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Liquid water contains the building blocks of
diverse ice phases

Bartomeu Monserrat® "2, Jan Gerit Brandenburg34, Edgar A. Engel? & Bingging Cheng® 2°%

Water molecules can arrange into a liquid with complex hydrogen-bond networks and at least
17 experimentally confirmed ice phases with enormous structural diversity. It remains a
puzzle how or whether this multitude of arrangements in different phases of water are
related. Here we investigate the structural similarities between liquid water and a compre-
hensive set of 54 ice phases in simulations, by directly comparing their local environments
using general atomic descriptors, and also by demonstrating that a machine-learning
potential trained on liquid water alone can predict the densities, lattice energies, and vibra-
tional properties of the ices. The finding that the local environments characterising the
different ice phases are found in water sheds light on the phase behavior of water, and
rationalizes the transferability of water models between different phases.

TDepartment of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 OFS, UK. 2 Cavendish Laboratory, University
of Cambridge, J. J. Thomson Avenue, Cambridge CB3 OHE, UK. 3 Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld
205A, 69120 Heidelberg, Germany. 4 Digital Organization, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany. > Accelerate Programme for Scientific
Discovery, Department of Computer Science and Technology, 15 JJ Thomson Ave, Cambridge CB3 OFD, UK. ™email: bc509@cam.ac.uk

NATURE COMMUNICATIONS | (2020)11:5757 | https://doi.org/10.1038/s41467-020-19606-y | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19606-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19606-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19606-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-19606-y&domain=pdf
http://orcid.org/0000-0002-4233-4071
http://orcid.org/0000-0002-4233-4071
http://orcid.org/0000-0002-4233-4071
http://orcid.org/0000-0002-4233-4071
http://orcid.org/0000-0002-4233-4071
http://orcid.org/0000-0002-3584-9632
http://orcid.org/0000-0002-3584-9632
http://orcid.org/0000-0002-3584-9632
http://orcid.org/0000-0002-3584-9632
http://orcid.org/0000-0002-3584-9632
mailto:bc509@cam.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

he number of experimentally observed and theoretically

predicted phases of water seems to be ever growing!. The

most ubiquitous phase on Earth, liquid water, has many
intriguing properties, including a density maximum at 4 °C and
ambient pressure, volume expansion upon freezing, unusually
high surface tension, melting, and boiling point?. Liquid water
exhibits no long-range order and its local structure is difficult to
quantify and yet intricately related to its unique properties?=.
Beside the liquid, the various ice phases in the complex phase
diagram of water are made from distinct local atomic environ-
ments!, which lead to a large spread in their densities, lattice
energies, and other thermodynamic as well as kinetic
properties!'®. Apart from the direct connection with physical
properties, the local structures in water are also related to the
transition paths between the phases’8.

One intriguing question thus is the structural relationship
between the different ice phases, and between ice and liquid
water. This is not an easy topic to investigate, however, due to the
structural complexity of the liquid®%1? and the large number of
ice phases!. In this work, we exploit state-of-the-art advances in
machine learning (ML) for chemistry and materials, in order to
compare the local environments in various phases of water in a
general and systematic manner. More specifically, we first curate a
dataset consisting of 54 representative phases of ice including all
the known phases (see “Methods” section), whose densities range
from 0.7 to 1.4 g/mL. Then we demonstrate that the local atomic
environments found in liquid water cover the ones observed in all
these ice phases, using a universal and automated framework for
comparing the local similarities. As a consequence of this inclu-
sion, a machine-learning potential (MLP)!! that is only trained
on liquid water accurately reproduces the ice properties including
lattice energies, mass densities, and phonon densities of states.

Results

Curated dataset of diverse water phases. We first select repre-
sentative atomistic configurations of diverse crystalline and liquid
phases. We start from 57 ice crystal structures, which include all
the experimentally known ices. These were screened from an
extensive set of 15,859 hypothetical ice structures using a gen-
eralized convex hull construction (an algorithm for identifying
promising experimental candidates)!>13. After rigorous geometry
optimizations at zero pressure (see “Methods” section), we
eliminate three defective phases and the very high pressure phase
X, and added the originally missing ice IV. The “Methods” sec-
tion describes the dataset of the remaining 54 ice phases in more
detail. Note that some structures (with particular hydrogen
arrangements) represent both a proton-ordered and a proton-
disordered form: for example, one ice structure prototypes both
ice Th and XI. We consider the respective minimum potential
energy configurations of the ice phases, because they provide
reasonable and reproducible approximations to the physical
properties of ice, and serve as starting points for computing
thermodynamic properties.

