∆ g. By the property of even ∆-matroids there exists another edge {w,C} ∈ f ∆ g

with w 6= v such that f(C) ⊕ v ⊕ w ∈ C. Thus, edge labeling f ? = f ⊕ (vCw) is valid.

Clearly, f and f ? have the same number of inconsistencies modulo 2. By the induction

hypothesis, the same holds for edge labelings f ? and g (since |f ? ∆ g| = |f ∆ g| − 2).

This proves the claim.

The properties of f -walks

Let us begin with some results on f -walks that will be of use later. The following lemma

is a (bit more technical) variant of the well known property of labelings proven in [24,

Theorem 3.6]:

Lemma 3.5.2. Let f, g be valid edge labelings of I such that g has fewer inconsistencies

than f , and x be an inconsistent variable in f . Then there exists an augmenting f -walk

that begins in a variable different from x. Moreover, such a walk can be computed in

polynomial time given I, f , g, and x.

Proof. Our algorithm will proceed in two stages. First, we repeatedly modify the edge

labeling g using the following procedure:

53

(1) Pick a variable v ∈ V which is consistent in f , but not in g. (If no such v exists

then go to the next paragraph). By the choice of v, there exists a unique edge

{v, C} ∈ f ∆ g. Pick a variable w 6= v in the scope of C such that {w,C} ∈ f ∆ g

and g(C) ⊕ v ⊕ w ∈ C (it exists since C is an even ∆-matroid). Replace g with

g ⊕ (vCw), then go to the beginning and repeat.

It can be seen that g remains a valid edge labeling, and the number of inconsistencies

in g never increases. Furthermore, each step decreases |f ∆ g| by 2, so this procedure

must terminate after at most O(|E|) = O(|V |) steps.

We now have valid edge labelings f, g such that f has more inconsistencies than

g, and variables consistent in f are also consistent in g. Since the parity of number of

inconsistencies in f and g is the same, f has at least two more inconsistent variables

than g; one of them must be different from x.

In the second stage we will maintain an f -walk p and the corresponding valid edge

labeling f ? = f ⊕ p. To initialize, pick a variable r ∈ V \ {x} which is consistent in g but

not in f , and set p = r and f ? = f . We then repeatedly apply the following step:

(2) Let v be the endpoint of p. The variable v is consistent in g but not in f ?, so there

is a unique edge {v, C} ∈ f ? ∆ g. Pick a variable w 6= v in the scope of C such that

{w,C} ∈ f ? ∆ g and f ?(C) ⊕ v ⊕ w ∈ C (it exists since C is an even ∆-matroid).

Append vCw to the end of p, and accordingly replace f ? with f ?⊕ (vCw) (which is

valid by the choice of w). As a result of this update, edges {v, C} and {w,C} are

removed from f ? ∆ g.

If w is inconsistent in f , then output p (which is an augmenting f -walk) and

terminate. Otherwise w is consistent in f (and thus in g) but not in f ?; in this case,

go to the beginning of (2) and repeat.

Each step decreases |f ? ∆ g| by 2, so this procedure must terminate after at most

O(|E|) = O(|V |) steps. To see that p is indeed a walk, observe that the starting

node r has exactly one incident edge in the graph (V ∪ C, f ? ∆ g). Since this edge is

immediately removed from f ? ∆ g, we will never encounter the variable r again during

the procedure.

54

Invariants of Algorithm 1: f -DAGs

In this section we examine the properties of the forest T as generated by Algorithm 1.

For future comfort, we will actually allow T to be a bit more general than what appears

in Algorithm 1 – our T can be a directed acyclic digraph (DAG):

Definition 3.5.3. Let I be a Boolean edge CSP instance and f a valid edge labeling of

I. We will call a directed graph T an f -DAG if T = (V (T)∪C(T), E(T)) where V (T) ⊆ V ,

C(T) ⊆ C × N, and the following conditions hold:

1. Edges of E(T) have the form vCt or Ctv where {v, C} ∈ E and t ∈ N.

2. For each {v, C} ∈ E there is at most one t ∈ N such that vCt or Ctv appears in

E(T). Moreover, vCt and Ctv are never both in E(T).

3. Each node v ∈ V (T) has at most one incoming edge. (Note that by the previous

properties, the node v can have at most two incident edges in T .)

4. Timestamps t for nodes Ct ∈ C(T) are all distinct (and thus give a total order on

C(T)). Moreover, this order can be extended to a total order ≺ on V (T) ∪ C(T)

such that α ≺ β for each edge αβ ∈ E(T). (So in particular the digraph T is

acyclic.)

5. If T contains edges uCt and one of vCt or Ctv, then f(C)⊕ u⊕ v ∈ C.

6. (“No shortcuts” property) If T contains edges uCs and one of vCt or Ctv where

s < t, then f(C)⊕ u⊕ v /∈ C.

It is easy to verify that any subgraph of an f -DAG is also an f -DAG. If T is an f -DAG,

then we denote by f ⊕ T the edge labeling we obtain from f by flipping the value of all

f({v, C}) such that vCt ∈ E(T) or Ctv ∈ E(T) for some timestamp t. We will need to

show that f ⊕ T is a valid edge labeling for nice enough f -DAGs T .

The following lemma shows the promised invariant property:

Lemma 3.5.4. Let us consider the structure T during the run of Algorithm 1 with the

input I and f . At any moment during the run, the forest T is an f -DAG.

Moreover, if steps 4c or 4d are reached, then the digraph T ? obtained from T by

removing all edges outgoing from Ct (defined by step 3) and adding the edge wCt is

also an f -DAG.

55

Proof. Obviously, an empty T is an f -DAG, as is the initial T consisting of inconsistent

variables and no edges. To verify that T remains an f -DAG during the whole run of

Algorithm 1, we need to make sure that neither adding vCt in step 3, nor adding Ctw

in step 4a violates the properties of T . Let us consider step 3 first. By the choice of v

and Ct, we immediately get that properties (1), (2), (3), and (4) all hold even after we

have added vCt to T (we can order the nodes by the order in which they were added

to T). Since there is only one edge incident with Ct, property (5) holds as well. Finally,

the only way the no shortcuts property (i.e. property (6)) could fail would be if there

were some u and s such that uCs ∈ E(T) and f(C) ⊕ u ⊕ v ∈ C. But then, after the

node Cs got added to T , we should have computed the set W of variables w such that

f(C)⊕ u⊕ w (step 4) and v should have been in W \ V (T) at that time, i.e. we should

have added the edge Csv before, a contradiction. The analysis of step 4a is similar.

Assume now that Algorithm 1 has reached one of steps 4c or 4d and consider the

DAG T ? that we get from T by removing all edges of the form Ctz and adding the edge

wCt. Note that the node Ct is the only node with two incoming edges. The only three

properties that going from T to T ? could possibly affect are (2), (5) and (6). Were (2)

violated, we would have Csw ∈ E(T) already, and so step 4b would be triggered instead

of steps 4c or 4d. For property (5), the only new pair of edges to consider is vCt and

wCt for which we have f(C) ⊕ v ⊕ w ∈ C. Finally, if property (6) became violated

after adding the edge wCt then there were a u and s < t such that uCs ∈ E(T) and

f(C) ⊕ u ⊕ w ∈ C. Node Cs must have been added after w, or else we would have

Csw ∈ E(T). Also, w cannot have a parent of the form Ck (otherwise step 4b would be

triggered for w when expanding Ct). But then one of steps 4d or 4c would be triggered

at timestamp s already when we tried to expand Cs, a contradiction.

We will use the following two lemmas to prove that f ⊕ p is a valid edge labeling of I

for various paths p that appear in steps 4c and 4d.

Lemma 3.5.5. Let T be an f -DAG, and Cs be the constraint node in C(T) with the

smallest timestamp s. Suppose that Cs has exactly two incident edges, namely incoming

edge uCs where u does not have other incident edges besides uCs and another edge

Csv (see Figure 3.6). Let f ? = f ⊕ (uCv) and let T ? be the DAG obtained from T by

removing nodes u, Cs and the two edges incident to Cs. Then f ? is a valid edge labeling

of I and T ? is an f ?-DAG.

56

Cs

.

u

v

f -DAG

T

.

v

f?-DAG

T ?

Figure 3.6: An f -DAG T on the left turns into f ?-DAG T ? on the right; the setting from
Lemma 3.5.5.

Proof. Since T ? is a subgraph of T , it immediately follows that T ? satisfies the proper-

ties (1), (2), (3), and (4) from the definition of an f -DAG all hold.

Let us show that T ? has property (5). Consider a constraint node Ct ∈ C(T ?) with

t > s (nothing has changed for other constraint nodes in C(T ?)), and suppose that T ?

contains edges xCt and one of yCt or Cty. If x = y, the situation is trivial, so assume

that u, v, x, y are all distinct variables. We need to show that f ?(C) ⊕ x ⊕ y ∈ C. The

constraint C contains the tuples f(C) ⊕ u ⊕ v and f(C) ⊕ x ⊕ y (by condition (5) for

T), but the no shortcuts property prohibits the tuples f(C) ⊕ u ⊕ x and f(C) ⊕ u ⊕ y

from lying in C. Therefore, applying the even ∆-matroid property on f(C)⊕ u⊕ v and

f(C)⊕ x⊕ y in the variable u we get that C must contain f(C)⊕ u⊕ v ⊕ x⊕ y, so we

have f ?(C)⊕ x⊕ y ∈ C.

Now let us prove that T ? and f ? have the “no shortcuts” property. Consider constraint

nodes Ck, C` in C(T ?) with s < k < ` (since nothing has changed for constraint nodes

other than C), and suppose that T ? contains edges xCk and one of yC` or C`y, where

again u, v, x, y are all distinct variables. We need to show that f ?(C) ⊕ x ⊕ y /∈ C, or

equivalently that f(C)⊕ u⊕ v ⊕ x⊕ y /∈ C.

Assume that it is not the case. Apply the even ∆-matroid property to tuples f(C)⊕

u ⊕ v ⊕ x ⊕ y and f(C) (which are both in C) in coordinate v. We get that either

f(C)⊕ x⊕ y ∈ C, or f(C)⊕ u⊕ x ∈ C, or f(C)⊕ u⊕ y ∈ C. This contradicts the “no

shortcuts” property for the pair (Ck, C`), or (Cs, Ck), or (Cs, C`), respectively, and we

are done.

Corollary 3.5.6. Let I be an edge CSP instance and f be a valid edge labeling.

1. Let T be an f -DAG that consists of two directed paths x0C
t1
1 x1 . . . xk−1C

tk
k and

57

. . .

x0
x1

xk−1

Ct1
1

Ct2
2 . . .

y0
y1

y`−1

Ds1
1

Ds2
2

Ctk
k = Ds`

`

Figure 3.7: Two meeting paths from Corollary 3.5.6.

y0D
s1
1 . . . y`−1D

s`
` that are disjoint everywhere except at the constraint Ctk

k = Ds`
`

(see Figure 3.7). Then f ⊕ T is a valid edge labeling of I.

2. Let T be an f -DAG that consists of a single directed path x0C
t0
1 x1 . . . xk−1C

tk
k xk.

Then f ⊕ T is a valid edge labeling of I.

Proof. We will prove only part (a); the proof of part (b) is completely analogous. We

proceed by induction on k + `. If k = ` = 1, T consists only of the two edges x0C
t and

y0C
t (where Ct is an abbreviated name for Ct1

1 = Ds1
1). Then the fact that f ⊕ (x0Cy0) is

a valid edge labeling follows from the property (5) of f -DAGs.

If we are now given an f -DAG T of the above form, then we compare t1 and s1.

Since the situation is symmetric, we can assume without loss of generality that s1 > t1.

We then use Lemma 3.5.5 for x1C
t1
1 x2 (there is a x2 since tk > s1 > t1), obtaining the

(f⊕(x1C1x2))-DAG T ? that consists of two directed paths x2 . . . xkC
tk and y1D

s1
1 . . . y`D

s`
` .

