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Abstract
Adult height inspired the first biometrical and quantitative genetic studies and is a test-case trait for understanding
heritability. The studies of height led to formulation of the classical polygenic model, that has a profound influence on the
way we view and analyse complex traits. An essential part of the classical model is an assumption of additivity of effects and
normality of the distribution of the residuals. However, it may be expected that the normal approximation will become
insufficient in bigger studies. Here, we demonstrate that when the height of hundreds of thousands of individuals is analysed,
the model complexity needs to be increased to include non-additive interactions between sex, environment and genes.
Alternatively, the use of log-normal approximation allowed us to still use the additive effects model. These findings are
important for future genetic and methodologic studies that make use of adult height as an exemplar trait.

Introduction

Since the dawn of biometry and genetics, human height has
served as a model, exemplar quantitative trait. Studies of adult
height have shaped a classical biometric and quantitative
genetic approach to inheritance [1–3]. Nowadays, new quan-
titative genetic methods are often first applied to adult height,
and the findings for height have profound effects on the ways

we look at and study other quantitative and complex traits.
Specifically, the studies of height have triggered the formula-
tion of the problem of “missing heritability” [4–6] as well as
have fuelled progress in understanding its sources [7, 8].

An important part of our view of height is an assumption of
additivity of effects that is explicitly made in early works and is
justified by a “physiological” argument: “stature is not a simple
element, but a sum of the accumulated lengths or thicknesses of
more than a hundred bodily parts” [1]. One should also
remember that a large part of the appeal of the use of additive
models to describe inheritance of quantitative traits lies in the
fact that they have been demonstrated both theoretically and
empirically to be parsimonious, that is, to have great explana-
tory power while being very simple [9–12].

Additivity implies normality, and the adult height serves as
an empirical example of a normally distributed biological trait
in textbooks on statistics [13–15]. Furthermore, an inheritance
of human height is described by a model in which many
genetic effects add up (additive polygenic model) [3, 5]. The
dominant practice in human height genetics is to treat all effects
as additive, and to analyse untransformed or linearly trans-
formed height (see Supplementary Note 1), which implies an
assumption of normality of the distribution of residuals.

Thus, from studies of adult height, we know that an “ideal”
quantitative trait results from a sum of the individual con-
tribution of different influences, and it has a normal distribu-
tion of residuals (perhaps, after some transformation) [16, 17];
adult height being the prime and convincing example of
such trait.
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At the same time, it is well-understood that additivity of
effects and normal distribution of residuals is only an approx-
imation to the distribution of height in human populations.
Practically, we notice several peculiarities in the distribution of
adult height (see Supplementary Note 2). One of them is
apparent growth of standard deviation of height with the mean
height across populations; another is possibly multiplicativity
of the effects of sex. These observations may suggest the
presence of non-additive interactions for human height. How-
ever, up until now, no evidence for non-additive genetic
interactions was found for height [6, 18]. Moreover, if non-
additive effects were to exist for polygenic traits, very large
sample sizes would be required to detect them [9].

Here, we asked the question if we have now reached the
stage where non-additive effects can be detected for the adult
height. The assumption of additivity is intimately linked to the
assumption of normality; therefore, we also explored the limits
of normal approximation for the distribution of the residuals of
adult height in a large diverse population.

We collected literature data and analysed the dis-
tribution of mean height and its variance across a wide
range of populations. We also analysed how the mean and
variance of height depends on sex, genes, and socio-
demographic factors in 369,153 white British participants
of the UK Biobank study [19].

Materials and methods

Changes of SD and CV with the mean height and
changes of relative and absolute height difference
between sexes in world populations (Fig. 1)

The regression analysis has been conducted between SD or
CV and mean height of females from 54 developing
countries, as reported by Subramanian et al. [20]. We
excluded from consideration countries for which sample
size was less than 1000 (Comoros) and for which obser-
vations were deviating by >3 SD from the overall average
(Congo Dem. Rep., Congo Rep., Guatemala). The retained
50 populations were taken for further analysis. To avoid
domination of a few very large samples, we assumed equal
weight for observations coming from different populations.