Compiling a set of representative structures for liquid water is
less straightforward, since the liquid persists over a wide range of
temperatures and pressures. We consider 1000 diverse 64-
molecule snapshots of liquid water, which have previously served
in training a recent MLP!1. They were originally prepared using a
three-step process. Bulk liquid systems of 64 water molecules
were first equilibrated at high temperatures and densities between
0.7 and 1.2 g/mL. The resulting (de-correlated) configurations
were then quenched using a steepest decent optimization. Finally,
the 1000 most structurally diverse structures were extracted from
all the collected liquid configurations using a farthest point
sampling algorithm. There are two reasons why the 1000

configurations are representative of liquid water. First, they were
constructed in order to cover a large part of the configurational
space of possible atomic environments in liquid water. Second,
the MLP trained using these structures reproduces many
properties of water very well, including the density isobar and
radial distribution functions at ambient pressure!!, which means
that the training set contains the necessary information for
describing liquid water at ambient pressure in a data-driven
manner.

Direct comparison of the local environments. We employ the
smooth overlap of atomic positions (SOAP)!4 local descriptors to
represent the atomic environments (i.e., the displacements of all
the neighbors within a cutoft radius r. around the central atom).
More details regarding the representations are provided in
the “Methods” section. For each structure, we then compute its
global descriptors by taking the average of the local ones of all the
atomic environments in that structure!®. As the global descriptors
are high-dimensional, we use principal component analysis
(PCA) to build a two-dimensional embedding to visualize the
relative difference (i.e., distances) between the structures. Essen-
tially, a PCA map is the linear projection that best preserves the
variances of the high-dimensional Cartesian distances of the
dataset. Because only linear operations are involved throughout,
the local and the global descriptors can be meaningfully projected
onto the same PCA map.

We use these methodologies to analyse the 54 ice phases and
the 1000 snapshots of the liquid. Figure 1a shows the PCA map of
the global descriptors of all the structures: similar structures stay
close on this map, while distinct ones are farther apart. The
horizontal principal axis is strongly correlated with density,
suggesting that density variance is a dominant feature of the
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Fig. 1 PCA maps for the 54 ice phases and the 1000 liquid water
configurations. The geometries of the ice phases have been optimized by
HSE-3c. If known, each ice structure is labeled by the name of the proton
ordered and disordered phase, and otherwise by a number. a Each dot
indicates a structure, which is described by global descriptors. b Each small
dot indicates the projection of a oxygen or hydrogen-centered local
environment.

2 | (2020)11:5757 | https://doi.org/10.1038/s41467-020-19606-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

dataset. The ice phases and the liquid structures are separated on
the map, while ice structures that are commonly considered to be
similar (e.g., ice Ic and Ih) stay close together. The distinction
between ices and liquids in the PCA map is to be expected
considering the absence of long-range order in the latter. More
structure—property relationships may be extracted from this PCA
map, and we provide an interactive explorer of the ice and liquid
water dataset in the Supplementary Data 1 (“Supplementary Data
1”), which runs in web browser and is made using Chemiscope!®.

However, the key message here is the comparison between the
PCA map of the whole structures (Fig. la) and the one of
individual atomic environments (Fig. 1b). The latter is the
projection of local descriptors of all the atomic environments
(r. = 6 A), onto the same PCA map as in Fig. 1a. Contrary to the
clear distinction between ice and liquid shown in Fig. 1a, the local
environments in liquids and ices are similar on Fig. 1b.
Furthermore, the crystalline nature of the ices leads to
comparatively few distinct atomic environments, and they are
almost completely covered by the continuum realized in liquid
water. In other words, liquid water in simulations prototypes all
atomic environments pertinent to the 54 ice phases.

Predictions of the MLP on ices. The PCA maps provide a simple
and general way of comparing and understanding the structural
similarities, but choice of the representations and the linear
dimensionality reduction inevitably lead to information loss and
distortion. As an alternative similarity comparison, we explore
how well a MLP!! that is only trained on reference calculations
for liquid water configurations describes diverse crystalline
phases.