Since T ? is shorter than T , the induction hypothesis gets us that f⊕(x1C1x2)⊕T
? = f⊕T

is a valid edge labeling.

Lemma 3.5.7. Let T be an f -DAG, and Cs be the constraint node in C(T) with the

smallest timestamp s. Suppose that Cs has exactly one incoming edge uCs, and u does

not have other incident edges besides uCs. Suppose also that Cs has an outgoing edge

Csv. Let f ? = f ⊕ (uCv), and T ? be the DAG obtained from T by removing the edge

uCs together with u and reversing the orientation of edge Csv (see Figure 3.8). Then f ?

is a valid edge labeling of I and T ? is an f ?-DAG.

Proof. It is easy to verify that T ? satisfies the properties (1), (2) and (3). To see property

(4), just take the linear order on nodes of T and change the position of v so that it is the

new minimal element in this order (v has no incoming edges in T ?).

58

. . .

. . .

u

f -DAG

T

Cs

v

. . .

. . .

f?-DAG

T ?

Cs

v

Figure 3.8: An f -DAG T turns into an f ?-DAG T ? (see Lemma 3.5.7).

Let us prove that property (5) of Definition 3.5.3 is preserved. First, consider

constraint node Cs. Suppose that T ? contains one of xCs or Csx with x 6= v. We need

to show that f ?(C) ⊕ v ⊕ x ∈ C, or equivalently f(C) ⊕ u ⊕ x ∈ C (since f ?(C) ⊕ v =

f(C)⊕ (u⊕ v)⊕ v = f(C)⊕ u). This claim holds by property (5) of Definition 3.5.3 for T .

Now consider a constraint node Ct ∈ C(T ?) with t > s, and suppose that T ? contains

edges xCt and one of yCt or Cty. We need to show that f ?(C) ⊕ x ⊕ y ∈ C, or

equivalently that f(C)⊕ u⊕ v ⊕ x⊕ y ∈ C. For that we can simply repeat word-by-word

the argument used in the proof of Lemma 3.5.5.

Now let us prove that the “no shortcuts” property is preserved. First, consider a

constraint node Ct in C(T ?) with t > s, and suppose that T ? contains one of xCt or Ctx.

We need to show that f ?(C)⊕ v ⊕ x /∈ C, or equivalently f(C)⊕ u⊕ x /∈ C. This claim

holds by the “no shortcuts” property for T . Now consider constraint nodes Ck, C` in

C(T ?) with s < k < `, and suppose that T ? contains edges xCk and one of yC` or C`y.

Note that u, v, x, y are all distinct variables. We need to show that f ?(C)⊕ x⊕ y /∈ C, or

equivalently that f(C)⊕ u⊕ v ⊕ x⊕ y /∈ C. For that we can simply repeat word-by-word

the argument used to show the no shortcuts property in the proof of Lemma 3.5.5.

Analysis of augmentations and contractions

First, we prove the correctness of the augmentation operation.

Proposition 3.5.8 (Theorem 3.4.5(1) restated). The mapping f ⊕ p from step 4c is a

valid edge labeling of I with fewer inconsistencies than f .

59

Proof. Let T1 be the f -DAG constructed during the run of Algorithm 1; let T2 be the DAG

obtained from T1 by adding the edge wCt. By Lemma 3.5.4, T2 is a subgraph of an

f -DAG, so it is an f -DAG itself. Let T3 be the subgraph of T2 (and thus also an f -DAG)

induced by the nodes in p. It is easy to verify that T3 consists of two directed paths that

share their last node. Therefore, by Corollary 3.5.6, we get that f ⊕ T3 = f ⊕ p is a valid

edge labeling of I.

In the remainder of this section we show the correctness of the contraction operation

by proving Lemmas 3.4.6, 3.4.10, 3.4.11. Let us begin by giving a full definition of a

blossom:

Definition 3.5.9. Let f be a valid edge labeling. An f -blossom is any walk b =

b0C1b1C2 . . . Ckbk with b0 = bk such that:

1. variable b0 = bk is inconsistent in f while variables b1, . . . , bk−1 are consistent, and

2. there exists ` ∈ [1, k] and timestamps t1, . . . , tk such that the DAG consisting of

two directed paths b0C
t1
1 . . . b`−1C

t`
` and bkC

tk
k bk−1 . . . b`C

t`
` is an f -DAG.

Lemma 3.5.10. Let b be a blossom. Then b[i,j] is an f -walk for any non-empty proper

subinterval [i, j] $ [0, k].

Proof. Let us denote the f -DAG from the definition of a blossom by B. By taking an

appropriate subgraph of B and applying Corollary 3.5.6 we get that f ⊕ b[i,j] is valid for

any non-empty subinterval [i, j] $ [0, k]. Since the set of these intervals is downward

closed, b[i,j] is in fact an f -walk.

Lemma 3.5.11 (Lemma 3.4.6 restated). Assume that Algorithm 1 reaches step 4d and

one of the cases described at the beginning of Section 3.4 occurs. Then:

1. in the case 2 the edge labeling f ⊕ walk(r) is valid, and

2. in both cases the walk b is an f -blossom (for the new edge labeling f , in the

second case).

Proof. Let T be the forest at the moment of contraction, T † be the subgraph of T

containing only paths walk(Ct) and walk(w), and T ? be the graph obtained from T † by

60

adding the edge wCt. By Lemma 3.5.4, graph T ? is an f -DAG (we also need to observe

that any subgraph of an f -DAG is again an f -DAG).

If the lowest common ancestor of u and v in T is a variable node r ∈ V (T) (i.e. we

have case 1 from Section 3.4), then the f -DAG T ? consists of two directed paths from r

to the constraint C and it is easy to verify that when we let b to be one of these paths

followed by the other in reverse, we get a blossom.

Now consider case 2, i.e. when the lowest common ancestor of u and v in T is a

constraint node Rs ∈ C(T). Note that T ? has the unique source node u (that does not

have incoming edges), and u has an outgoing edge uDt where Dt is the constraint

node with the smallest timestamp in T ?. Let us repeat the following operation while

Dt 6= Rs: Replace f with f ⊕ (uDtz) where z is the unique out-neighbor of Dt in

T ?, and simultaneously modify T ? by removing nodes u,Dt and edges uDt, Dtz. By

Lemma 3.5.5 f remains a valid edge labeling throughout this process, and T ? remains

an f -DAG (for the latest f).

We get to the point that the unique in-neighbor u of Rs is the source node of T ?.

Replace f with f ⊕ (uRsr), and simultaneously modify T ? by removing node u together

with the edge uRs and reversing the orientation of edge Rsr. The new f is again valid,

and the new T ? is an f -DAG by Lemma 3.5.7. This means that the resulting walk b is an

f -blossom for the new f .

Lemma 3.5.12 (Lemma 3.4.7 restated). Each Db constructed in Section 3.4 is an even

∆-matroid.

Proof. We will denote by σ the scope of D. Let β, β′ ∈ Db and assume that β(v) 6= β′(v)

for some v. We will show that there is a u 6= v such that β(u) 6= β′(u) and β⊕ v⊕u ∈ Db.

Assume first that v is different from vD. From the definition of Db, we know that there

exist α, α′ ∈ D that witness β, β′ ∈ Db. In particular, α(v) 6= α′(v). Since D is an even

∆-matroid, there exists a variable w such that α(w) 6= α′(w) and α⊕ v ⊕ w ∈ D. If w is

not in {b1, . . . , bk}, we get β(w) 6= β′(w) and β ⊕ v ⊕ w ∈ Db, while if w ∈ {b1, . . . , bk},

we get β ⊕ v ⊕ vD ∈ Db. If β(vD) 6= β′(vD), we are done. Otherwise, α and α′ disagree

exactly on two variables from {b1, . . . , bk}, one of which is w; let t be the other variable.

The ∆-matroid property used on α⊕v⊕w and α′ gives us that there is a z 6∈ {b1, . . . , bk}

61

such that α(z) 6= α′(z) and α ⊕ v ⊕ w ⊕ t ⊕ z ∈ D. From this, it easily follows that

β ⊕ v ⊕ z ∈ Db.

In the case v = vD, we again consider α, α′ ∈ D as above. Since β(vD) 6= β′(vD), we

know that α and α′ disagree at exactly one variable bi. Using the ∆-matroid property

on α, α′ with the variable bi, we obtain a variable w 6= bi such that α and α′ disagree on

w and α ⊕ bi ⊕ w ∈ D. Then w needs to be from σ \ {b1, . . . , bk}, so β(w) 6= β′(w) and

α⊕ bi ⊕ w witnesses that β ⊕ vD ⊕ w ∈ Db

Finally, we prove two lemmas showing that if we contract a blossom b in instance I

to obtain the instance Ib and the edge labeling f b, then f b is optimal if and only if f b is

optimal for Ib.

Lemma 3.5.13 (Lemma 3.4.10 restated). In the situation described above, if f b is

optimal for Ib, then f is optimal for I.

Proof. Assume that f is not optimal for I, so there exists a valid edge labeling g with

fewer inconsistencies than f . Then by Lemma 3.5.2 there exists an augmenting f -walk

p in I that starts at some node other than bk. Denote by pb the sequence obtained from

p by replacing each Ci from the blossom by Cb
i . Observe that if p does not contain

the variables b1, . . . , bk, then p is an f -walk if and only if pb is an f b-walk, so the only

interesting case is when p enters the set {b1, . . . , bk}.

We will proceed along p and consider the first i such that there is a blossom constraint

D and an index j for which p[0,i]Dbj is an f -walk (i.e. we can enter the blossom from p).

If D = C1, then it follows from the definition of Cb
1 that p[0,i]Cb

1vC1 is an augmenting

f b-walk in Ib, while if D 6= C1, then p[0,i]D
bvCD

NvC1 is an augmenting f b-walk. In both

cases, we get an augmenting walk for f b, and so f b was not optimal.

To show the other direction, we will first prove the following result.

Lemma 3.5.14. Let q be an f -walk and T an f -DAG such that there is no proper prefix

q? of q and no edge vCs or Csv of T such that q?Cv would be an f -walk. Then T is a

(f ⊕ q)-DAG.

Proof. We proceed by induction on the length of q. If q has length 0, the claim is trivial.

Otherwise, let q = xCyq† for some q†. Note that q† is trivially an (f ⊕ (xCy))-walk. We

62

verify that T is an (f ⊕ (xCy))-DAG, at which point it is straightforward to apply the

induction hypothesis with f ⊕ xCy and q† to show that T is an (f ⊕ q)-DAG.

We choose the timestamp t to be smaller than any of the timestamps appearing

in T and construct the DAG T † from T by adding the nodes x, y, Ct and edges xCt

and Cty. It is easy to see that T † is an f -DAG – the only property that might possibly

fail is the no shortcuts property. However, since the timestamp of Ct is minimal, were

the no shortcuts property violated, T would have to contain an edge of the form vCs

or Csv such that f(C) ⊕ x ⊕ v ∈ C. But in that case, we would have the f -walk xCv,

contradicting our assumption on prefixes of q.

It follows that T † is an f -DAG and we can use Lemma 3.5.5 with the constraint Ct

and edges xCt and Cty to show that T is an (f⊕(xCty))-DAG, concluding the proof.

Lemma 3.5.15 (Lemma 3.4.11 restated). In the situation described above, if we are

given a valid edge labeling gb of Ib with fewer inconsistencies than f b, then we can find

in polynomial time a valid edge labeling g of I with fewer inconsistencies than f .

Proof. Our overall strategy here is to take an inconsistency from the outside of the

blossom b and bring it into the blossom. We begin by showing how to get a valid edge

labeling f ′ for I with an inconsistent variable just one edge away from b.

Using Lemma 3.5.2, we can use gb and f b to find in polynomial time an augmenting

f b-walk pb that does not begin at the inconsistent variable vC1. If pb does not contain

any of the variables vC1 , . . . , vCk
, then we can just output the walk p obtained from pb

by replacing each Cb
i by Ci and be done. Assume now that some vC appears in pb.

