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In this document, we show two derivations that were omitted in
the main article. In Section 1, we derive the moment equilibrium
equation of an elastic rod under gravity from the variational form.
In Section 2, we derive the adjoint of the equality-constrained Jacobi
equations used to determine stability of kinematic elastic rods.

Notation. To keep this document self-contained, we repeat some
definitions and notation from the main article. Let γ : [0, l] → R2 an
arc-length parametrized plane curve inC2. Denote by α : [0, l] → R
a turning angle function in C1, such that γ ′ = (cosα, sinα), and by
κ : [0, l] → R the curvature of γ , such that κ = α ′. Furthermore, let
K : [0, l] → R≥0, the spatially-varying stiffness of an elastic curve.

Variations. We use the δ -operator to describe variations of the
primary variable α , and also variations induced in other variables
and functionals. To preserve Dirichlet boundary conditions, δα
satisfies δα(0) = 0 = δα(l). Induced variations of a quantity G[α]
are given by δG[α ;δα] = (d/dε)G[α + ε δα]|ε=0, where we will
usually omit the dependence on α and δα . For example, we have

δγ ′ = δ

(
cosα
sinα

)
= Rγ ′δα,

with R =
( 0 −1

1 0
)
. Variations δα are chosen from the same space

as α , but we will formally allow distributional δα to simplify com-
putations. This can be made more precise with an approximation
argument.

1 MOMENT EQUILIBRIUM UNDER GRAVITY
In Section 5.1 of the main article, we give an expression for the
energy potential of an elastic curve with constant thickness and
spatially-varying width under gravity,

W [α] =

∫ l

0
K

(
1
2κ

2 + ⟨γ , e⟩

)
,

where e ∈ R2 is a constant dependent on gravity, thickness, and
material properties. We are looking for extremals subject to the
constraint γ (l) = γl , i.e., the endpoint of the curve is fixed to lie at γl .
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According to the method of Lagrange multipliers, these extremals
are characterized by α and λ ∈ R2 for which the variation of

L[α, λ] =

∫ l

0

1
2Kκ

2︸      ︷︷      ︸
A

+

∫ l

0
K ⟨γ , e⟩︸       ︷︷       ︸
B

+

∫ l

0
⟨λ,γ ′⟩︸      ︷︷      ︸
C

vanishes, and such that γ (l) = γl . The variations of A, B, and C are
given by

δA =

∫ l

0
Kκδα ′ = −

∫ l

0
(Kκ)′δα,

δB =

∫ l

0
K(s)

(∫ s

0
⟨Rγ ′, e⟩δα

)
ds,

δC =

∫ l

0
⟨λ,Rγ ′⟩δα .

To derive the moment equilibrium equation at a point ς ∈ (0, l),
we formally set δα = δς , the delta distribution centered at ς . Then,
the variations of A and C evaluate to

δA = −(Kκ)′(ς) and δC = ⟨λ,Rγ ′(ς)⟩.

The variation of B is given by

δB =

∫ l

0
K(s)⟨Rγ ′(ς), e⟩χ[0,s](ς) ds

= ⟨Rγ ′(ς), e⟩

∫ l

0
K(s)χ[0,s](ς) ds = ⟨Rγ ′(ς), e⟩

∫ l

ς
K,

where χ[0,s] denotes the characteristic function on [0, s]. Setting the
variation of L to zero, we arrive at the Euler–Lagrange equation

0 = −(Kκ)′(ς) + ⟨b,γ ′(ς)⟩ + ⟨Rte,γ ′(ς)⟩

∫ l

ς
K,

where we have substituted λ = Rb.
The last step in deriving the moment equilibrium equation is

to find an antiderivative of the function above. For the first two
summands, an antiderivative is given by −Kκ + ⟨b,γ ⟩. For the last
summand, we use the identity

d
ds

(
f (s)

∫ l

s
д −

∫ l

s
f д

)
= f ′(s)

∫ l

s
д

to conclude that an antiderivative is given by

⟨Rte,γ (ς)⟩

∫ l

ς
K −

∫ l

ς
⟨Rte,γ ⟩K .

In its integrated form, the moment equilibrium equation is given by

−K(ς)κ(ς) + ⟨b,γ (ς)⟩ + ⟨Rte,γ (ς)⟩

∫ l

ς
K −

∫ l

ς
⟨Rte,γ ⟩K + a = 0

with the integration constant a.
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2 ADJOINT STABILITY EQUATIONS
In Section 6.2 of the main article, we summarize the isoperimetric
Jacobi criterion [Manning et al. 1998], which can be used to deter-
mine whether an extremal of a variational problem with multiple
equality constraints is a minimum. In this section, we derive the cor-
responding adjoint equations, which are also listed in Appendix B
of the main article.

2.1 The Primal Equations
For easier reference, we repeat all primal equations that need to be
taken into account when deriving the adjoint.