This MLP is based on revPBE0!718 hybrid functional density
functional theory (DFT) calculations with the semiclassical D3
dispersion correction!®. The training set contains 1593 config-
urations: the first 1000 are classical configurations as described
above, the remaining 593 originate from path-integral molecular
dynamics (PIMD) simulations at ambient conditions. We omit
those PIMD configurations in the PCA analysis above because
nuclear quantum effects29 complicate the direct comparisons with
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classical water, and also because those configurations had a very
minor effect on the training of the MLP in our previous work!!.
The MLP uses an artificial neural network constructed according
to the framework of Behler and Parrinello?!. The total energy of
the system is expressed as the sum of the individual contributions
from the atom-centered environments of radius 6 A.

Crucially, the success of the MLP hinges on the notion of
“nearsightedness™ energy and forces associated with a central
atom are largely determined by its neighbors, and the long-range
interactions can be approximated in a mean-field manner without
explicitly considering the far-away atoms. This notion underlies
many atomic and molecular force-field as well as most common
MLPs?2. From this point of view, to capture the energetics and
dynamics of a phase of water, the key is to predict the local atom-
centered contributions to the total energy and forces (General-
izations to systems with nontrivial long-range interactions like
strong ionic liquids have to be done carefully as those might pose
a challenge to the “nearsightedness”.). In practice, this means the
training set of the MLP needs to contain the essential local atomic
environments of the particular phase. Following this logic, we
postulate that, if the liquid water contains all the local
environments of the ice phases, an MLP trained exclusively on
snapshots of liquid water should also be able to describe the ice
phases.

To verify our hypothesis, we benchmark the performance of
the MLP against reference DFT calculations and experimental
results (see more details in “Methods” section). The DFT
references comprise (i) revPBE0-D3 using cp2k with similar
numerical settings as the calculations performed to generate the
training reference of the MLP, (ii) revPBE0-D3 using vasp
and converged numerical settings, and (iii) the screened
exchange hybrid HSE-3c as implemented in crysTaLl7. Note that
the multiple DFT references also provide an estimate on the
intrinsic errors in these DFT calculations due to the choices on
the specific hybrid functionals, numerical settings and the use of
different software packages.

In Fig. 2a we show the comparison between the lattice energies
and the densities (Fig. 2b) of the 54 ice phases. Note that for the
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Fig. 2 A comparison between the lattice and energy of the 54 ice phases. The x-axes show the values computed using the MLP based on revPBEO-D3.
a Results for lattice energy, and b shows the values for the densities of the ice phases. In both panels, the y-axes show the results from DFT calculations
using the revPBEO-D3 functional employing vasp, the revPBEO-D3 functional employing cr2k, and the HSE-3c functional employing crysTAL17. The
experimental references are taken from ref. °%: the densities were measured at between 0 and 90 K and ambient pressure, and the experimental lattice
energies were extrapolated to O K, and zero-point energies were removed. Source data are provided as a Source Data file.
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lattice energies different theories or experiments have different
baselines, so for each set of calculation or measurement we use
the energies the ice Th/XI structure as a reference. In general, we
find an excellent agreement between the MLP predictions and all
four references, particularly for the densities. In particular, the
differences between the MLP results and the ab initio references
are on par with the DFT differences introduced by the details of
the first principles calculations. For instance, the Pearson
correlation coefficient R between the MLP densities and the
cp2k values is 0.96 and the root mean square error (RMSE) is 0.06
g/mL, and the corresponding metrics between cp2k and vasp are
0.96 and 0.08 g/mL. For the lattice energies, the R and RMSE
between the MLP and the cp2x predictions are 0.95 and 9 meV/
H,O, respectively, compared with 0.91 and 15 meV/H,O between
the cp2k and the vasp values.