We choose the f b-walk rb so that rbCbvC is the shortest prefix of pb that ends with

some blossom variable vC . By renaming all Cbs in rb to Cs, we get the walk r. It is

straightforward to verify that r is an f -walk and that rCibi or rCibi−1 is an f -walk for

some i ∈ [1, k]. Let q be the shortest prefix of r such that one of qCibi or qCibi−1 is an

f -walk for some i ∈ [1, k].

Recall that the blossom b originates from an f -DAG B. The minimality of q allows us

to apply Lemma 3.5.14 and obtain that B is also an (f ⊕ q)-DAG. Let f ′ = f ⊕ q and let

x be the last variable in q. It is easy to see that f ′ is a valid edge labeling with exactly

as many inconsistent variables as f . Moreover x is inconsistent in f ′ and there is an

63

bk

x

bj

Ctk
k

Ct`
`

C
tj
j

Figure 3.9: The f ′-DAG B′ constructed using xCjbj (where j < `).

index i such that at least one of xCibi or xCibi−1 is an f ′-walk. We will now show how to

improve f ′.

If the constraint Ci appears only once in the blossom b, it is easy to verify (using

Lemma 3.5.10) that one of xCib[i,k] or xCib[0,i−1]
−1 is an augmenting f ′-walk. However,

since the constraint Ci might appear in the blossom several times, we have to come up

with a more elaborate scheme. The blossom b comes from an f ′-DAG B in which some

node Ct`
` is the node with the maximal timestamp (for a suitable ` ∈ [1, k]). Assume first

that there is a j ∈ [`, k] such that xCjbj is an f ′-walk. In that case, we take maximal

such j and consider the DAG B′ we get by adding the edge C
tj
j x to the subgraph of B

induced by the nodes C
tj
j , bj, C

tj+1

j+1 , . . . , C
tk
k , bk.

It is routine to verify that B′ is an f ′-DAG; the only thing that could possibly fail is

the no shortcuts property involving C
tj
j . However, Ctj

j has maximal timestamp in B′ and

there is no i > j such that f ′(Cj)⊕ x⊕ bi ∈ Cj.

Using Corollary 3.5.6, we get that f ′ ⊕B′ is a valid edge labeling which has fewer

inconsistencies than f ′, so we are done. In a similar way, we can improve f ′ when there

exists a j ∈ [1, `] such that xCjbj−1 is an f ′-walk.

If neither of the above cases occurs, then we take j such that the timestamp tj is

maximal and either xCjbj or xCjbj−1 is an f ′-walk. Without loss of generality, let xCjbj

be an f ′-walk. Then j < ` and we consider the DAG B′ we get from the subgraph of B

induced by C
tj
j , bj, C

tj+1

j+1 , . . . , C
tk
k , bk by adding the edge xC

tj
j (see Figure 3.9). As before,

the only way B′ can not be an f ′-DAG is if the no shortcuts property fails, but that is

impossible: we chose j so that tj is maximal, so an examination of the makeup of B′

shows that the only bad thing that could possibly happen is if there were an index i ≥ `

64

such that Ci = Cj, we had in B the edge biC
ti
i , and f ′(Ci) ⊕ bi ⊕ x ∈ Ci. But then we

would have the f ′-walk xCibi for i ≥ ` and the procedure from the previous paragraph

would apply. Using Corollary 3.5.6, we again see that f ′ ⊕ B′ is a valid edge labeling

with fewer inconsistencies than f .

It is easy to verify that finding q, calculating f ′ = f ⊕ q, finding an appropriate j and

augmenting f ′ can all be done in time polynomial in the size of the instance.

Proof of Theorem 3.4.5(5)

In this section we will prove that if the algorithm answers “No” then f is an optimal edge

labeling.

Lemma 3.5.16. Suppose that Algorithm 1 outputs “No” in step 2, without ever visiting

steps 4c and 4d. Then f is optimal.

Proof. Let T be the forest upon termination, and denote

E(T) = {Cv : Ctv ∈ E(T) for some t} ∪ {vC : vCt ∈ E(T) for some t}.

Inspecting Algorithm 1, one can check that E(T) has the following properties:

1. If v is an inconsistent variable in f and {v, C} ∈ E , then vC ∈ E(T).

2. If Cv ∈ E(T) and {v,D} ∈ E , D 6= C, then vD ∈ E(T).

3. If vC ∈ E(T), then Cv /∈ E(T).

4. Suppose that vC ∈ E(T) and f(C)⊕ v ⊕ w ∈ C where v, w are distinct nodes in

the scope of constraint C. Then Cw ∈ E(T).

An f -walk p will be called bad if it starts at a variable node which is inconsistent in f ,

and contains an edge Cv /∈ E(T); otherwise p is good. Clearly, any augmenting f -walk

is bad: its last edge Cv satisfies vC ∈ E(T) by property 1, and thus Cv /∈ E(T). Thus,

if f is not optimal, then by Lemma 3.5.2 there exists at least one bad f -walk. Let p be

a shortest bad f -walk. Write p = p?(vCw) where p? ends at v. By minimality of p, p?

is good and Cw /∈ E(T). Using properties (1) or (2), we obtain that vC ∈ E(T) (and

therefore Cv /∈ E(T)).

65

Let q be the shortest prefix of p? (also an f -walk) such that f ⊕ q ⊕ (vCw) is valid

(at least one such prefix exists, namely q = p?). The walk q must be of positive length

(otherwise the precondition of property (4) would hold, and we would get Cw ∈ E(T), a

contradiction). Also, the last constraint node in q must be C, otherwise we could have

taken a shorter prefix (namely one ending at C). Thus, we can write q = q?(xCy) where

q? ends at x. Note that, since p is a walk, the variables x, y, v, w are (pairwise) distinct.

We shall write g = f ⊕ q?. Let us apply the even ∆-matroid property to tuples

g(C)⊕ x⊕ y ⊕ v ⊕ w and g(C) (which are both in C) in coordinate y. We get that either

g(C)⊕ v ⊕ w ∈ C, or g(C)⊕ x⊕ v ∈ C, or g(C)⊕ x⊕ w ∈ C. In the first case we could

have chosen q? instead of q – a contradiction to the minimality of q. In the other two

cases q?(xCu) is an f -walk for some u ∈ {v, w}. But then from Cu /∈ E(T) we get that

q?(xCu) is a bad walk – a contradiction to the minimality of p.

Corollary 3.5.17 (Theorem 3.4.5(5)). If Algorithm 1 answers “No”, then the edge labeling

f is optimal.

Proof. Algorithm 1 can answer “No” for two reasons: either the forest T can not be

grown further and neither an augmenting path nor a blossom are found, or the algorithm

finds a blossom b, contracts it and then concludes that f b is optimal for Ib. We proceed

by induction on the number of contractions that have occurred during the run of the

algorithm.

The base case, when there were no contractions, follows from Lemma 3.5.16. The

induction step is an easy consequence of Lemma 3.4.10: If we find b and the algorithm

answers “No” when run on f b and Ib then, by the induction hypothesis, f b is optimal for

Ib, and by Lemma 3.4.10 f is optimal for I.

3.6 Extending the algorithm to efficiently coverable ∆-

matroids

In this section we extend Algorithm 1 from even ∆-matroids to a wider class of so-

called efficiently coverable ∆-matroids. The idea of the algorithm is similar to what [30]

previously did for C-zebra ∆-matroids, but our method covers a larger class of ∆-

matroids.

66

Let us begin by giving a formal definition of efficiently coverable ∆-matroids.

Definition 3.6.1. We say that a class of ∆-matroids Γ is efficiently coverable if there is

an algorithm that, given input M ∈ Γ and α ∈ M , lists in polynomial time a set Mα so

that the system {Mα : α ∈M} satisfies the conditions of Definition 3.1.8.

Before we go on, we would like to note that coverable ∆-matroids are closed under

gadgets, i.e. the “supernodes” shown in Figure 3.1. Taking gadgets is a common

construction in the CSP world, so being closed under gadgets makes coverable ∆-

matroids a very natural class to study.

Definition 3.6.2. Given M ⊆ {0, 1}U and N ⊆ {0, 1}V with U, V disjoint sets of variables,

we define the direct product of M and N as

M ×N = {(α, β) : α ∈M,β ∈ N} ⊆ {0, 1}U∪V .

If w1, w2 ∈ U are distinct variables of M , then the ∆-matroid obtained from M by

identifying w1 and w2 is

Mw1=w2 = {β�U\{w1,w2} : β ∈M, β(w1) = β(w2)}

⊆ {0, 1}U\{w1,w2}

It is easy to verify that a direct product of two (even) ∆-matroids is an (even) ∆-

matroid. Showing that identifying two variables in an (even) ∆-matroid yields an (even)

∆-matroid is a bit more difficult, but still straightforward.

If a matroid P is obtained from some matroids M1, . . . ,Mk by a sequence of direct

products and identifying variables, we say that P is gadget-constructed from M1, . . . ,Mk

(a gadget is an edge CSP instance with some variables present in only one constraint –

these are the “output variables”).

Theorem 3.6.3. The class of coverable ∆-matroids is closed under:

1. Direct products,

2. identifying pairs of variables, and

3. gadget constructions.

67

Proof. 1. Let M ⊆ {0, 1}U and N ⊆ {0, 1}V be two coverable ∆-matroids. We claim

that if (α, β) and (γ, δ) are even-neighbors in M ×N , then either α = γ and β is

an even-neighbor of δ in N , or β = δ and α is an even-neighbor of γ in M . This

is straightforward to verify: Without loss of generality let us assume that u ∈ U

is a variable of M such that (α, β) ⊕ u 6∈ M × N , and let v be the variable such

that (α, β)⊕ u⊕ v = (γ, δ). Since we are dealing with a direct product, we must

have α ⊕ u 6∈ M and in order for (α, β) ⊕ u ⊕ v to lie in M × N , we must have

α⊕ u⊕ v ∈M . But then δ = β and α⊕ u⊕ v = γ is an even-neighbor of α.

Let α ∈M , β ∈ N and let Mα, Nβ be the even ∆-matroids from Definition 3.1.8 for

M and N . From the above paragraph, it follows by induction that whenever (γ, δ)

is reachable from (α, β), then (γ, δ) ∈Mα ×Nβ. Since each Mα ×Nβ is an even

∆-matroid, the direct product M ×N satisfies the first two parts of Definition 3.1.8.

It remains to show that if we can reach (γ, δ) ∈ M × N from (α, β) ∈ M × N

and (γ, δ) ⊕ u ⊕ v ∈ Mα × Nβ \M × N , then (γ, δ) ⊕ u, (γ, δ) ⊕ v ∈ M × N . By

the first paragraph of this proof, we can reach γ from α in M and δ from β in N .

Moreover, both u and v must lie in the same set U or V , for otherwise we would

have that (γ ⊕ v, δ ⊕ u) or (γ ⊕ u, δ ⊕ v) lies in Mα ×Nβ, a contradiction with Mα

being an even ∆-matroid. So let (again without loss of generality) u, v ∈ V . Then

δ ⊕ u ⊕ v ∈ Nβ \ N . Since N is coverable and δ is reachable from β, we get

δ ⊕ v, δ ⊕ u ∈ N , giving us (γ, δ)⊕ u, (γ, δ)⊕ v ∈M ×N and we are done.

2. Let M ⊆ {0, 1}U be coverable and w1 6= w2 be two variables.

Similarly to the previous item, the key part of the proof is to show that the relation of

being reachable survives identifying w1 and w2: More precisely, take α, γ ∈Mw1=w2

and β ∈ M such that β(w1) = β(w2) and α = β�U\{w1,w2} (i.e. β witnesses

α ∈Mw1=w2). Assume that we can reach γ from α. Then we can reach from β a

tuple δ ∈M such that δ(w1) = δ(w2) and γ = δ�U\{w1,w2}.