−(Kα ′)′ + ⟨λ,Rγ ′⟩ = 0, α(0) = α0, α(l) = αl ,

subject to γ (l) = γl ,

−(Kζ ′)′ − ⟨λ,γ ′⟩ζ = 0, ζ (0) = 0, ζ ′(0) = 1,
−(Kη′i )

′ − ⟨λ,γ ′⟩ηi = ⟨Rγ ′, ei ⟩, ηi (0) = 0, η′i (0) = 1,
M ′
i = ⟨Rγ ′, ei ⟩ζ , Mi (0) = 0,

N ′
i j = ⟨Rγ ′, ei ⟩ηj , Ni j (0) = 0,

Z =
©«
ζ η1 η2
M1 N11 N12
M2 N21 N22

ª®¬ ,
Z = detZ ,

F =

∫
φZ.

The first two lines define an extremal of the bending energy
with kinematic boundary conditions. Lines 3–8 define the “stability
indicator”Z, which can be checked for zero crossings on the interval
(0, l). The existence of σ ∈ (0, l) with Z(σ ) = 0 indicates that
the extremal is a saddle point and not a minimum. The stability
recovery algorithm, which is detailed in the main article, depends
on computing the variational derivative of F with respect toK . Here,
φ can be thought of as either the delta distribution δσ centered at
σ , or an approximation of δσ through a function with unit mass.

2.2 Céa’s Method
To derive the adjoint equations, we apply Céa’s method [Sharp
2019]. We will first illustrate the method on a short example, and
then apply it to the full set of equations.
Assume we are given the boundary-value problem u ′′ = д with

u(0) = 0 and u ′(1) = 1, and are interested in how the quantity
F =

∫ 1
0 u

2 changes with д. That is, we want to identify δF [д;δд].
The goal of the adjoint method is to avoid computing intermediate
quantities such as δu in the process.
Céa’s method achieves this by rewriting F as

F =

∫ 1

0
u2 +

∫ 1

0
ū(u ′′ − д),

in which we can choose the function ū arbitrarily without changing
F , because u ′′ = д. If we apply the δ -operator to F , this will result
in the appearance of terms involving δu at first. But, as we will
see shortly, ū can be chosen to cancel out δu, which simplifies the
computation of δF .

The variation of F is given by

δF =

∫ 1

0
(2u δu + ū(δu ′′ − δд))

= (ū δu ′ − ū ′δu)
��1
0 +

∫ 1

0

(
(2u + ū ′′)δu − ū δд

)
= −ū ′(1)δu(1) − ū(0)δu ′(0) +

∫ 1

0

(
(2u + ū ′′)δu − ū δд

)
,

where he have first used integration by parts twice, and then the
boundary conditions δu(0) = 0 and δu ′(1) = 0. We can see that
choosing ū as the solution to the adjoint equation

ū ′′ = −2u, s.t. ū(0) = 0, ū ′(1) = 0,

simplifies δF = −
∫ 1
0 ū δд, and δu no longer appears. Thismeans that

we can compute δF by first solving the adjoint equation for ū, and
then integrating it against δд. Equivalently, −ū is the L2-gradient of
F , because δF = ⟨−ū, δд⟩L2 .

The general recipe of Céa’s method is to append to the objective
function F a sum of inner products between quantities known to be
zero (expressions involving differential operators, constraints, etc.)
and adjoint variables, which we denote by overbars. For differen-
tial equations, such as u ′′ = д, adjoint variables take the form of
functions, and the L2-inner product is used. For integral constraints,
adjoint variables are scalars, and we use the standard Euclidean in-
ner product. Then, we manipulate δF in order to isolate the adjoint
equations, which we can solve in order to simplify δF .

2.3 The Adjoint Equations
In the following, indices always run from 1 to 2, and integrals from
0 to l . We introduce the adjoint variables ᾱ , λ̄, ζ̄ , η̄i , M̄i , and N̄i j ,
corresponding to lines 1–6 of the primal equations. Furthermore,
denote by C(·) the cofactors of Z , e.g., Cζ is the cofactor associated
with the top-left entry ζ in the matrix.

The variation of F , before appending additional terms, reads

δF =

∫
φ

(
Cζ δζ +

∑
i Cηi δηi +

∑
i CMi δMi +

∑
i j CNi j δNi j

)
.

Next, let us account for the adjoint terms resulting from expressions
of the form −(Ku ′)′, where u ∈ {α, ζ ,ηi }. This results in

δ
∫
−ū(Ku ′)′ =

(
−ūu ′δK + Kū ′δu − Kū δu ′

) ��l
0

+
∫
(ū ′u ′δK − (Kū ′)′δu) .