We analyzed dependence between male and female
average height in worldwide human populations using data
from the internet resource [21]. The first stage of filtration
included removing rows with missing data for male or
female and then removing rows with values deviating from
average value more than by 3 SD for corresponding sex. In
the second stage of filtration, we excluded repeating data for
the same countries and retained one survey result for each
country and/or national group. The criteria of filtering were

the following: if urban/rural and general population data
were available, the general one was retained; if different age
intervals were available, the wider one was retained; if data
for several ages were available, the one closer to 21 was
retained. Ethnic groups in one country were considered as
separate populations. Eventually, 80 populations passed all
the filters. The data used are presented in Supplementary
Table 1; the data points passing our quality control are
indicated.

Analysis of UK biobank data

We analysed 369,153 white UK Biobank participants
belonging to six groups defined by ethnic background and
place of birth (Supplementary Table 2). We considered effects
of sex, genotype, and residual effects. The genotype was
included in analysis in the form of polygenic height score
(PGHS), defined as the weighted prevalence of height-
increasing alleles in the genotype. Factors related to socio-
economic status and study covariates were used to construct a
single linear predictor, hereafter called the “residual predictor”.
All three predictors were strongly associated with adult height.
In the main text, we only reported p values for joint analysis of
all data, with per-group results reported in Supplementary
Tables.

Definition of studied groups and phenotypic quality control

We have restricted the analysis of UK Biobank (UKB) data
[22] to individuals of European (white) descent whose
samples were used to compute the genetic principal com-
ponents (PCA cohort, UKB field 22020), thus excluding
close (degree ≤3) relatives from our analysis. Within PCA
cohort, we have defined groups based on self-reported ethnic
background (field 21000), genetic ethnic grouping
(“genetically Caucasian” field 22006; available only for self-
reported ethnicity “white British”), and place of birth (field
1647—country of birth inside UK, and 20115—outside
UK). In total, we ended up with six analysis groups (Eng-
lish, Scottish, Welsh, Other British, Irish, Other White),
defined by place of birth and ethnic background (see Sup-
plementary Table 2 for details). In the final dataset we only
considered individuals with complete information on all of
the following phenotypes and covariates: height, sex,
income, year of birth, age at recruitment, assessment centre,
genotype, genetic principal components, genotyping batch.

Each of the six analysis groups was stratified by sex;
within these 12 sub-groups we have excluded individuals
who deviated from the mean by 4.75 standard deviations or
more (in a study of the size of UKB, under the null
hypothesis this cut-off translates into expectation of one
outlier). In total, 32 people were excluded according to this
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criterion. Supplementary Table 2 shows the final number of
individuals in each analysis group.

Throughout this manuscript, we use “height” for height
in centimeters, while “log-height” is used for the base-10
logarithm of height.

Polygenic height score (PGHS) computations

We considered 697 SNPs associated with height, reported in
Wood et al. The SNPs were clustered in 423 loci, with a
locus defined as one or multiple jointly associated SNPs
located within a 1-Mb window [23]. From each locus, we
have selected one SNP that demonstrated the lowest p value
in the GIANT univariate analysis. We observed that
rs9404952:G > A (NC_000006.11:g.29804165 G >A) was
neither genotyped nor imputed in the UKB. Three SNPs—
rs1420023:C > A,G,T (NC_000012.11:g.12876111 C > D),
rs1659127:G > A,C,T (NC_000016.9:g.14388305 G > H),
rs7567851:G > A,C (NC_000002.11:g.178684720 G >M)
—were genotyped and imputed in UKB with alleles dif-
ferent between direct genotyping and imputations. We
therefore excluded these three SNPs from analysis because
of ambiguity. From the residual 419 SNPs we have selected
305 that satisfied all of the following criteria: had imputa-
tion quality in UKB greater than 0.9; had univariate p value
less than 5 × 10−10 in GIANT analysis of Wood et al.; had
EAF difference less than 5% between six above defined
UKB groups and “250 K GWAS Meta-analysis” of Wood
et al. [23]. To load BGEN-encoded genotype data into the R
environment ‘rbgen’ package [24] was utilised. We used
univariate estimates of effect sizes reported by Wood et al.
to calculate weighted PGHS. PGHS was then centred and
scaled (so that mean is zero and variance is unity) in each of
the six analysis groups defined above.