The curvature of the potential energy surface around a local
minimum relates to the harmonic frequencies at which the atoms
in a crystal vibrate. To investigate the performance of the MLP for
this quantity, we have calculated the phonon frequencies for the
considered ice structures using the MLP as well as for a subset of
the ice structures using revPBEQ-D3 DFT calculations with both
vasp and cp2k. Figure 3 provides a detailed comparison of the
phonon density of states (DOS) for three representative structures
with distinct densities. Figure 3a is for the ice VI phase and its
proton-ordered counterpart, XV. Figure 3b corresponds to a
structure that represents the ice Ih phase as well as the proton-
ordered XI. Figure 3c shows the results for a low-density
hypothetical phase. All the DOS show excellent agreement in
both the low-energy region, corresponding to long-range
dispersive crystal vibrations, and the high-energy region,
corresponding to localized molecular vibrations. The small shift
of low frequency phonons may be induced by the lack of long-
range interactions of the MLP. A comparison across all structures
can be found in the Methods, and it provides remarkable
agreement between the MLP and the first principles methods
across all structures in the entire energy range of vibrations.

Discussion

The similarities between the local environments in solid and
liquid phases shed light on the structure of liquid water. There
have been many efforts to develop a molecular understanding of
water, in terms of orientational and translational order4, hydro-
gen bond networks’ and spontaneously forming dendritic
voids!0. Our approach of using local environments observed in
ice as landmark points is a new way of interpreting liquid water as
a mixture of ice structures. It is worth noting that, almost as the
other side of the same coin, the idea of inferring the long-range
ice order from good water potentials has been discussed by Rice
and coworkers in the 198052324,

On the flip side, the similarity also suggests that the liquid and
ice structures are distinct in Fig. 1a not because of the difference
in local environments, but due to the presence of long-range
order. The conclusion that liquid water contains all the ice
environments explains why the MLP trained on liquid describes
the ice phases well. This generalization is not specific to this MLP.
Indeed, many water models, such as the coarse grained mW2°
model, the empirical water models SPC2® and the TIPnP
series?’>28, the polarizable AMOEBA?2%, and the MB-pol water
potential3®3! that are fitted to ab initio reference, qualitatively
reproduce large parts of the phase diagram?33233, despite having
been developed primarily to simulate the liquid phase. In parti-
cular, MB-pol correctly reproduce the properties of water from
the gas to the condensed phases?!. For the MLP used here, the
melting point of ice Th and the relative stabilities between Th and
Ic have been computed!!.
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Fig. 3 A comparison between the phonon density of states (DOS) for
three ice structures. a-c Results for three indicated ice phases with distinct
densities. The three sets of DOS in each panel were computed using
revPBEO-D3 DFT calculations employing vasp, revPBEO-D3 DFT calculations
employing cr2k, and the MLP, all at the Gamma (I") point. The densities
predicted at the MLP level are indicated. Source data are provided as a
Source Data file.

In addition, the general and agnostic comparison of the local
environments can be easily extended to study amorphous ice34,
interfaces, and water under confinement. It is also interesting to
investigate how nuclear quantum fluctuations®>-38 influence the
distribution of the atomic environments in various phases.

Furthermore, our results illustrate the immense promise of
employing MLPs in materials modeling. For instance, the MLP
used here provides an accurate description of the static and
vibrational properties of ice phases at a fraction of the cost of the
corresponding DFT calculations. For example, the DFT calcula-
tion for the I'-point phonons of a 4-molecule structure takes 264
CPU hours, and that for a 52-molecule structure takes 16,000
CPU hours, compared with just a few minutes for both on a
laptop using the MLP. Besides, the fact that one can only train a
MLP on one liquid phase and apply the potential to other phases
evince the extend of its “extrapolability”, which significantly
facilitates the constructions of the potentials. It is worth men-
tioning that, the MLP for water is stable enough to run MD and
PIMD for all the phases. Despite the success of the MLP trained
on the liquid water, we want to caution that for systems where
long-range interactions are important, such as strongly ionic
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systems, the short-range nature of the MLP may pose a limit on
the overall accuracy. For a given system, it is also not certain if its
melt contains sufficient local ordering to reproduce the atomic
environments found in the solid phases.

Last but not least, using MLPs as tools for comparing atomic
environments offers a new approach of analyzing complex atomic
systems in an agnostic and general manner. Our analysis is, of
course, not restricted to the chosen DFT level and can be
extended to incorporate new developments in the field of ab initio
methods39-42,

To summarize, we compare the local environments in various
crystalline ice phases and liquid water, using two ML-based
approaches. We demonstrate that liquid water contains all the
local atomic environments in diverse ice phases. Our conclusion
provides a new and fundamental perspective on the under-
standing of liquid water and ices, and guides future efforts for
modeling water.