Since we can proceed by induction, it is enough to prove this claim in the case

when α, γ are even-neighbors. So assume that there exist variables u and v

such that γ = α ⊕ u ⊕ v and α ⊕ u 6∈ Mw1=w2. From the latter, it follows that

β ⊕ u, β ⊕ u ⊕ w1 ⊕ w2 6∈ M . Knowing all this, we see that if β ⊕ u ⊕ v ∈ M , the

tuple β ⊕ u⊕ v is an even-neighbor of β and we are done.

68

Assume thus that β ⊕ u⊕ v 6∈M . Let δ be the tuple of M witnessing γ ∈Mw1=w2.

Since β ⊕ u⊕ v 6∈M , we get δ = β ⊕ u⊕ v⊕w1 ⊕w2. Since β ⊕ u, β ⊕ u⊕ v 6∈M ,

the ∆-matroid property applied on β and δ in the variable u gives us (without loss

of generality) that β ⊕ u⊕w1 ∈M . But then β is an even-neighbor of β ⊕ u⊕w1 in

M , which is an even neighbor (via the variable w2 – recall that β⊕u⊕w1⊕w2 6∈M)

of δ and so we can reach δ from β, proving the claim.

Assume now that M is coverable. We want to show that the sets (Mβ)w1=w2 where

β ranges over M cover Mw1=w2. Choose α ∈ Mw1=w2 and let β ∈ M be the

witness for α ∈ Mw1=w2. We claim that the even ∆-matroid (Mβ)w1=w2 contains

all members of Mw1=w2 that can be reached from α. Indeed, whenever γ can be

reached from α, some δ ∈M that witnesses γ ∈Mw1=w2 can be reached from β,

so δ ∈Mβ and γ ∈ (Mβ)w1=w2.

To finish the proof, take β ∈ M witnessing α ∈ Mw1=w2 and γ ∈ Mw1=w2 that is

reachable from α and satisfies γ ⊕ u⊕ v ∈ (Mβ)w1=w2 \Mw1=w2 for a suitable pair

of variables u, v. Take a δ ∈M that witnesses γ ∈Mw1=w2 and is reachable from β

(we have shown above that such a δ exists). Since γ⊕u⊕v ∈ (Mβ)w1=w2 \Mw1=w2 ,

we know that neither δ⊕ u⊕ v nor δ⊕ u⊕ v⊕w1⊕w2 lies in M , but at least one of

these two tuples lies in Mβ. If δ ⊕ u⊕ v ∈Mβ, we just use coverability of M to get

δ ⊕ u, δ ⊕ v ∈M , which translates to γ ⊕ u, γ ⊕ v ∈Mw1=w2 . If this is not the case,

we know that δ, δ ⊕ u ⊕ v ⊕ w1 ⊕ w2 ∈ Mβ and δ ⊕ u ⊕ v 6∈ Mβ. We show that in

this situation we have γ ⊕ u ∈Mw1=w2; the proof of γ ⊕ v ∈Mw1=w2 is analogous.

Using the even ∆-matroid property of Mβ on δ and δ ⊕ u ⊕ v ⊕ w1 ⊕ w2 in the

variable u, we get that without loss of generality δ ⊕ u ⊕ w1 ∈ Mβ (recall that

δ⊕u⊕v 6∈Mβ). If δ⊕u⊕w1 6∈M , we can directly use coverability of M on δ to get

that δ ⊕ u ∈M , resulting in γ ⊕ u ∈Mw1=w2 . If, on the other hand, δ ⊕ u⊕ w1 ∈M

and δ ⊕ u 6∈M , then δ ⊕ u⊕ w1 is reachable from β, so we can use coverability of

M on δ⊕u⊕w1 ∈M and δ⊕u⊕v⊕w1⊕w2 ∈Mβ \M to get δ⊕u⊕w1⊕w2 ∈M ,

which again results in γ ⊕ u ∈Mw1=w2 , finishing the proof.

3. This follows from the previous two points as any gadget construction is equivalent

to a sequence of products followed by identifying variables.

69

Returning to edge CSP, the main notions from the even ∆-matroid case translate

to the efficiently coverable ∆-matroid case easily. The definitions of valid, optimal, and

non-optimal edge labeling may remain intact for coverable ∆-matroids, but we need to

adjust our definition of a walk, which will now be allowed to end in a constraint.

Definition 3.6.4 (Walk for general ∆-matroids). A walk q of length k or k + 1/2 in the

instance I is a sequence q0C1q1C2 . . . Ckqk or q0C1q1C2 . . . Ck+1, respectively, where the

variables qi−1, qi lie in the scope of the constraint Ci, and each edge {v, C} ∈ E is

traversed at most once: vC and Cv occur in q at most once, and they do not occur

simultaneously.

Given an edge labeling f and a walk q, we define the edge labeling f ⊕ q in the

same way as before (see eq. (3.1)). We also extend the definitions of an f -walk and an

augmenting f -walk for a valid edge labeling f : A walk q is an f -walk if f ⊕ q? is a valid

edge labeling whenever q? = q or q? is a prefix of q that ends at a variable. An f -walk is

called augmenting if: (1) it starts at a variable inconsistent in f , (2) it ends either at a

different inconsistent variable or in a constraint, and (3) all variables inside of q (ie. not

endpoints) are consistent in f . Note that if f is a valid edge labeling for which there is

an augmenting f -walk, then f is non-optimal (since f ⊕ q is a valid edge labeling with 1

or 2 fewer inconsistent variables).

The main result of this section is tractability of efficiently coverable ∆-matroids.

Theorem 3.6.5 (Theorem 3.1.9 restated). Given an edge CSP instance I with efficiently

coverable ∆-matroid constraints, an optimal edge labeling f of I can be found in time

polynomial in |I|.

The rough intuition of the algorithm for improving coverable ∆-matroid edge CSP

instances is the following. When dealing with general ∆-matroids, augmenting f -walks

may also end in a constraint – let us say that I has the augmenting f -walk q that ends in

a constraint C. In that case, the parity of f(D) and (f ⊕ p)(D) is the same for all D 6= C.

If we guess the correct C (in fact, we will try all options) and flip its parity, we can, under

reasonable conditions, find this augmentation via the algorithm for even ∆-matroids.

Not all ∆-matroids M are coverable (see Appendix A.4 for counterexample). How-

ever, we will show below how to efficiently cover many previously considered classes of

70

∆-matroids. These would be co-independent [29], compact [41], local [24], and binary

[34, 24] ∆-matroids.

Proposition 3.6.6. The classes of co-independent, local, compact, and binary ∆-

matroids are efficiently coverable.

For the proof of this proposition as well as (some of) the definitions, we refer the

reader to Appendix A.5.

The algorithm

The following lemma is a straightforward generalization of Lemma 3.5.2.

Lemma 3.6.7. Let f, g be valid edge labelings of instance I (with general ∆-matroid

constraints) such that g has fewer inconsistencies than f . Then we can, given f and g,

compute in polynomial time an augmenting f -walk p (possibly ending in a constraint, in

the sense of Definition 3.6.4).

Proof. We proceed in two stages like in the proof of Lemma 3.5.2: First we modify g

so that any variable consistent in f is consistent in g, then we look for the augmenting

f -walk in f ∆ g. The only difference over Lemma 3.5.2 is that our g-walks and f -walks

can now end in a constraint as well as in a variable.

First, we repeatedly modify the edge labeling g using the following procedure:

(1) Pick a variable v ∈ V which is consistent in f , but not in g. (If no such v exists

then go to the next paragraph). By the choice of v, there exists a unique edge

{v, C} ∈ f ∆ g. If g(C)⊕v ∈ C, replace g with g⊕vC, then go to the beginning and

repeat. Otherwise, pick variable w 6= v in the scope of C such that {w,C} ∈ f ∆ g

and g(C)⊕ v⊕w ∈ C (it exists since C is a ∆-matroid and g(C)⊕ v 6∈ C). Replace

g with g ⊕ (vCw) and then also go to the beginning and repeat.

It can be seen that g remains a valid edge labeling, and the number of inconsistencies

in g never increases. Furthermore, each step decreases |f ∆ g|, so this procedure must

terminate after at most O(|E|) = O(|V |) steps.

We now have valid edge labelings f, g such that f has more inconsistencies than

g, and variables consistent in f are also consistent in g. In the second stage we will

71

maintain an f -walk p and the corresponding valid edge labeling f ? = f ⊕ p. To initialize,

pick a variable r ∈ V which is consistent in g but not in f , and set p = r and f ? = f . We

then repeatedly apply the following step:

2. Let v be the endpoint of p. The variable v is consistent in g but not in f ?, so there

must exist a unique edge {v, C} ∈ f ? ∆ g. If f ?(C) ⊕ v ∈ C, then output pC (an

augmenting f -walk). Otherwise, pick variable w 6= v in the scope of C such that

{w,C} ∈ f ? ∆ g and f ?(C) ⊕ v ⊕ w ∈ C (it exists since C is a ∆-matroid and

f ?(C) ⊕ v 6∈ C). Append vCw to the end of p, and accordingly replace f ? with

f ? ⊕ (vCw) (which is valid by the choice of w). As a result of this update, edges

{v, C} and {w,C} are removed from f ? ∆ g.

If w is inconsistent in f , then output p (which is an augmenting f -walk) and

terminate. Otherwise w is consistent in f (and thus in g) but not in f ?; in this case,

go to the beginning and repeat.

It is easy to verify that the p being produced is an f -walk. Also, each step decreases

|f ? ∆ g| by 2, so this procedure must terminate after at most O(|E|) = O(|V |) steps

and just like in the case of even ∆-matroids, the only way to terminate is to find an

augmentation.

Definition 3.6.8. Let f be a valid edge labeling of instance I with coverable ∆-matroid

constraints. For a constraint C ∈ C and a ∆-matroid C ′ ⊆ C, we will denote by I(f, C, C ′)

the instance obtained from I by replacing the constraint relation of C by C ′ and the

constraint relation of each D ∈ C \ {C} by the even ∆-matroid Df(D) (that comes from

the covering).

Observe that f induces a valid edge labeling for I(f, C, C). Moreover, if we choose

α ∈ C, then I(f, C, {α}) is an edge CSP instance with even ∆-matroid constraints and

hence we can find its optimal edge labeling by Algorithm 1 in polynomial time.

Lemma 3.6.9. Let f be a non-optimal valid edge labeling of instance I with coverable

∆-matroid constraints. Then there exist C ∈ C and α ∈ C such that the optimal edge

labeling for I(f, C, {α}) has fewer inconsistencies than f .

72

Proof. If f is non-optimal for I, then by Lemma 3.6.7 there exists an augmenting f -walk

q in I. Take q such that no proper prefix of q is augmenting (i.e. we can not end early in

a constraint). Let C be the last constraint in the walk and let α = (f ⊕ q)(C).

We claim that f ⊕ q is also a valid edge labeling for the instance I(f, C, {α}). This

is enough to prove the statement, since this labeling of I(f, C, {α}) has fewer incon-

sistencies than f . Since we choose α so that (f ⊕ q)(C) = α, we only need to

consider constraints different from C. Assume that p is the shortest prefix of q such that

(f ⊕ p)(D) is not reachable from Df(D) for some D 6= C (if there is no such thing, then

(f ⊕ q)(D) ∈ Df(D) for all D 6= C). We let p = p?xDy. Since (f ⊕ p?)(D) is reachable

from f(D), but (f ⊕ p?)(D)⊕ x⊕ y is not, we must have (f ⊕ p?)(D)⊕ x ∈ D. But then

p?xD is an augmenting f -walk in I that is shorter than p, a contradiction with the choice

of p.

Lemma 3.6.10. Let f be a valid assignment for the instance I with coverable ∆-matroid

constraints and let C ∈ C and α ∈ C be such that there exists a valid edge labeling g

for the instance I(f, C, {α}) with fewer inconsistencies than f . Then there exists an

augmenting f -walk for I and it can be computed in polynomial time given g.