For the purposes of analysing epistasis we also con-
structed an “updated” PGHS based on 712 loci (3290 SNPs)
reported in Yengo et al. [25]. That study of Yengo et al. was
conducted with UKB data; all SNPs were present in our
data, had imputation quality >0.3 and MAF > 0.0001 in the
UKB, and univariate association p < 10−8 in the Yengo
analysis. We used the same procedure, as described above,
to load data and define a polygenic score.

Although GWAS conducted by Yengo et al. [25] is more
powerful than that reported by Wood et al. [23], the former
includes UK Biobank participants. This may lead to upward
bias in the proportion of variance explained by the PGHS. In
principle, our conclusions do not directly depend on an
absolute value of the proportion of variance explained. Still,
we decided to use PGHS constructed from the GWAS results
of Wood et al. [23] for most analyses, to avoid potential bias.
We used PGHS constructed from the GWAS results of Yengo
et al. [25] in our supportive analyses to demonstrate that with
increased score power the epistatic effects become more pro-
nounced, as predicted by our main analysis.

Computation of residual predictor of height

Using data on 370 thousand white British individuals we
estimated a linear mixed model of height that included sex,
PGHS, year of birth, year of visit to the assessment centre
(five levels), household income, analysis group (six levels)
and ten first principal components of genetic variation as
fixed effects and assessment centre code and genotyping
batch as random effects. From the predicted height we then
have subtracted estimated effects of sex and PGHS, after
which the resulting predictor was centred and scaled to have
mean zero and variance of one. The linear mixed model was
estimated using the R package “lme4” [26].

Fig. 1 Relation between parameters of the distribution of adult
human height across populations. Linear regression of standard
deviation (A) and CV (B) of height on mean height of women from
ref. [20]. The dashed line shows the overall mean. (C) Linear
regression of mean male height on mean female height in populations

from ref. [21]. Unweighted linear regression was used to estimate the
trend (k), its standard error (SE), the adjusted R2 and, in brackets, the
significance of deviation of the regression coefficient from zero for A,
B and from one for C (p < 0.001–***; p < 0.01–*; p > 0.05—ns)
(shown at the top of each panel).
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Analysis of scaling of effect sizes and standard deviation
(Figs. 2 and 3)

To generate Fig. 2, we divided each of the six analysis
groups into eight sub-groups defined by sex, high/low
polygenic score, and high/low residual predictor. In total,

we obtained 48 (6 × 2 × 2 × 2) groups of individuals. In each
group, we estimated the effect of mean height (mean log-
height) on corresponding standard deviation by linear
regression model with weights, defined as the group size.

Within each of the six analysis groups we computed
median polygenic score and median residual predictor. To

Fig. 2 Changes of SD with the mean height and log-height in UK
Biobank. Relation of standard deviation to mean of height (A) and log-
height (B) for six groups of British individuals of white descent from
UK Biobank, defined based on place of birth and split by sex, median
polygenic score, and median residual predictor (48 groups in total). The

size of a symbol is proportional to the regression weight, defined as
twice the group size. Weighted linear regression was used to estimate
the trend (k), its standard error (SE), the adjusted R2 and, in brackets,
the significance of deviation of the regression coefficient from zero
(p < 0.001–***; p > 0.05—ns) (shown at the top of each panel).