Methods

SOAP representations for atomic environments. Numerous representations of
atomic environments have been developed!4*3-4, and here we use the SOAP
representation!4. SOAP encodes the local environment X" around a central atom
using a smooth atomic density function

> e~ 100, )

Il <re

P (r) =

by summing over Gaussians centered on each atom i of species « (here hydrogen or
oxygen) within a given cutoff distance r. of the central atom. The density p%(r) is
then expanded in a basis of orthonormal radial functions g(|r]) and spherical
harmonics Y}, (7) as

P = 3 gl Vi (), @

nlm

Finally, the power spectrum is taken as

o 8 o *
Kt (X) = sz (chim )" i » (3)

which characterizes X in a translation, permutation, and rotation invariant
form!415. The vector {k},,} constructed in this way up to certain cutoffs /. and
max can then be used as the local fingerprint W(X'). We set the radius of the atomic
environment to be r. = 6 A, so that it includes the second hydration shell of water
molecules, and expand the SOAP descriptor up to l,.x = 6 and 1y, = 6. PCA
maps that were constructed using SOAP with different hyper-parameters are in the
Supplementary Figs. 1 and 2. In practice, we use the DScribe Python package for
constructing descriptors*®, and the ASAP Python package for the subsequent
analysis (provided as Supplementary Software 1).

Choice of the ice configurations. The initial 57 structures are based on an
extensive survey of ice!? that generated 15,859 configurations, by exploiting the
isomorphism between ice, experimentally known zeolites and theoretically-
enumerated four-connected SiO, networks. The resulting ice-like configurations
were subsequently locally relaxed, before a generalized convex hull construction!2
was employed to screen for the ice structures that may be stable under certain
thermodynamic conditions. These structures include the experimentally known
phases of ice except for ice IV, which we then add back into the selection. Figure 4
shows the PCA map of the locations of the selected phases. Notably, many ice
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Fig. 4 PCA Map for 15,859 ice phases. The phases selected for the current
study, as well as the phase X (outside the map), are marked on the map.

phases come in pairs of a low-temperature proton-ordered form and a higher-
temperature proton-disordered form: Ih and XI, III and IX, V and XIII, VI and XV,
VII and VIII, and XII and XIV. In this work, we focus on the particular proton-
ordered realizations of these phases made available with ref. 13,

Initial geometry optimization of the ice structures using HSE-3c. In ref. 13 the
ice structures were optimized at the PBE DFT level of theory using a coarse k-point
grid and plane wave basis, trading accuracy for computational efficiency. For this study,
we have therefore performed well-converged geometry optimization for the structures,
by running a few cycles of local geometry optimizations followed by identifying and
imposing crystal space group symmetries. These local optimizations are performed
with the screened exchange hybrid functional HSE-3c*” using tight optimization
thresholds as implemented in crystar17484°, The Brillouin zone is sampled with a
I-centered Monkhorst-Pack grid that has been converged individually for every system
to yield a lattice energy accuracy well below 1 meV. HSE-3c has been shown to yield
excellent molecular and intermolecular geometries as well as good noncovalent inter-
action energies®->2, and in particular, suitable for water and ices. As all ice structures
considered here were variable-cell geometry optimized at zero pressure, we were able to
directly compare them in the subsequent analysis. Note also that the proton
arrangements are typically “locked in” during optimizations, so the proton (dis)
ordering of each optimized ice structure is determined by the initial configuration and
does not necessarily represent the ground state. These relaxed geometries of the 54 ice
phases, together with their distributions of the oxygen—oxygen distances and the
oxygen—oxygen—oxygen angles are included in the Supplementary Figs. 3 and 4.

Geometry optimization using vasp. The geometries of all ice structures were further
refined with revPBE0-D3 using the vasp package®>>%. The equilibrium volumes cri-
tically depend on the energy cutoff, and we used a relatively high value of 1200 eV to
obtain converged results. The k-point sampling grids were the same as those deter-
mined for the HSE-3c calculations described above. Structures were constrained to
their initial symmetries throughout the geometry optimization, and convergence was
achieved with forces below 1073 eV/A and stress components below 10~2 GPa.