Proof. We begin by noticing that both f and g are valid edge labelings for the instance

I(f, C, C). Since g has fewer inconsistencies than f , by Lemma 3.6.7 we can compute

an f -walk q which is augmenting in I(f, C, C). It is easy to examine q and check if some

proper prefix of q is an augmenting f -walk for I (ending in a constraint). If that happens

we are done, so let us assume that this is not the case. We will show that then q itself

must be an augmenting f -walk for I.

First assume that every prefix of q with integral length is an f -walk in I. Then either

q is of integral length and we are done (q is its own prefix), or q ends in a constraint. If

it is the latter, q must end in C, since that is the only constraint of I(f, C, C) that is not

forced to be an even ∆-matroid. But the constraint relation C is the same for both I and

I(f, C, C), so flipping the last edge of q is allowed in I.

Let now p be the shortest prefix of q with integral length which is not an f -walk in

I. We can write p = p?xDy for suitable x, y,D. The constraint relation of D must be

different in I and I(f, C, C), so D 6= C. By the choice of p, for any prefix r of p? of

integral length we have (f ⊕ r)(D) ∈ D and moreover the tuple (f ⊕ r)(D) is reachable

73

from f(D). (If not, take the shortest counterexample r. Obviously, r = r?uDv for some

variables u, v and a suitable r?. Since (f ⊕ r?)(D) ∈ D is reachable from f(D) and

(f ⊕ r?)(D) ⊕ u ⊕ v is not, we get (f ⊕ r?)(D) ⊕ u ∈ D and r?uD is augmenting in I,

which is a contradiction.) This holds also for r = p?, so (f ⊕ p?)(D) is reachable from

f(D).

To finish the proof, let β? = (f ⊕ p?)(D) and β = (f ⊕ p)(D). We showed that β? ∈ D

is reachable from f(D). Also, β? ⊕ x ⊕ y = β ∈ Df(D) \ D. Then by the definition of

coverable ∆-matroids we have β? ⊕ x ∈ D. Thus p?xD is an augmenting f -walk in I

and we are done.

It is easy to see that all steps of the proof can be made algorithmic.

Now the algorithm is very simple to describe. Set some valid edge labeling f and

repeat the following procedure. For all pairs (C, α) with α ∈ C and C ∈ C, call Algorithm

1 on the instance I(f, C, {α}) (computing the instance I(f, C, {α}) can be done in

polynomial time because all constraints of I come from an efficiently coverable class). If

for some (C, α) we obtained an edge labeling of I(f, C, {α}) with fewer inconsistencies,

use Lemma 3.6.10 to get an augmenting f -walk for I. Otherwise, we have proved that

the original f was optimal.

The algorithm is correct due to Lemma 3.6.9. The running time is polynomial because

there are at most |I| pairs (C, α) such that α ∈ C and at most |I| inconsistencies in the

initial edge labeling, so the (polynomial) Algorithm 1 gets called at most |I|2 times.

Even-zebras are coverable (but not vice versa)

The paper [30] introduces several classes of zebra ∆-matroids. For simplicity, we will

consider only one of them: C-zebras.

Definition 3.6.11. Let C be a subclass of even ∆-matroids. A ∆-matroid M is a C-zebra

if for every α ∈M there exists an even ∆-matroid Mα in C that contains all tuples in M

of the same parity as α and such that for every β ∈ M and every u, v ∈ V such that

β ⊕ u⊕ v ∈Mα \M we have β ⊕ v, β ⊕ u ∈M .

In [30], the authors show a result very much similar to Theorem 3.1.9, but for C-

zebras: In our language, the result states that if one can find optimal labelings for

74

CSPEDGE(C) in polynomial time, then the same is true for the edge CSP with C-zebra

constraints. In the rest of this section, we show that coverable ∆-matroids properly

contain the class of C-zebras with C equal to all even ∆-matroids (this is the largest C

allowed in the definition of C-zebras) – we will call this class even-zebras for short.

Observation 3.6.12. Let M be an even-zebra. Then M is coverable.

Proof. Given α ∈ M , we can easily verify that the matroids Mα satisfy all conditions

of the definition of coverable ∆-matroids: Everything reachable from α has the same

parity as α and the last condition from the definition of even-zebras is identical to

coverability.

Moreover, it turns out that the inclusion is proper: There exists a ∆-matroid that is

coverable, but is not an even-zebra.

Let us take M = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} and consider N =

M ×M . It is easy to verify that M is a ∆-matroid that is an even-zebra with the sets Mα

equal to {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} and {(1, 1, 1)}, respectively, and thus M is

coverable.

Since coverable ∆-matroids are closed under direct products, N is also coverable.

However, N is not an even-zebra: Assume that there exists a set Nα that contains

all tuples of N of odd parity and satisfies the zebra condition. Then the two tuples

(1, 1, 1, 0, 0, 0) and (1, 1, 0, 1, 1, 1) of N belong to Nα. Since Nα is an even ∆-matroid,

switching in the third coordinate yields that N contains the tuple (1, 1, 0, 1, 0, 0) (this is

without loss of generality; the other possibilities are all symmetric). This tuple is not a

member of N , yet we got it from (1, 1, 1, 0, 0, 0) ∈ N by switching the third and fourth

coordinate. So in order for the zebra property to hold, we need (1, 1, 1, 1, 0, 0) ∈ N , a

contradiction.

The above example also shows that even-zebras, unlike coverable ∆-matroids, are

not closed under direct products.

75

3.7 Discussion

We have given an algorithm, that solves Boolean edge CSPs for all even ∆-matroids

and a large gadget-closed class of ∆-matroids. However, many follow-up questions

remain.

Open Problem 3.7.1. Is CSPEDGE(Γ) solvable in polynomial time if all relations in Γ are

∆-matroids?

We believe that the tractability can be pushed beyond efficiently coverable ∆-matroids

but at the same time do not have enough evidence to phrase Open Problem 3.7.1 as a

conjecture.

In that regard, further investigation of Algorithm 1 could be useful. With minor

modifications this algorithm can be also phrased to work with ∆-matroid constraints. We

were able to show its correctness for a certain subclass of ∆-matroids but at the same

time lifting augmenting f -walks broke terribly, especially when multiple contractions

were involved. Non coverable ∆-matroid from Appendix A.4 was a particularly rich

source of counterexamples.

Open Problem 3.7.2. What is the power of Algorithm 1, when naturally extended to

∆-matroids?

Algorithm 1 has one additional undesirable feature. While Edmonds’ algorithm has

implementations that maintain one forest through all levels of contraction, our Algorithm

1 is not able to do so. It seems a different contraction mechanism would be needed.

Open Problem 3.7.3. Can Algorithm 1 be modified as to maintain one forest through

all levels of contraction and uncontraction?

A positive answer to this question would be beneficial not only for efficiency reasons

but it would also unlock the opportunity to move towards weighted edge CSP by

mimicking the primal-dual algorithm for weighted matching [57].

Open Problem 3.7.4. Is there a framework for weighted edge CSP and an algorithm

that would extend maximum weight perfect matching algorithm in analogous fashion as

how Algortihm 1 generalizes the unweighted version?

76

Bibliography

[1] L. Barto. The dichotomy for conservative constraint satisfaction problems revisited.

In Proceedings of the 26th IEEE Symposium on Logic in Computer Science

(LICS’11), pages 301–310. IEEE Computer Society, 2011.

[2] L. Barto. The collapse of the bounded width hierarchy. Journal of Logic and

Computation, 26(3):923–943, 2016.

[3] L. Barto and M. Kozik. Absorbing subalgebras, cyclic terms and the constraint

satisfaction problem. Logical Methods in Computer Science, 8(1):1–26, 2012.

[4] L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consis-

tency methods. Journal of the ACM, 61(1):Article 3, 2014.

[5] L. Barto and M. Kozik. Robustly solvable constraint satisfaction problems. SIAM

Journal on Computing, 45(4):1646–1669, 2016.

[6] L. Barto, M. Kozik, and T. Niven. The CSP dichotomy holds for digraphs with no

sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell).

SIAM Journal on Computing, 38(5):1782–1802, 2009.

[7] A. Bouchet. Multimatroids I. coverings by independent sets. SIAM Journal on

Discrete Mathematics, 10(4):626–646, 1997.

[8] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approx-

imations. In Computer Vision and Pattern Recognition, pages 648–655. IEEE

Computer Society, 1998.

[9] J. Brown-Cohen and P. Raghavendra. Correlation Decay and Tractability of CSPs.

In 43rd International Colloquium on Automata, Languages, and Programming

77

(ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics

(LIPIcs), pages 79:1–79:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik.

[10] A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element

set. Journal of the ACM, 53(1):66–120, 2006.

[11] A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM

Transactions on Computational Logic, 12(4):Article 24, 2011.

[12] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints

using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[13] J.-Y. Cai, P. Lu, and M. Xia. Computational complexity of holant problems. SIAM J.

Comput., 40(4):1101–1132, July 2011.

[14] S. O. Chan, J. R. Lee, P. Raghavendra, and D. Steurer. Approximate constraint

satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

[15] D. Cohen, M. Cooper, P. Creed, P. Jeavons, and S. Živný. An algebraic theory of

complexity for discrete optimisation. SIAM Journal on Computing, 42(5):1915–1939,

2013.

[16] D. Cohen, M. Cooper, and P. Jeavons. An algebraic characterisation of complexity

for valued constraints. In CP’06, volume 4204 of LNCS, pages 107–121, 2006.

[17] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin. Supermodular functions and the

complexity of Max CSP. Discrete Applied Mathematics, 149(1-3):53–72, 2005.

[18] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,

P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chapter 8.

Elsevier, 2006.

[19] D. A. Cohen, M. C. Cooper, P. G. Jeavons, and A. A. Krokhin. The Complexity of

Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

[20] Y. Crama and P. Hammer. Boolean Functions – Theory, Algorithms and Applications.

Cambridge University Press, 2011.

78

[21] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean

Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete

Mathematics and Applications. 2001.

[22] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean

Constraint Satisfaction Problems. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2001.

[23] N. Creignou, P. Kolaitis, and H. Vollmer, editors. Complexity of Constraints, volume

5250 of LNCS. Springer, 2008.

[24] V. Dalmau and D. Ford. Mathematical Foundations of Computer Science 2003:

28th International Symposium, MFCS 2003, Bratislava, Slovakia, August 25-29,

2003. Proceedings, chapter Generalized Satisfiability with Limited Occurrences per

Variable: A Study through Delta-Matroid Parity, pages 358–367. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003.

[25] V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin. The approximability of Max

CSP with fixed-value constraints. Journal of the ACM, 55(4):Article 16, 2008.

[26] Z. Dvořák and M. Kupec. On planar Boolean CSP. In ICALP ’15, volume 9134 of

Lecture Notes in Computer Science, pages 432–443. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2015.

[27] J. Edmonds. Path, trees, and flowers. Canadian J. Math., 17:449–467, 1965.

[28] A. Ene, J. Vondrák, and Y. Wu. Local distribution and the symmetry gap: Ap-

proximability of multiway partitioning problems. In SODA, pages 306–325, 2013.

Update at arXiv1503.03905.

[29] T. Feder. Fanout limitations on constraint systems. Theoretical Computer Science,

255(1–2):281–293, 2001.

[30] T. Feder and D. Ford. Classification of bipartite Boolean constraint satisfac-

tion through delta-matroid intersection. SIAM Journal on Discrete Mathematics,

20(2):372–394, 2006.

79

[31] T. Feder and M. Vardi. The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory. SIAM Journal

on Computing, 28:57–104, 1998.

[32] P. Fulla and S. Živný. A galois connection for weighted (relational) clones of infinite

size. ACM Trans. Comput. Theory, 8(3):9:1–9:21, May 2016.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[34] J. F. Geelen, S. Iwata, and K. Murota. The linear delta-matroid parity problem.