Fig. 3 Changes of the effects of different factors with the mean
height and log-height in UK Biobank. Relation between the estimate
of the effect size of sex (A, B), genotype (C, D; genotype was defined
as a polygenic height score, PGHS), other factors (E, F; a linear
residual predictor, RP, combining sociodemographic and study cov-
ariates) and mean height (A, C, E) and log-height (B, D, F) for six
groups of British individuals of white descent from UK Biobank,
defined based on place of birth. The six groups are additionally split by

sex (C–F), median polygenic height score (A, B, E, F), and median
residual predictor (A–D). The size of a symbol is proportional to the
group size (used as the regression weight). Weighted linear regression
was used to estimate the trend (k), its standard error (SE), the adjusted
R2 and, in brackets, the significance of deviation of the regression
coefficient from zero (p < 0.001–***; p > 0.05—ns) (shown at the top
of each panel).
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generate Fig. 3, we estimated effect of a specific factor (sex,
polygenic score, and the residual predictor) on height and
log-height within six ethnic groups, additionally sub-
divided by the two other factors. For example, we calcu-
lated the effect of sex on height (log-height) in six analysis
groups additionally sub-divided by median polygenic score
and the median residual predictor. In total, we considered
24 sub-groups for each factor. Within each subgroup, an
effect of a factor on height (log-height) was estimated using
a univariate linear regression. We applied a weighted linear
regression model to study the relation between mean height
(mean log-height) and the effects of studied factors.
Weights were defined as the group size.

Epistatic model

We formalise the additive models as

Height ¼ μþ β1PGHSþ ε ¼ μþ β1ða1g1 þ a2g2 þ ¼ þ angnÞ þ ε

where PGHS is the vector of PGHS values, g1,…,gn are the
vectors of genotypes of loci included in PGHS, μ is an
intercept and β1 is a scaling factor (both estimated from the
data) and a1,…, an are the weights fixed at the values
corresponding to the estimates of additive effects obtained
by previously published studies.

The epistatic model is formalised as

Height ¼ μþ β1PGHSþ β2PGHS
2 þ ε

¼ μþ β1 a1g1 þ a2g2 þ � � � þ angnð Þ
þ β2 a1g1 þ a2g2 þ � � � þ angnð Þ2þε;

Thus our epistatic model only considers the dominance
and pairwise epistatic interactions and estimates these
effects through a single parameter, β2. This is made possible
by assuming that all pairwise interaction effects are pro-
portional to the products of the published additive genetic
effects from the linear model.

Comparison of the variance explained by additive and
multiplicative models

To compare the proportion of variance explained by the
additive and multiplicative models we fitted a linear model
for height and log-height on each analysis group. The model
included PGHS, sex, and the variables that were used to
define RP. Briefly, two linear regression models were fitted:

Height ¼ μþ β1Sexþ β2PGHSþ β3RP1 þ β4RP2

þ ¼ þ β18RP16 þ ε

log10 Heightð Þ ¼ μþ β1Sexþ β2PGHSþ β3RP1 þ β4RP2

þ ¼ þ β18RP16 þ ε

where Height, Sex, PGHS are vectors of height, sex and
PGHS values correspondingly, RP1 to RP16 are the vectors
of the residual predictor components as described above, μ
and β1 to β18 are the corresponding regression coefficients,
and ɛ is the vector of residuals. The proportion of variance
of height explained by the additive model was estimated as
the relative decrease in the variance of height after
subtracting observed from the values predicted by the
additive model. The proportion of variance of height
explained by the multiplicative model was estimated as
the relative decrease in the variance of height after
subtracting observed from the exponentiated value of the
predicted log-height (see Supplementary Table 3).

