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ABSTRACT 1 

To overcome nitrogen deficiency, legume roots establish symbiotic interactions with nitrogen-2 

fixing rhizobia that is fostered in specialized organs (nodules). Similar to other organs, nodule 3 

formation is determined by a local maximum of the phytohormone auxin at the primordium 4 

site. However, how auxin regulates nodule development remains poorly understood. Here, we 5 

found that in soybean, (Glycine max),  dynamic auxin transport driven by PIN-FORMED (PIN) 6 

transporter GmPIN1 is involved in nodule primordium formation. GmPIN1 was specifically 7 

expressed in nodule primordium cells and GmPIN1 was polarly localized in these cells. Two 8 

nodulation regulators, (iso)flavonoids trigger expanded distribution of GmPIN1b to root 9 

cortical cells, and cytokinin rearranges GmPIN1b polarity. Gmpin1abc triple mutants 10 

generated with CRISPR-Cas9 showed impaired establishment of auxin maxima in nodule 11 

meristems and aberrant divisions in the nodule primordium cells. Moreover, overexpression of 12 

GmPIN1 suppressed nodule primordium initiation. GmPIN9d, an ortholog of Arabidopsis 13 

thaliana PIN2, acts together with GmPIN1 later in nodule development to acropetally transport 14 

auxin in vascular bundles, fine-tuning the auxin supply for nodule enlargement. Our findings 15 

reveal how PIN-dependent auxin transport modulates different aspects of soybean nodule 16 

development and suggest that establishment of auxin gradient is a prerequisite for the proper 17 

interaction between legumes and rhizobia. 18 

 19 

INTRODUCTION 20 

The developmental plasticity of plant cells depends largely on de-novo post-embryonic 21 

generation of new organs initiated from specialized tissues (Benkova et al., 2003; Yamaguchi 22 

et al., 2013; Qi et al., 2014). For example, a lateral root is generated from pericycle cells, via a 23 

series of anticlinal divisions, giving rise to lateral root primordia (Benkova and Bielach, 2010). 24 

Leaf bulges formed at the flanks of the shoot apical meristem generate leaf primordia (Xiong 25 

and Jiao, 2019). Some primordia differentiate into determinate organs with constant cell 26 

numbers, whereas others develop into indeterminate organs with a secondary meristem at the 27 

tip.  28 

Initiation and positioning of an organ primordium is often instructed by local 29 

accumulation of the phytohormone auxin (Benkova et al., 2003; Qi et al., 2014; Wu et al., 30 

2015). Local auxin accumulation within founder cells depends mainly on the coordinated 31 

activities of AUXIN1/LIKE-AUXIN1 influx carriers and PIN-FORMED (PIN) efflux carriers 32 

in conjunction with other auxin transporters (Mravec et al., 2008). The roles of different PINs 33 

are well characterized in the context of auxin transport for organ growth and development in 34 
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Arabidopsis thaliana, such as PIN1 in flower development (Okada et al., 1991), PIN2 in root 35 

gravitropism (Muller et al., 1998), PIN3 in shoot tropism (Friml et al., 2002), PIN4 and PIN7 36 

in embryo development (Benkova et al., 2003; Weijers et al., 2005).  37 

The cellular polarity of PIN proteins is tightly related to the direction of auxin flow. 38 

For example, primary root growth requires the acropetal/rootward direction of auxin transport 39 

by PIN1 which targets the basal side of the plasma membrane (PM) in stele cells, and the 40 

basipetal/shootward direction of auxin transport by PIN2 that targets the apical side of PM in 41 

epidermal cells, as well as the coordination of PIN3, PIN4 and PIN7 for auxin lateralization 42 

within root stem cells (Feraru and Friml, 2008). Current models in diverse organ patterning 43 

explicitly show that a PIN-dependent local auxin gradient participates in nearly all types of 44 

organ development processes in plants (Benkova et al., 2003; Wisniewska et al., 2006). 45 

Many legumes (Fabaceae) are capable of symbiotic interaction with soil bacteria (rhizobia) 46 

in specialized organs, called nitrogen-fixing root nodules. The initiation of nodules is triggered 47 

by specific signaling molecules, lipochitooligosaccharides (LCOs)/Nod factor released by 48 

rhizobia, in response to flavonoids secreted from the root hairs of host plants (Suzaki and 49 

Kawaguchi, 2014). Subsequently, the rhizobia penetrate the root via an infection thread, 50 

reaching the cortex cells through the curled root hairs. In the cortical cells, the rhizobia 51 

stimulate cell proliferation and expansion, resulting in a functional nodule on the host root 52 

(Popp and Ott, 2011). Later, the entire nodule is surrounding by a continuum of vascular 53 

bundles, providing a robust route to exchange water and organic materials between the root 54 

and nodule (Livingston et al., 2019). Within the nodule, rhizobia reside as intracellular 55 

symbionts, where they convert atmospheric nitrogen into ammonia to overcome nitrogen 56 

shortage in the host plant.  57 

Different legume species show substantial variation in nodule organogenesis and nodules 58 

are broadly defined as indeterminate versus determinate types. Medicago truncatula develops 59 

indeterminate nodules, which harbor active apical meristems that continuously produce new 60 

meristem tissue. Lotus japonicus and Glycine max (soybean) generate determinate nodules, 61 

whose meristematic activity is lost soon after their initiation (Popp and Ott, 2011). Irrespective 62 

of nodule type, these nodules all initiate from a primordium and subsequently develop into 63 

diverse organ morphologies. Auxin accumulates at the position of future primordia, to 64 

prepare/prime the initiation of nodule primordia (van Noorden et al., 2007; Suzaki et al., 2012; 65 