Journal of Combinatorial Theory, Series B, 88(2):377 – 398, 2003.

[35] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J.

ACM, 35(4):921–940, Oct. 1988.

[36] G. Gottlob, G. Greco, and F. Scarcello. Tractable optimization problems through

hypergraph-based structural restrictions. In Proceedings of ICALP’09, pages

16–30, 2009.

[37] J. Håstad. Every 2-CSP allows nontrivial approximation. Computational Complexity,

17(4):549–566, 2008.

[38] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, Oct.

1974.

[39] A. Huber, A. Krokhin, and R. Powell. Skew bisubmodularity and valued CSPs.

SIAM Journal on Computing, 43(3):1064–1084, 2014.

[40] P. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard. Tractability and

learnability arising from algebras with few subpowers. SIAM Journal on Computing,

39(7):3023–3037, 2010.

[41] G. Istrate. Looking for a version of Schaefer’s dichotomy theorem when each

variable occurs at most twice. Technical report, University of Rochester, Rochester,

NY, USA, 1997.

[42] P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical

Computer Science, 200:185–204, 1998.

80

[43] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal

of the ACM, 44:527–548, 1997.

[44] P. Jonsson, M. Klasson, and A. Krokhin. The approximability of three-valued Max

CSP. SIAM Journal on Computing, 35(6):1329–1349, 2006.

[45] P. Jonsson, F. Kuivinen, and J. Thapper. Min CSP on four elements: Moving beyond

submodularity. In Proceedings of CP’11, pages 438–453, 2011.

[46] P. Jonsson and G. Nordh. Introduction to the Maximum Solution problem. In

Complexity of Constraints, volume 5250 of LNCS, pages 255–282. 2008.

[47] A. Kazda, V. Kolmogorov, and M. Rolínek. Even delta-matroids and the complexity

of planar Boolean CSPs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA’17), pages 307–326. SIAM, 2017.

[48] P. Kolaitis and M. Vardi. Conjunctive-query containment and constraint satisfaction.

Journal of Computer and System Sciences, 61:302–332, 2000.

[49] V. Kolmogorov, A. Krokhin, and M. Rolínek. The complexity of general-valued

csps. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of

Computer Science (FOCS), FOCS ’15, pages 1246–1258, Washington, DC, USA,

2015. IEEE Computer Society.

[50] V. Kolmogorov, M. Rolínek, and R. Takhanov. Effectiveness of structural restrictions

for hybrid csps. In Algorithms and Computation: 26th International Symposium,

ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 566–577,

Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[51] V. Kolmogorov, J. Thapper, and S. Živný. The power of linear programming for

general-valued CSPs. SIAM Journal on Computing, 44(1):1—-36, 2015.

[52] V. Kolmogorov and S. Živný. The complexity of conservative valued CSPs. Journal

of the ACM, 60(2):Article 10, 2013.

[53] M. Kozik and J. Ochremiak. Algebraic properties of valued constraint satisfaction

problem. In Automata, Languages, and Programming - 42nd International Collo-

quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages

846–858, 2015.

81

[54] M. Kozik and J. Ochremiak. Algebraic properties of valued constraint satisfaction

problem. arXiv1403.0476, 2015.

[55] A. Krokhin and S. Živný. The complexity of valued CSPs. To appear in The

Constraint Satisfaction Problem: Complexity and Approximability, 2017.

[56] S. L. Lauritzen. Graphical Models. Oxford University Press, 1996.

[57] L. Lovász and M. Plummer. Matching Theory. AMS Chelsea Publishing Series.

American Mathematical Soc., 2009.

[58] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive

queries. J. ACM, 60(6):Article 42, 2013.

[59] U. Montanari. Networks of constraints: Fundamental properties and applications

to picture processing. Information Sciences, 7:95–132, 1974.

[60] B. M. E. Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51–54, June 1988.

[61] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP?

In STOC’08, pages 245–254, 2008.

[62] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.

Elsevier, 2006.

[63] T. Schaefer. The complexity of satisfiability problems. In STOC’78, pages 216–226,

1978.

[64] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[65] R. Takhanov. A dichotomy theorem for the general minimum cost homomorphism

problem. In STACS’10, pages 657–668, 2010.

[66] J. Thapper and S. Živný. Sherali-Adams relaxations for valued CSPs. In Automata,

Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,

Japan, July 6-10, 2015, Proceedings, Part I, pages 1058–1069, 2015.

[67] J. Thapper and S. Živný. The complexity of finite-valued CSPs. In Proceedings of

the 45th ACM Symposium on the Theory of Computing (STOC’13), pages 695–704.

ACM, 2013.

82

[68] J. Thapper and S. Živný. The power of Sherali-Adams relaxations for general-

valued CSPs. arXiv1606.02577, 2016.

[69] E. P. K. Tsang. Foundations of constraint satisfaction. Computation in cognitive

science. Academic Press, London and San Diego, 1993.

[70] H. Uppman. The Complexity of Three-Element Min-Sol and Conservative Min-Cost-

Hom. In Proceedings of the 40th International Colloquium on Automata, Languages,

and Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science,

pages 804–815. Springer, 2013.

[71] H. Uppman. Computational complexity of the extended minimum cost homomor-

phism problem on three-element domains. In 31st International Symposium on

Theoretical Aspects of Computer Science (STACS 2014), pages 651–662, 2014.

[72] M. Wainwright and M. Jordan. Graphical models, exponential families, and vari-

ational inferences. Foundations and Trends in Machine Learning, 1(1-2):1–305,

2008.

83

A Appendices

A.1 Proofs for Section 2.4

In this section we prove the properties of graph (G, E) stated in Section 2.4.

Proof of Proposition 2.4.1

Part (a) We have g = 1
s1...sk and h = 1

sk+1...s` for some s1, . . . , s` ∈ supp(ω) and

0 ≤ k ≤ `. Therefore, h ◦ g = [1s` ◦ . . . ◦ 1sk+1] ◦ [1sk ◦ . . . ◦ 1s1] = 1
s1...s` ∈ G. Also,

h ◦ g = gsk+1...s` , and so there is path from g to h ◦ g in (G, E). Since no edges leave the

strongly connected component H, we obtain that if g ∈ H then h ◦ g ∈ H.

Part (b) Pick ĝ ∈ H. Since H′ is strongly connected, there is a path from ĝ ◦ g′ ∈ H∗ to

g′ ∈ H′ in (G, E), i.e. g′ = [ĝ ◦ g′]s1...sk = h ◦ ĝ ◦ g′ where h = 1
s1...sk . It can be checked

that mapping g = h ◦ ĝ has the desired properties.

Part (c) By assumption, x = g∗(y) for some g∗ ∈ H∗ ∈ Sinks(G, E) and y ∈ [Dn]m.

By part (b) there exists g ∈ H satisfying g ◦ g∗ = g∗. We get that g(x) = g(g∗(y)) =

(g ◦ g∗)(y) = g∗(y) = x.

Proof of Proposition 2.4.2

By assumption, we have x̂ = g∗(y) for some g∗ ∈ G∗, y ∈ Dm and x = h(x̂) for some

h ∈ G.

84

Part (a) We have x = (h ◦ g∗)(y) with h ◦ g∗ ∈ G∗; this establishes the claim.

Part (b) Let H ∈ Sinks(G, E) be the strongly connected component to which g∗ belongs.

There exists a path in (H, E[H]) from h ◦ g∗ ∈ H to g∗ ∈ H, i.e. g∗ = 1
s1...sk ◦ h ◦ g∗ for

some s1, . . . , sk ∈ supp(ω) = G. Define g = 1
s1...sk ∈ G, then g∗ = g ◦ h ◦ g∗. We have

x̂ = g∗(y) = (g ◦ h ◦ g∗)(y) = (g ◦ h)(x̂) = g(x), as claimed.

Proof of Theorem 2.4.3

First, we make the following observation.

Proposition A.1.1. Suppose vector ρ is a fractional polymorphism of Γ of arity m→ m

and g ∈ supp(ρ). Then the following vector is also a fractional polymorphism of Γ of

arity m→ m:

ρ[g] = ρ+
ρ(g)

2

[
−χg +

∑

s∈ω

ω(s)χgs

]
(A.1)

Proof. Denote the vector in the square brackets as δ. Consider function f ∈ Γ and

labeling x ∈ [dom f]m. Since ρ is a fractional polymorphism of Γ, we have g(x) ∈

[dom f]m. We can write

∑

h∈supp(ρ[g])

δ(h)fm(h(x)) = −fm(g(x)) +
∑

s∈supp(ω)

ω(s)fm(gs(x)) ≤ 0

where the last inequality follows from condition (2.7a) applied to labelings g(x). Thus,

adding the extra term to ρ in (A.1) will not violate the fractional polymorphism inequality

for any x ∈ [dom f]m.

Note that supp(ρ[g]) = supp(ρ) ∪ {gs | s ∈ supp(ω)} for g ∈ supp(ρ).

We claim that Γ admits a fractional polymorphism ρ̂ with supp(ρ̂) = G. Indeed, we

can start with vector ρ = χ1 and then repeatedly modify it as ρ ← ρ[g] for mappings

g ∈ supp(ρ) that haven’t appeared before; after |G| − 1 steps we get a vector ρ̂ with the

claimed property.

Let Ω be the set of fractional polymorphisms ρ of Γ with supp(ρ) ⊆ G that satisfy

ρ(g) ≥ ρ̂(g) for all g ∈ Ĝ. Set Ω is non-empty since it contains ρ̂. Let ρ be a vector in

85

Ω that maximizes ρ(Ĝ) =
∑

g∈Ĝ ρ(g). (This maximum is attained since Ω is a compact

subset of R|G|). We claim that supp(ρ) = Ĝ. Indeed, the inclusion Ĝ ⊆ supp(ρ) is by

construction. Suppose there exists g ∈ supp(ρ)− Ĝ. By the condition of Theorem 2.4.3

there exists a path g0, . . . ,gk in (G, E) from g0 = g such that g0, . . . ,gk−1 ∈ G− Ĝ and

gk ∈ Ĝ. It can be checked that vector ρ′ = ρ[g0] . . . [gk−1] satisfies ρ′ ∈ Ω, ρ′(g) ≥ ρ(g)

for g ∈ Ĝ, and ρ′(gk) > ρ(gk). This contradicts the choice of ρ.

Proof of Theorem 2.4.4(a)

Consider component H ∈ Sinks(G, E), and denote H∗ = argmin{fm(g(x)) | g ∈ H}. We

claim that H∗ = H. Indeed, consider g ∈ H∗. Applying inequality (2.7a) to labelings

g(x) ∈ [dom f]m gives

∑

s∈supp(ω)

ω(s)fm(gs(x)) ≤ fm(g(x)) ∀x ∈ [dom f]m (A.2)

For each s ∈ supp(ω) we have gs ∈ H and thus fm(gs(x)) ≥ fm(g(x)). This means that

fm(gs(x)) = fm(g(x)). We showed that if g ∈ H∗ and (g,h) ∈ E then h ∈ H∗. Since H

is a strongly connected component of (G, E), we conclude that H = H∗.

We showed that fm(g(x)) is the same for all g ∈ H. By Proposition 2.4.1(c) there

exists h ∈ H with h(x) = x, and therefore fm(g(x)) = fm(h(x)) = fm(x) for all g ∈ H.

Since this holds for any H ∈ Sinks(G, E), the claim follows.

Proof of Theorem 2.4.4(b)

We mainly follow an argument from [67] (although without using the language of Markov

chains, relying on the Farkas lemma instead, as in [51]).

Let (G∗, E ′) be the subgraph of (G, E) induced by G∗. For an edge (g,h) ∈ E ′,

define positive weight w(g,h) =
∑

s∈supp(ω):gs=h

ω(s). Note that we have
∑

h:(g,h)∈E′

w(g,h) = 1

for all g ∈ G∗.