Geometry optimization using cp2k. We computed the equilibrium densities and
the lattice energies of the ice structures using the cp2x code® with the revPBE0-D3.
The computational details of the calculations are identical with refs. 11°%, although
the planewave cutoff energy was increased to 800 eV, to obtain smooth volume-
energy curves. Despite a considerable amount of effort, the geometry optimization
for three structures did not converge to reasonable values, so these calculations
were discarded.

Phonon calculations. For the phonon calculations using the MLP, we first com-
puted the Hessian matrix for the 54 geometry-optimized ice phases using finite
displacements of 0.01 A of each atom from its equilibrium position along x, y, and
z axes. Then the Hessian matrix was diagonalized to obtain the phonon frequencies
as the square root of the eigenvalues. We performed those phonon calculations for
the ice systems in both their original cell taken from ref. 13, and in supercells of this
original cell, obtained by repeating the original cell along all three cn:{stallographic
directions so that each dimension of the supercell is longer than 8 A.

The phonon calculations using cp2k follow the same approach, and the DFT
settings are identical to those for geometry optimization. Presumably due to
numerical issues of the specific DFT setup that we used (e.g., cp2k only supports
T-point sampling for hybrid functionals), a number of the ice phases contain
imaginary phonons at the I'-point, even after several rounds of geometry
optimization. We discarded the CP2K phonon DOS for these phases, and only
show the ones with real frequencies in Fig. 5.

The vasp phonon calculations were performed using the structures optimized
with vasp with the same parameters described above. We used the finite
displacement method®” in conjunction with nondiagonal supercells®®, and
commensurate k-point grids were used to sample the electronic Brillouin zones of
the supercells. The Hessian of a given nondiagonal supercell was calculated by
displacing each atom from its equilibrium position by 0.01A in symmetry-
inequivalent directions and calculating the force constants by finite differences. The
dynamical matrix for a given g-point grid of the vibrational Brillouin was
determined by combining the results from multiple nondiagonal supercell
calculations as described in the ref. °8. The resulting dynamical matrix was
diagonalized to obtain the phonon frequencies and eigenvectors.

In all sets of phonon calculations, imaginary phonons appear in multiple
structures at various q-points in the Brillouin zone. This reflects the fact that the
protons in many ice structures are disordered, and when we attempt to model them
as periodic ordered structures using the unit cells from ref. 13, we are artificially
constraining them to a saddle point of the potential energy surface rather than to a
local minimum. In some of the structures, instabilities appear even at the I'-point,
and this is caused by the symmetrization step in preparing the structures, which
again can place them at a saddle point. The imaginary phonons in this case break
some of the imposed symmetries to lower the energy. These problems can be
resolved by replicating the original simulation cell and re-relaxing the atomic
positions of the supercell to allow for the appearance of disorder that lowers the
overall energy, or by re-relaxing the primitive cell without imposing symmetry in
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Fig. 5 A comparison between the phonon DOS at the Gamma point for 54 ice phases. The DOS were computed using revPBEO-D3 DFT calculations
employing vasp, revPBEO-D3 DFT calculations employing cp2x, MLP using the original supercell, and MLP using replicated cell (MLP(L)). For the vasp and
cp2k calculations, only those that exhibited no imaginary phonons are shown here. Source data are provided as a Source Data file.

the case of Ipoint phonons. This additional step is computationally trivial for the — Data availability
MLP calculations, but computationally extremely costly for the hybrid functional ~ The 54 ice structures correspond to classical 0 K structures without external pressure, the

calculations using DFT. As a consequence, it is computationally prohibitive to CRYSTALL7, CP2K, and vasp input files, the Python notebook for analysis are provided in
accurately calculate the phonon densities of states for all ice structures at the DFT  the Supplementary Data 1 (“Supplementary Data 1), and available on https://github.
level, and we only consider a subset in Fig. 5. com/BingqingCheng/ice-in-water. Source data are provided with this paper.
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Code availability

We used the ASAP code for most of the analysis, which is available at: https://github.
com/BingqingCheng/ASAPThe Python notebook for making Fig. 1 is included in the
Supplementary Data 1 (“Supplementary Data 17).
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