After considering the boundary conditions on α , ζ , and ηi , we get

δ
∫
−ᾱ(Kα ′)′ =

(
−ᾱα ′δK − Kᾱ δα ′

) ��l
0

+
∫
(ᾱ ′α ′δK − (Kᾱ ′)′δα) ,

δ
∫
−ζ̄ (Kζ ′)′ = −ζ̄ ζ ′δK

��l
0 +

(
Kζ̄ ′δζ − Kζ̄ δζ ′

) ��
l

+
∫ (

ζ̄ ′ζ ′δK − (Kζ̄ ′)′δζ
)
,

δ
∫
−η̄i (Kη

′
i )
′ = −η̄iη

′
iδK

��l
0 +

(
Kη̄′iδηi − Kη̄i δη

′
i
) ��
l

+
∫ (

η̄′iη
′
iδK − (Kη̄′i )

′δηi
)
.
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The remaining term in line 1 and the equality constraint in line 2
yield

δ
∫
ᾱ ⟨λ,Rγ ′⟩ =

∫
ᾱ (⟨δλ,Rγ ′⟩ − ⟨λ,γ ′δα⟩)

= ⟨δλ,
∫
Rγ ′ᾱ⟩ −

∫
ᾱ ⟨λ,γ ′⟩δα,

δ ⟨λ̄,
∫
γ ′ − γl ⟩ =

∫
⟨λ̄,Rγ ′⟩δα .

The remaining term in line 3 yields

δ
∫
−ζ̄ ⟨λ,γ ′⟩ζ = −⟨δλ,

∫
ζ̄ ζγ ′⟩ −

∫
ζ̄ ζ ⟨λ,Rγ ′⟩δα −

∫
ζ̄ ⟨λ,γ ′⟩δζ ,

and the ones in line 4,

δ
∫
−η̄i (⟨λ,γ

′⟩ηi + ⟨Rγ ′, ei ⟩)

= −⟨δλ,
∫
η̄iηiγ

′⟩ +
∫
η̄i ⟨Rei − ληi ,Rγ

′⟩δα −
∫
η̄i ⟨λ,γ

′⟩δηi .

Similarly, for lines 5 and 6,

δ
∫
M̄i

(
M ′
i − ⟨Rγ ′, ei ⟩ζ

)
= M̄i δMi

��
l −

∫
M̄ ′
iδMi +

∫
M̄iζ ⟨γ

′, ei ⟩δα −
∫
M̄i ⟨Rγ

′, ei ⟩δζ ,

δ
∫
N̄i j

(
N ′
i j − ⟨Rγ ′, ei ⟩ηj

)
= N̄i j δNi j

��
l −

∫
N̄ ′
i jδNi j +

∫
N̄i jηj ⟨γ

′, ei ⟩δα−
∫
N̄i j ⟨Rγ

′, ei ⟩δηj .

Next, we gather the expressions multiplying variations that we
do not want to evaluate, i.e., δα , δλ, δζ , δηi , δMi , and δNi j . We will
do this process in reverse order, because this corresponds to the
natural order in which the adjoint equations need to be solved. For
δMi and δNi j , we have

M̄ ′
i = φCMi , M̄i (l) = 0,

N̄ ′
i j = φCNi j , N̄i j (l) = 0.

For δζ and δηi , we have

−(Kζ̄ ′)′ − ⟨λ,γ ′⟩ζ̄ = M̄i ⟨Rγ
′, ei ⟩ − φCζ , ζ̄ (l) = 0, ζ̄ ′(l) = 0,

−(Kη̄′i )
′ − ⟨λ,γ ′⟩η̄i = N̄i j ⟨Rγ

′, ei ⟩ − φCηi , η̄i (l) = 0, η̄′i (l) = 0.

Collecting terms multiplying δα yields

(Kᾱ ′)′ = −ᾱ ⟨λ,γ ′⟩ + ⟨λ̄,Rγ ′⟩

+ (ζ̄ ζ +
∑
i η̄iηi )⟨Rλ,γ

′⟩

+
∑
i (η̄i + M̄iζ +

∑
j N̄i jηj )⟨γ

′, ei ⟩, ᾱ(0) = 0, ᾱ(l) = 0,

and for δλ, the two-component equation∫
Rγ ′ᾱ =

∫
(ζ̄ ζ +

∑
i η̄iηi )γ

′.

Putting the equations for δα and δλ together, we see that they cor-
respond to the constrained Euler–Lagrange equations of a quadratic
variational problem with linear integral constraints in ᾱ , where λ̄ is
used as a Lagrange multiplier:∫ l

0

1
2

(
Kᾱ ′2 − ⟨λ,γ ′⟩ᾱ2

)
+

[
(ζ̄ ζ +

∑
i η̄iηi )⟨Rλ,γ

′⟩

+
∑
i (η̄i + M̄iζ +

∑
j N̄i jηj )⟨γ

′, ei ⟩
]
ᾱ

s.t.
ᾱ(0) = 0,
ᾱ(l) = 0, and

∫ l

0
Rγ ′ᾱ =

∫ l

0
(ζ̄ ζ +

∑
i η̄iηi )γ

′.

Finally, the variational derivative of F can be assembled from all
terms involving δK . This gives

δF [K ;δK] = (ζ̄ +
∑
i η̄i )δK

��
0 +

∫ l

0

(
ᾱ ′α ′ + ζ̄ ′ζ ′ +

∑
i η̄

′
iη

′
i

)
δK .
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