Testing type 1 error in potential GWAS

For minor allele frequencies 0.01, 0.05, 0.1, 0.5 we gener-
ated random vectors of genotypes (0, 1 or 2) distributed
according to Hardy–Weinberg equilibrium. We then tested
the association of these random genotypes with the resi-
duals of height and log-height, obtained for 369,153 indi-
viduals of European (white) descent. The residuals were
obtained from a regression model including sex, PGHS, and
RP as independent variables and the statistical strength of
association was characterised by the Z-test (the ration
between estimated regression coefficient and its standard
error). For each allele frequency 1 million independent
simulations were performed. The equality of distributions of
Z-test statistics obtained for height and log-height was tes-
ted with Kolmogorov–Smirnov test.

Transferability of prediction between groups of different
origin

To analyse the transferability of height prediction models
between groups of different origin we generated linear
height and log-height prediction models using British
people of white descent born in England as a training set.
The models included sex, PGHS, income (“Average total
household income before tax”, UKB field 738) and age
(“Age when attended assessment centre”, UKB field
21003) as independent variables. Groups where height
and log-height were predicted were defined either as
described above (Scottish, Welsh, Other British, Irish,
Other white) or defined by Ethnic background (UKB field
21000). Supplementary Table 4 provides details of these
groups.

Other statistical analyses

We used the lm function from R package ‘stats’ [27] to fit
linear models with height or logarithm of height as the
response variable. To compare variance between two
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groups we used Levene’s test [28] as implemented in R
package ‘car’ v.2.1–6 [29].

For ratios, the confidence interval (CI) was computed
using Fieller’s theorem [30]. The test of significance
between two ratios was performed using the mean differ-
ence test, with standard deviations of the estimate of a ratio
computed using delta-method [17].

Results

First, we reviewed anthropological literature concerned with
the study of the distribution of height in different popula-
tions and collected the data on the mean height, its standard
deviation, and sample size where it was possible. Across
different populations, we studied how the mean height
relates to the SD and CV and analysed effects of sex.

In the analysis of 50 populations [20] we observed a
scaling of standard deviation (SD) with the mean female
height—that is, the variation of height becomes larger as the
average height of a population increases (Fig. 1A). At the
same time, the CV does not display this behaviour to a
significant extent, being low and rather stable across dif-
ferent populations (see Fig. 1B). The mean height explained
27% of the variance of the SD (p < 0.001), while only 6% of
the variance of the CV (p= 0.08).

To determine whether male and female mean height are
related multiplicatively or additively, we regressed the mean
male height on the mean female height (Fig. 1C). We used
the data on the mean male and female height coming from a
large number of populations from the literature [21]. The
intercept from the linear regression model was −0.77 and
did not significantly differ from zero (p= 0.9). The slope in
this model was 1.080 that differs significantly from 1 (p=
0.003). This observation supports multiplicative contribu-
tion of sex to the height variance.

Thus, when we study a range of diverse human popu-
lations, both SD and effects of sex scale up with increased
mean—a behaviour, not expected from a normal, but
common for a log-normal distribution [31].

Next, we used data from the UK Biobank [22] to confirm
and extend the above results. We considered three strong
predictors of height, namely, sex, genotype (PGHS sum-
marising effects of 305 SNPs from ref. [23]), and residual
effects (a linear residual predictor, combining socio-
economic and study covariates). In a variety of groups of
British individuals of white descent, defined by place of
birth, sex, genotype and the value of residual predictor, we
confirm that the SD increases with the group mean
(Fig. 2A). The variance of height was significantly higher in
men (p < 10−100 for English, p < 10−50 for all-but-English),
in people with higher PGHS (p= 10−16 for English,

and p= 7 × 10−8 for all-but-English) and those with higher
value of the residual predictor (p= 2 × 10−9 for English,
and p= 10−3 for all-but-English) (Supplementary
Table 5A).

We also confirm previous observation that the effects of
sex increase with increased group’s mean (Fig. 3A).
Moreover, we see similar increase for the effects of the
polygenic score (Fig. 3B) and for the residual predictor
(Fig. 3C).