86

We claim that there exists vector λ ∈ RG∗

≥0 that satisfies

∑

g:(g,h)∈E′

w(g,h)λg − λh = 0 ∀h ∈ G∗ (A.3a)

∑

g∈G∗

λg = 1 (A.3b)

Indeed, suppose system (A.3) does not have a solution. By Farkas Lemma (see

Lemma 2.5.4), there exists a vector y ∈ RG∗

and a scalar z ∈ R such that

z − yg +
∑

h:(g,h)∈E′

w(g,h)yh ≥ 0 ∀g ∈ G∗ (A.4a)

z < 0 (A.4b)

Consider g ∈ G∗ with the maximum value of yg. We have

0 ≤ z − yg +
∑

h:(g,h)∈E′

w(g,h)yh ≤ z − yg +
∑

h:(g,h)∈E′

w(g,h)yg = z − yg + yg = z

This contradicts (A.4b), and thus proves that vector λ ≥ 0 satisfying (A.3) exists. Next,

we will show that this vector satisfies the property of Theorem 2.4.4(b).

Let us rewrite condition (2.7b) as follows:

∑

s∈supp(ω)

ω(s)f(xgsi) ≤
1

m− 1

∑

j∈[m]−{i}

f(xgj) ∀g ∈ G∗, i ∈ [m] (A.5)

Multiplying this inequality by λg and summing over g ∈ G∗ (for a fixed i ∈ [m]) gives

∑

g∈G∗

∑

h:(g,h)∈E′

w(g,h)λgf(x
hi) ≤

1

m− 1

∑

g∈G∗

λg

∑

j∈[m]−{i}

f(xgj) ∀i ∈ [m] (A.6)

Rearranging terms gives

∑

h∈G∗


 ∑

g:(g,h)∈E′

w(g,h)λg


 f(xhi) ≤

1

m− 1

∑

j∈[m]−{i}

∑

g∈G∗

λgf(x
gj) ∀i ∈ [m](A.7)

By (A.3a) the expression in the square brackets equals λh, and therefore (A.7) can be

87

rewritten as

fλ
i (x) ≤

1

m− 1

∑

j∈[m]−{i}

fλ
j (x) ∀i ∈ [m] (A.8)

Consider index i ∈ [m] with the maximum value of fλ
i (x). We have fλ

i (x) ≥ fλ
j (x) for

all j ∈ [m]− {i}, which together with (A.8) gives fλ
i (x) = fλ

j (x) for all j ∈ [m]− {i}, as

claimed.

A.2 Expressing special unary functions

In this part of the appendix we present a partial result that came from attempting to

adapt certain techniques from the finite-valued case [67]. In particular, how a binary

symmetric fractional polymorphism is constructed using special unary functions. We

were not able to finish this line of argument but for the sake of completeness we include

a partial result. Perhaps, it is of independent interest.

We aimed to prove that if (certain special) Γ admits a cyclic fractional polymorphism,

then it admits a binary symmetric fractional polymorphism (a fact that we, in the end,

proved by other means – and with slightly milder assumptions – as a part of Theorem

2.3.4).

The strategy used in [67] to construct such polymorphism given that Γ cannot

express certain NP-Hard function (instead of operating with a cyclic polymorphism)

could be vaguely described as follows:

(i) Express certain special unary functions (with a bit of additional expressive power,

namely fixing variables).

(ii) Show that a candidate binary fractional polymorphism “acts submodular” on many

pairs of domain elements.

(iii) Use the submodular behaviour to imply symmetry of the fractional polymorphism,

thus concluding the argument.

88

We were not able to follow this strategy entirely; the inability to guarantee finite costs

was particularly painful in (iii). However, we managed to obtain results similar to (i) using

alternative techniques (and a cyclic fractional polymorphism as a starting point).

We will need a weaker notion of a core than the rigid core introduced in Section 2.1.

Definition A.2.1. Language Γ is called a core if for every unary fractional polymorphism

ϕ of Γ, supp(ϕ) contains only bijections.

Restriction to core languages is a recurring feature in many VCSP and CSP proofs.

Also for our purposes this restriction is without loss of generality, although we omit the

proof. For a more thorough treatment of core languages we refer to [54, 39]. For the

rest of this section we will focus on a finite core and block-finite language Γ on domain

D with partitions {Dv | v ∈ V }.

Before formally stating the main result of this section, let us define a certain graph,

whose connectivity will be in the spotlight.

For an arbitrary language Γ on a domain D consider an undirected graph T (Γ) on

vertex set D with a, b ∈ D, connected by an edge if there is a finite-valued uab ∈ 〈Γ〉

such that argmin uab = {a, b}.

The result on connectivity of T from [67] operates (without loss of generality) with a

language Γc that is obtained from functions in Γ by fixing values for some variables, e.g.,

g(x, y) = f(x, a, b, y) ∈ Γc if f ∈ Γ and a, b ∈ D.

Theorem A.2.2 ([67]). Let Γ be a core finite-valued language. Then T (Γc) is connected.

We do not have the language Γc at hand since with this reduction we would lose

(otherwise essential) block-finiteness. However, additionally using a cyclic fractional

polymorphism saves the day and we can formulate our result as follows.

Theorem A.2.3. Let Γ be a core valued language that is block-finite with domain D

partitioned into {Dv | v ∈ V }. Assume that Γ admits a cyclic fractional polymorphism ω.

Then T (Γ) is connected within each Dv.

We will need a classical result about cores and small technical lemma about block-

finite languages.

89

Proposition A.2.4 ([39]). Let Γ be a language on domain D that is a core. Then 〈Γ〉

contains a function f of arity |D| such that every solution x ∈ argmin f contains all

labels in D.

Lemma A.2.5. Let Γ be a block-finite language on domain D partitioned into {Dv | v ∈

V }. Let f ∈ 〈Γ〉 be an r-ary function f(x1, . . . , xr). Then at least one the following three

statements is true:

(a) f has a dummy variable (i.e. the values of f depend only on a subset of coordi-

nates)

(b) f(x) =∞ whenever elements of x are pairwise distinct.

(c) dom f ⊆ Dv1 × . . .×Dvr for some v1, . . . , vr ∈ V .

Proof. For functions f in Γ this follows immediately from Definiton 2.3.3. For f ∈ 〈Γ〉,

that is for a Γ-instance I, we proceed with a little more care. Let I ′ be the instance

before minimizing out. If a variable of I is unconstrained in I ′, then it is a dummy

variable of I, thus (a) holds. If every variable of I is constrained by a function from

Γ\{=D} in I ′, then Definiton 2.3.3(c) applies and we are in case (c). The only remaining

objects of interest are equivalence classes of variables constrained only by =D in I ′.

If such equivalence class contains at least two variables of I, we are in case (b). If it

meets I in just one variable, this variable becomes dummy after minimizing out and we

are in (a) again.

Since we are restricted to a core language all unary g ∈ fPol+(Γ) are permutations

of D. We will show that in fact only the identity permutation can live in fPol+(Γ). Let us

recall one last lemma before we get to it.

Lemma A.2.6 ([54]). For any n-ary f ∈ 〈Γ〉, a tuple x ∈ Dn, and unary g ∈ fPol+(Γ) we

have f(g(x)) = f(x).

Proposition A.2.7. Let Γ be a core valued language that is block-finite with domain D

partitioned into {Dv | v ∈ V }. Assume that Γ admits a cyclic fractional polymorphism ω.

Then the only unary operation in fPol+(Γ) is identity.

90

Proof. First, since Γ is a core by Proposition A.2.4 〈Γ〉 contains a function f̂ of arity

n = |D| such that every tuple x ∈ argmin f̂ contains each label from D exactly once.

Let us fix one such tuple z. Note that neither (a) nor (b) from Lemma A.2.5 apply to f̂ so

we have the case (c) and each coordinate restricted to a particular Dv.

Assume for contradiction that there is a g ∈ fPol+(Γ) with g(a) = b with a 6= b from D.

Reorder variables of f̂ so that z1 = a and z2 = b.

If we had a ∈ Du, b ∈ Dw for u 6= w, we could apply g to z (g is a polymorphism of

Feas(Γ) after all) and obtain a tuple in dom f̂ with b in the first coordinate. But then the

first coordinate can take values from both Du and Dw, a contradiction.

So from now on let a, b ∈ Dv for some v ∈ V . Set g0(a) = a, and recursively

gi+1(a) = g(gi(a)) (so in particular g1(a) = b) until gk(a) = g0(a) = a (such k exists since

g is a permutation). Note that gi(a) ∈ Dv for every i (the argument from the previous

paragraph applies).

Instead of f̂ we restrict our attention to binary f(z1, z2) = minz3,...,zn f̂(z1, . . . , zn}.

Note that f ∈ 〈Γ〉 and that by construction we have (a, b) ∈ argmin f and f(a, b) <

f(x, x) for any x ∈ D. Due to Lemma A.2.6 also (gi(a), gi+1(a)) ∈ argmin f for every i.

Moreover, for x ∈ Dv the costs f(x, x) are finite since Γ is block-finite and f ∈ 〈Γ〉. In

particular, f(a, a) < ∞. The if we let X = min f , Y = f(a, a), and Z = minx∈D f(x, x),

we have X < Z ≤ Y <∞.

Now is the time to apply the cyclic fractional polymorphism ω. Due to Lemma 2.1.18

we may assume the arity p of ω is any prime number. We will choose p such that p ≡ 1

(mod k) and p > (Y −X)/(Z −X). Such choice is possible due to (a weak version of)

Dirichlet’s Theorem on arithmetic progressions.

We will apply ω to p tuples (x0, . . . , xp−1). For i = 0, . . . p − 2 these are xi =

(gi mod k(a), gi+1 mod k(a)) and finally xp−1 = (g0(a), g0(a)) = (a, a). It is easy to ver-

ify that the vector of first coordinates is a cyclic shift of the vector of second coordinates.

We obtain

Z =
∑

h∈supp(ω)

ω(h)Z ≤
∑

h∈supp(ω)

ω(h)f(h(. . .), h(. . .)) ≤
p− 1

p
X +

1

p
Y.

Our choice of p was such that this is a contradiction.

91

As the final step, we aim to express certain useful unary functions from Γ. The

following result will come to help.

Proposition A.2.8 ([54]). Let Γ be a core finite constraint language. For every m ≥ 1

there exists f ∈ 〈Γ〉 of arity |D|m and a rational number P , such that for every operation

g : Dm → D the following conditions are satisfied:

1. f(g) ≥ P ,

2. f(g) <∞ if and only if g ∈ Pol(Γ),

3. f(g) = P if and only if g ∈ fPol+(Γ),

where the notation f(g) should be read as f(g(x1), . . . , g(xn)), where x1, . . . , xn is some

fixed ordering of Dm (and thus n = |D|m).

Proposition A.2.9. Let Γ be a core block-finite language on domain D with partitions

{Dv | v ∈ V }. Then for each a ∈ D there is a unary function ua ∈ 〈Γ〉 such that

argmin ua = {a} and ua is finite-valued on the Dv containing a.

Proof. Knowing from Proposition A.2.7 that the only unary function in fPol+(Γ) is the

identity, one can use Proposition A.2.8 (with m = 1) to construct a function f ∈ 〈Γ〉 of

arity |D| with argmin f = {(1, . . . , |D|)} (assuming D = {1, . . . , |D|}). Then given a ∈ D

one can easily construct the desired ua by minimizing out all other coordinates than

the a-th one. Finite values of ua on the corresponding Dv are guaranteed since Γ is

block-finite.

These special unary functions are already sufficient for proving the connectivity of

T (Γ).

Proposition A.2.10 ([67]). Let Γ be a constraint language on domain D such that for

each a ∈ D there is finite-valued ua ∈ 〈Γ〉 such that argmin ua = {a}. Then T (Γ) is

connected.