Above big data observations contradict the traditional
practice of modelling the height with the mean-model. In
this model, effects sum up and the residuals are distributed
normally with a fixed standard error. The changes in SD and
effect sizes, while being small (we see an increase of a few
millimetres per one decimetre change in the mean), are clear
and significant.

We next have used individual-level UK Biobank data to
explore all pairwise interactions between sex, polygenic
score, and the residual predictor. The interactions were
introduced into the model as a product between corre-
sponding variables, for example, the interaction between
sex (coded as 0 for female and 1 for male) and PGHS was
defined as sex*PGHS. We observed significant and replic-
able interactions between all three factors (see Supple-
mentary Table 6A). In the model including all three
interactions, we established the significance of each inter-
action effect by testing its deviations from zero (Wald test).
The interaction between sex and polygenic score was the
strongest (p= 10−12 for English, and p= 4 × 10−6 for all-
but-English), the sex by residual predictor interaction was
next significant (p= 7 × 10−12 for English, and p= 10−5 for
all-but-English), and interaction between polygenic score
and the residual predictor was weaker although still sig-
nificant (p= 0.01 for English, and p= 0.001 for all-but-
English). We have also tested for the effects of epistasis. In
quantitative genetics, the term “epistasis” implies any
deviation from additivity (on the appropriate scale) of
genetic effects of different loci [16]. PGHS corresponds to
the sum of additive genetic effects. Although epistatic
interaction may be presented by a function of any kind, here
we examine the deviation from purely additive genetic
effects expressed through squared PGHS. The pairwise
interactions between alleles are described with a single
parameter under an assumption that the coefficients of
pairwise interactions are proportional to the product of
additive effects. This epistatic model is described in more
detail in the Materials and methods section. In a model also
including sex, residual predictor, and the main effects of
polygenic predictor, the effect of squared polygenic score
was significant in English but could not be replicated (p=
1.32 × 10−2 for all, p= 2.02 × 10−2 for English, and p =
0.346 for all-but-English). We speculated that our polygenic
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score is probably too weak to detect epistasis, and updated it
to include 3290 SNPs from 712 loci [25]. Indeed, the epi-
static effects of the updated polygenic score were stronger
and were replicated (p= 4 × 10−7 for all, p= 2 × 10−4 for
English, and p= 2 × 10−4 for all-but-English).

The observations of increased effects of various pre-
dictors and of the SD with the mean, the effects of inter-
actions, and variance heterogeneity we observed for adult
height lead us to try an alternative, log-normal, approx-
imation (see Supplementary Note 3 for details, and see
Supplementary Note 4 for discussion of other non-linear
transformations). The logarithm of a log-normally dis-
tributed character is distributed normally, and the effects
that multiply on the original scale, add up on logarithmic.
Indeed, for the log-height we observe that the effects added
up, and we observed an absence of scaling of the SD
(Fig. 2B) and of the effects (Fig. 3B, D, E) with the mean,
absence of significant effects of interactions (Supplementary
Table 6B), and absence of detectable variance heterogeneity
(Supplementary Table 5B). Also the epistatic effects,
defined as the effects of the squared polygenic score, were
not significant for the log-height (p= 0.76 for all, p= 0.67
for English, and p= 0.91 for all-but-English; for the
updated polygenic score, p= 0.48 for all, p= 0.89 for
English, and p= 0.09 for all-but-English). Thus, logarith-
mic transformation both stabilises the variance and allows
us to use a simpler model for the mean.

Finally, we addressed the question of how well the
normal and log-normal distributions approximate popula-
tion distribution of height. Overall, the multiplicative model
describes the data only slightly better, and the gain in the
proportion of variance explained is minimal (less than 0.1%,
see Supplementary Table 3). The study of quantile-quantile
plots (Supplementary Fig. 1) shows that the normal dis-
tribution does not approximate the tails of height distribu-
tion well. The log-normal distribution does better for the
right tail, although it cannot accommodate the left tail,
where, compared to the expectation, we observe too many
short people.

Furthermore, we explored how well height predictive
models trained in people born in England translate to people
born elsewhere (Supplementary Table 4). Overall, there was
a tendency for the multiplicative model to transfer better
than the additive model: for 9 out of 13 groups studied, the
proportion of variance explained by the log-height model
was higher, as well as the median bias was smaller. How-
ever, this frequency was not significantly deviating from the
null 50:50 expectation (p > 0.05).

The multiplicative model of height predicts that at the
extremes, people will be taller than predicted by an additive
model, while in the centre, the additive model will over-
estimate the height. When we compare the observed dis-
tribution of height with the normal and log-normal, we

observe that with a single exception both approximations
provide an excellent fit to the data (Supplementary Fig. 2,
Supplementary Table 7). The notable exception is the pre-
diction of male height in the middle of the distribution; in
accordance with the expectation from the multiplicative
model, the normal approximation overestimates the height
(by almost 1 mm, nominal p < 0.001, Bonferroni-corrected
p= 0.03).

Discussion

Here, we analysed adult height using summary-level data
from a variety of world populations and big individual-level
UK Biobank data. We demonstrated that when the height of
hundreds of thousands of individuals is analysed, the model
complexity needs to be increased to include non-additive
interactions between sex, environment and genes. Alter-
natively, the use of log-normal approximation allowed us to
still use the additive effects model. Thus, our analysis
suggests that the log-normal approximation may be a useful
alternative to the normal approximation in analysis of big
(hundreds of thousands of individuals) height data, analysis
of heterogeneous populations, and analysis of the extremes
of height. These findings are important for future genetic
and methodologic studies that make use of adult height as
an exemplar trait.

Several independent lines of evidence support our con-
clusion about the presence of multiplicative effects and
potential role of log-normal approximation for height. For
example, the fact that variation of height is different
between human populations, while the coefficient of var-
iation is rather stable, has been documented in socio-
economic and anthropological literature [32, 33], leading
some social scientists and economists to postulate a log-
normal distribution of height [32] between populations.
From the biological perspective, at least for species other
than humans, the growth of organisms is believed to be a
multiplicative process [34].

Our findings may be discussed in context of measure-
ment theory [35]. This theory suggests that theoretical
context determines the scale type of measurements and
which transformations of those measurements can be made
without compromising their meaningfulness. In the case of
human height, as conventionally measured, theoretical
context [34, 35] as well as results of this work may suggest
a “ratio” scale (using terminology of [35]), under which a
statement such as “on average, men are 8% taller than
women” is meaningful.

As we detailed in the Introduction, prehaps, with the
exception of sex, the multiplicative effects of other factors,
such as genes and environment, on height were not appre-
ciated before. We believe that this may be explained by the
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fact that the multiplicative effects are very small and their
discovery asked for the sample sizes that were out of reach
until very recent. In contrast to the traits that are well-
known to be distributed log-normally (e.g. weight, body
mass index, triglyceride level, and many others), the within-
population coefficient of variation of adult height is small
(CV of 3–5%, see, e.g. [36])—as soon as the large effect of
sex is dealt with in an appropriate manner. When CV is
small, and the effects in question are small, the additive and
multiplicative models are almost indistinguishable, and
normal and log-normal distributions both fit the data well
[37]. This small deviation from additivity is hard to detect
unless very large sample sizes are employed. Until recently,
studies of individual-level height were restricted to studies
of just a few thousands of individual measurements. Only
availability of individual-level epidemiological and genetic
data on hundreds of thousands of individuals in the UK
Biobank made it possible for us to determine the multi-
plicative interactions between sex, genes, and the
environment.

Although given the small CV the normal and log-normal
approximations of height may be almost equivalent, still,
some differences in statistical properties may be expected.
Indeed, the use of log-normal approximation improves the
model fit to the data, although it does that by very little (the
difference in the proportion of variance explained is less
than 0.1%). The predictions from the two models are also
essentially the same (see Supplementary Table 8). The
transferability of prediction from one population to another
is somewhat better for the multiplicative model (Supple-
mentary Table 4), but this finding is not significant. In terms
of distribution of type 1 error under the null hypothesis, the
uses of both normal and log-normal approximations are
equivalent (Supplementary Table 9).