Now proof of the Theorem A.2.3 follows easily. Fix a subdomain Dv, restrict func-

tions of 〈Γ〉 (in particular those from Proposition A.2.9) to that subdomain, and apply

Proposition A.2.10.

92

A.3 Non matching realizable even ∆-matroid

Here we prove Proposition 3.3.3 which says that not every even ∆-matroid of arity six is

matching realizable. We do it by first showing that matching realizable even ∆-matroids

satisfy certain decomposition property and then we exhibit an even ∆-matroid of arity

six which does not possess this property and thus is not matching realizable.

Lemma A.3.1. Let M be a matching realizable even ∆-matroid and let f, g ∈M . Then

f ∆ g can be partitioned into pairs of variables P1, . . . Pk such that f ⊕ Pi ∈ M and

g ⊕ Pi ∈M for every i = 1 . . . k.

Proof. Fix a graph G = (N,E) that realizes M and let V = {v1, . . . , vn} ⊆ N be the

nodes corresponding to variables of M . Let Ef and Eg be the edge sets from matchings

that correspond to tuples f and g. Now consider the graph G′ = (N,Ef ∆Eg) (symmetric

difference of matchings). Since both Ef and Eg cover each node of N \V , the degree of

all such nodes in G′ will be zero or two. Similarly, the degrees of nodes in (V \ (f ∆ g))

are either zero or two leaving f ∆ g as the set of nodes of odd degree, namely of degree

one. Thus G′ is a union of induced cycles and paths, where the paths pair up the nodes

in f ∆ g. Let us use this pairing as P1, . . . , Pk.

Each such path is a subset of E and induces an alternating path with respect to

both Ef and Eg. After altering the matchings accordingly, we obtain new matchings that

witness f ⊕ Pi ∈M and g ⊕ Pi ∈M for every i.

Lemma A.3.2. There is an even ∆-matroid of arity 6 which does not have the property

from Lemma A.3.1.

Proof. Let us consider the set M with the following tuples:

93

000000 100100 011011 111111

011000 100111

001100 110011

001010 110101

000101 111010

001001 001111

010001 101101

100010 101011

111100

With enough patience or with computer aid one can verify that this is indeed an even

∆-matroid. However, there is no pairing satisfying the conclusion of Lemma A.3.1

for tuples f = (000000), and g = (111111). In fact the set of pairs P for which both

f ⊕ P ∈ M and g ⊕ P ∈ M is {v1, v4}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v6} (see the first

five lines in the middle of the table above) but no three of these form a partition on

{v1, . . . , v6}.

A.4 Non coverable ∆-matroid

In Section 3.6, we claimed that not every ∆-matroid is coverable. The next lemma gives

a counterexample.

Lemma A.4.1. There is a ∆-matroid that is not coverable

Proof. Let us consider the set M with the following tuples:

0000 0001

1100 1101

1010 1011

0110 0111

1110

First, note that M is symmetrical in its first three coordinates. Verifying that M is a

∆-matroid is straightforward (or not resistant to computer power). However, if we choose

α = (0000) we claim there is no suitable even ∆-matroid Mα.

94

Assume there is one. Note that all even tuples (1100), (1010), (0110), (1110), (1111)

are reachable from α so they must be in Mα. However, by flipping the last coordinate

in α = (0000), we find that one of the three tuples (1001), (0101), (0011) must be in Mα

(simply by the definition of an even ∆-matroid). By symmetry of M it suffices to rule out

(1001). Since (1001) ∈Mα \M , there should be both (0001) ∈M and (1000) ∈M . The

latter is not true and we have a contradiction.

A.5 Classes of ∆-matroids that are efficiently coverable

As we promised, here we will show that all classes of ∆-matroids that were previously

known to be tractable are efficiently coverable.

Co-independent ∆-matroids

Definition A.5.1. A ∆-matroid M is co-independent if whenever α 6∈M , then α⊕u ∈M

for every u in the scope of M .

Let V be the set of variables of M . In this case we choose Mα to be the ∆-matroid

that contains all members of {0, 1}V of the same parity as α. This trivially satisfies the

first two conditions in the definition of a ∆-matroid. To see the third condition, observe

that whenever γ ∈Mα \M , the co-independence of M gives us that γ⊕u ∈M for every

u ∈ V , so we are done.

Moreover, each set Mα is roughly as large as M itself: A straightforward double

counting argument gives us that M ≥ 2|V |−1, so listing Mα can be done in time linear in

|M |.

Compact ∆-matroids

We present the definition of compact ∆-matroids in an alternative form compared to

[41].

Definition A.5.2. Function F : {0, 1}V → {0, . . . , |V |} is called a generalized counting

function (gc-function) if

95

1. for each α ∈ {0, 1}V and v ∈ V we have F (α⊕ v) = F (α)± 1 and;

2. if F (α) > F (β) for some α, β ∈ {0, 1}V , then there exist u, v ∈ α∆ β such that

F (α⊕ u) = F (α)− 1 and F (β ⊕ v) = F (β) + 1

An example of such function is the function which simply counts the number of ones

in a tuple.

Definition A.5.3. We say that a S ⊆ {0, 1, . . . n} is 2-gap free if whenever x 6∈ S and

minS < x < maxS, then x+ 1, x− 1 ∈ S. A set of tuples M is compact-like if α ∈M if

and only if F (α) ∈ S for some gc-function F and a 2-gap free subset S of {0, 1, . . . |V |}.

The difference to the presentation in [41] is that they give an explicit set of possible

gc-functions (without using the term gc-function). However, we decided for more brevity

and omit the description of the set.

Lemma A.5.4. Each compact-like set of tuples M is a ∆-matroid.

Proof. Let the gc-function F and the 2-gap free set S witness that M is compact-like.

Take α, β ∈M and u ∈ α∆ β. If F (α⊕ u) ∈ S, then α⊕ u ∈M and we are done. Thus

we have F (α⊕ u) 6= F (β). We need to find a v ∈ α∆ β such that F (α⊕ u⊕ v) ∈ S.

Let us assume F (α⊕u) > F (β). Since F is a gc-function we can find v ∈ (α⊕u)∆ β

(note that u 6= v) such that F (α ⊕ u⊕ v) = F (α ⊕ u)− 1. Now we have either F (α) =

F (α ⊕ u ⊕ v) ∈ S, or F (α) > F (α ⊕ u) > F (α ⊕ u ⊕ v) ≥ F (β), which again means

F (α⊕ u⊕ v) ∈ S because S does not have 2-gaps.

The case when F (α⊕ u) < F (β) is handled analogously.

It turns out that any practical class of compact-like ∆-matroids is efficiently coverable:

Lemma A.5.5. AssumeM is a class of compact-like ∆-matroids where the description

of each M ∈ M includes a set SM (given by a list of elements) and a function FM

witnessing that M is compact-like and there is a polynomial p such that the time to

compute FM(α) is at most p(|M |). ThenM is efficiently coverable.

Proof. Given M ∈M and α ∈M , we let Mα be the compact-like even ∆-matroid given

by the function FM and the set U = [minSM ,maxSM] ∩ {FM(α) + 2k : k ∈ Z}. It is an

easy observation that α, β ∈ {0, 1}V have the same parity if and only if FM(α) and FM(β)

96

have the same parity, so all members of Mα have the same parity. In particular Mα

contains all β ∈M of the same parity as α. Moreover, the set U is 2-gap free, so Mα is

an even ∆-matroid.

Let now γ ∈ Mα \M . Then FM(γ) 6∈ SM . Since SM is 2-gap free and FM(γ) is not

equal to minSM , nor maxSM , it follows that both FM(γ) + 1 and FM(γ) − 1 lie in SM .

Therefore, γ ⊕ v ∈M for any v ∈ V by the first property of gc-functions.

It remains to show how to construct Mα in polynomial time. We begin by adding

to Mα all tuples of M of the same parity as α. Then we go through all tuples β ∈ M

of parity different from α and for each such β we calculate FM(β ⊕ v) for all v ∈ V .

If minS < F (β ⊕ v) < maxS, we add β ⊕ v to Mα. By the argument in the previous

paragraph, this procedure will eventually find and add to Mα all tuples γ such that

FM(γ) ∈ U \ SM .

Local and binary ∆-matroids

We will avoid giving the definitions of local and binary ∆-matroids. Instead, we will rely

on a result from [24] saying that both of these classes avoid a certain substructure. This

will be enough to show that both binary and local matroids are efficiently coverable.

Definition A.5.6. Let M,N be two ∆-matroids where M ⊆ {0, 1}V . We say that M

contains N as a minor if we can get N from M by a sequence of the following operations:

Choose c ∈ {0, 1} and v ∈ V and take the ∆-matroid we obtain by fixing the value at v

to c and deleting v:

Mv=c ={β ∈ {0, 1}
V \{v} : ∃α ∈M, α(v) = c ∧ ∀u 6= v, α(u) = β(u)}.

Definition A.5.7. The interference ∆-matroid is the ternary ∆-matroid given by the

tuples {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. We say that a ∆-matroid M is in-

terference free if it does not contain any minor isomorphic (via renaming variables or

flipping the values 0 and 1 of some variables) to the interference ∆-matroid.

Lemma A.5.8. If M is an interference-free ∆-matroid and α, β ∈M are such that |α∆ β|

is odd, then we can find v ∈ α∆ β so that α⊕ v ∈M .

97

Proof. Let us take β′ ∈ M so that α∆ β′ ⊆ α∆ β and |α∆ β′| is odd and minimal

possible. If |α∆ β′| = 1, we are done. Assume thus that |α∆ β′| = 2k + 3 for some

k ∈ N0. Applying the ∆-matroid property on α and β′ (with α being the tuple changed) k

many times, we get a set of 2k variables U ⊆ α∆ β′ such that α⊕ U ∈M (since β′ is at

minimal odd distance from α, in each step we need to switch exactly two variables of α).

Let the three variables in α∆ β′ \ U be x, y, and z and consider the matroid P

on x, y, z we get from M by fixing the values of all v 6∈ {x, y, z} to those of α ⊕ U

and deleting these variables afterward. Moreover, we switch 0s and 1s so that the

triple corresponding to (α(x), α(y), α(z)) is (0, 0, 0). We claim that P is the interference

matroid: It contains the triple (0, 0, 0) (because of α⊕ U) and (1, 1, 1) (as witnessed by

β′) and does not contain any of the triples (1, 0, 0), (0, 1, 0), or (0, 0, 1) (for then β′ would

not be at minimal odd distance from α). Applying the ∆-matroid property on (1, 1, 1)

and (0, 0, 0) in each of the three variables then necessarily gives us the tuples (0, 1, 1),

(1, 0, 1), and (1, 1, 0) ∈ P .

Corollary A.5.9. Let M be an interference-free ∆-matroid. If M contains at least one

even tuple then the set Even(M) of all even tuples of M forms a ∆-matroid. The same

holds for Odd(M) the set of all odd tuples of M . In particular, M is efficiently coverable

by the even ∆-matroids Even(M) and Odd(M).

Proof. We show only that Even(M) is a ∆-matroid; the case of Odd(M) is analogous

and the covering result immediately follows.

Take α, β ∈ Even(M) and let v be a variable v such that α(v) 6= β(v). We want u 6= v

so that α(u) 6= β(u) and α ⊕ u ⊕ v ∈ M . Apply the ∆-matroid property of M to α and

β, changing the tuple α. If we get α ⊕ v ⊕ u ∈ M for some u, we are done, so let us

assume that we get α ⊕ v ∈ M instead. But then we recover as follows: The tuples

α⊕ v and β have different parity, so by Lemma A.5.8 there exists a variable u so that

(α⊕ v)(u) 6= β(u) (i.e. u ∈ α∆ β \ {v}) and α⊕ v ⊕ u ∈M .

It is mentioned in [24] (Section 4) that the interference ∆-matroid is among the

forbidden minors for both local and binary (minors B1 and L2) ∆-matroids. Thus both of

those classes are efficiently coverable.