What may be expected in the future, when many millions
of samples could be analysed? From our analysis it follows
that while the use of log-normal approximation is expected
to lead to better prediction, on population level the gain is
very small. At the same time, deviation may be pronounced
for individuals at the edges of distribution. We do not
expect that the use of either normal or log-normal approx-
imation will lead to large differences in type 1 or type 2
error. However, with progressively larger sample sizes the
epistatic effects will become detectable for individual var-
iants. At the moment, under normal approximation, we can
already detect the gene by sex interaction for the lead SNP
rs143384:G > A (p value for interaction is 0.037). Assuming
that the distribution of height in mega-cohorts is better
approximated by the log-normal rather than normal dis-
tribution, with even larger sample sizes, both Gene by Sex
as well as Gene by Gene interactions will become sig-
nificant for genetic variants with progressively smaller

effects. Hence, if one were to keep the model simple, one
would likely have to turn to log-normal approximation.

The question whether one should use normal or log-
normal approximation to study human height depends much
on the scientific question being asked. As we demonstrated,
for prediction of means, as well as in the context of herit-
ability estimation and GWAS we expect that differences are
negligible. However, if one aims to study interactions and
aims to predict variation of height, the difference between
using normal and log-normal approximation will be
substantial.

Thus, as far as we can see, our discovery mainly has a
conceptual value and may guide better interpretation of the
results of analysis of big data. As we demonstrate, a study
of big height data under an additive model demonstrated
variance heterogeneity and interactions. Variance hetero-
geneity across genotypes is often interpreted as evidence of
possible interactions [25–27] or environmental sensitivity
[28]; and each specific (e.g. gene by sex, gene by envir-
onment, gene by gene) interaction tend to be explained in
terms of the underlying biology. In case of height, though,
using log-normal instead of normal approximation allows
using a simple parsimonious model that assumes that the
effects add (on the log-scale).

On a side note, we would like to reflect on the fact that
most anthropometric traits, such as height, weight, body
mass index, are well approximated by a log-normal dis-
tribution with male having greater mean and hence greater
variance. This may be one of the explanations of the
“greater male variability” in physical characteristics, first
noted by Darwin: “several studies had been conducted to
demonstrate that variability was indeed more characteristic
of males … The biological evidence overwhelmingly
favoured males as the more variable sex… The cause of the
greater general variability in the male sex, than in the female
is unknown” [38].

To conclude, we analysed adult height using summary-
level data from a variety of world populations and big
individual-level UK Biobank data. Our analysis shows that
when the height of hundreds of thousands of adults is
analysed, the non-additive interactions can be detected. This
leads to increased model complexity and a “breakdown” of
the classical example of the classical quantitative genetics.
This apparent breakdown could, however, be avoided, and
the additivity assumption could be kept if the log-normal
approximation is used. We speculate that future increase in
the volumes of available data will eventually force us to
further review the assumptions about distribution of adult
height and the model of its control.

Our findings are important for the field of quantitative
and complex trait genetics, because new methods are often
tested using adult height, and the findings for height are
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often extrapolated and have profound effects on the ways
we look at and study other traits.

Data availability

This study makes use of genotype and phenotype data from
the UK Biobank data under project # 41601, “Non-additive
effects in control of complex human traits”. UKB data can
be accessed upon request once a research project has been
submitted and approved by the UKB committee. Results of
model estimation and summary statistics are available as
Supplementary Tables to this manuscript and also in
Zenodo repository with the following https://doi.org/10.
5281/zenodo.4115911.

Code availability

The custom code used in the manuscript is available at
GitHub (https://github.com/ivkuz/HumanHeight.git).
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