Turner et al., 2013). In soybean, accumulating evidence further illustrates the importance of 66 

auxin for nodule development. For example, overexpression of a nodule-expressed auxin 67 

biosynthesis enzyme YUCCA2a (GmYUC2a) delays nodule organogenesis (Wang et al., 2019). 68 
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Moreover, overexpression of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 69 

(GmTIR1) and suppression of AUXIN RESPONSE FACTOR8 (GmARF8) increases rhizobia 70 

infection events and nodule number (Wang et al., 2015b; Cai et al., 2017). Besides many 71 

similarities between determinate nodule formation in soybean and L. japonicus, species-72 

specific variation exists, such as the pseudoinfections in soybean (Calvert et al., 1984).   73 

It has long been proposed that the auxin maximum in the founder cells of a nodule 74 

primordium is controlled by polar auxin transport (Hirsch et al., 1989; Mathesius et al., 1998; 75 

Kohlen et al., 2018); however, the underlying molecular mechanisms remain elusive. Ng and 76 

Mathesius (2018) utilized L. japonicus and M. truncatula as model legumes to study the 77 

differential regulation of auxin transport for initiating determinate and indeterminate nodules. 78 

They proposed that acropetal auxin transport is not necessary for determinate nodule formation, 79 

based on the observation that acropetal auxin transport in the equivalent root segments below 80 

the rhizobia-inoculation spot decreases significantly in M. truncatula, while it increases in L. 81 

japonicus (Pacios-Bras et al., 2003; Ng et al., 2015; Ng and Mathesius, 2018). This was further 82 

supported the generation of a pseudonodule in M. truncatula, but not in L. japonicus upon 83 

application of auxin transport inhibitors (Ng and Mathesius, 2018). Therefore, the mechanism 84 

of determinate nodule formation is somehow different from that of the indeterminate type. So 85 

far, much of our knowledge of the regulation of auxin for nodulation derives from the studies 86 

of indeterminate nodule development and the knowledge gleaned from lateral root 87 

organogenesis. In contrast, the functionality of auxin transport during determinate nodule 88 

development remains speculative (Kohlen et al., 2018). Therefore, a better understanding of 89 

the PIN-dependent auxin transport module for soybean nodule organogenesis is crucial for 90 

discerning the basic nodulation mechanisms and uncovering the different regulatory 91 

mechanisms between determinate and indeterminate nodule development. 92 

In this study, we demonstrate that soybean nodule primordium formation involves 93 

GmPIN1-mediated polar auxin transport. Among all canonical PINs, the GmPIN1 orthologs, 94 

GmPIN1b, c, d were specially expressed in nodule primordium cells during nodule primordium 95 

initiation, and their dynamic polarity indicate involvement in the directional auxin flux for 96 

nodule primordium formation. We found that the upstream nodulation elicitors, flavonoids, 97 

trigger the expanding distribution of stele-restricted GmPIN1b to cortical cells and cytokinin 98 

enable the rapid redirection of the auxin stream by rearranging the cellular GmPIN1b polarity. 99 

CRISPR/Cas9-based mutagenesis of GmPIN1a, GmPIN1b and GmPIN1c failed to establish a 100 

focused auxin maximum in nodule meristem, resulting in aberrant cortical cell division. 101 

Additionally, we found that the soybean-evolved GmPIN9d accumulates strongly in the 102 
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conjunctive vascular bundles between the root and nodule. In these tissues, GmPIN9d acts 103 

synergistically with GmPIN1 to coordinate the auxin supply within the vasculature for nodule 104 

enlargement. Our findings reveal the fundamental role of GmPIN-dependent polar auxin 105 

transport for determinate nodule development.  106 

 107 

RESULTS 108 

Auxin accumulates in the nodule primordium and vascular bundles 109 

To visualize the developmental process of soybean nodulation, 7-day-old soybean seedlings 110 

were inoculated with the rhizobium strain Bradyrhizobium sp. (BXYD3). The root segments 111 

below shoot-root junction area where large amounts of nodules accumulated (Supp. Fig. S1A) 112 

were collected in series for further sectioning, at 4 days post-rhizobia inoculation (dpi) until 14 113 

dpi.  114 

On the basis of cell morphology, we divided nodule development into four stages. At 115 

stage I, rhizobial infection via the curled root hairs determined the position of future nodule 116 

primordia and subsequently resulted in cell proliferation in the outer cortex cells, 117 

corresponding to nodule primordium initiation. At stage II, cortical cells underwent a series of 118 

anticlinal and periclinal divisions to establish a multi-layered meristem. In particular, the 119 

soybean nodule primordium started from the outer cortex layer and proceeded both outwards 120 

and inwards, suggesting the presence of a dynamic regulator involved in modulating this dual 121 

directional cell division. At stage III, the developing nodule continued to produce new cells, 122 

and the protruding meristem contained a small amount of bacteroids and visible vascular 123 

tissues that connected the host root and nodule. At maturity (stage IV), the oval nodule was 124 

rapidly expanding and became filled with large amount of bacteroids, with complex vascular 125 

bundles enveloping the entire nodule (Fig. 1A).  126 

To track auxin distribution at different growth stages of soybean nodules, we generated 127 

a stable transgenic soybean line with the synthetic DR5-V2-GUS auxin response reporter (Liao 128 

et al., 2015) that shows higher sensitivity to endogenous auxin responses in Arabidopsis than 129 

the original DR5-GUS reporter (Ulmasov et al., 1997). A robust auxin gradient with a peak 130 

concentration at the tip of the nodule primordium, suggesting an early auxin response, 131 

coincides with initial cell divisions of the nodule (Fig. 1B, stage I). When the outer cortex cells 132 

were rapidly dividing and expanding, we found an accumulation of DR5-V2 activity with its 133 

maximum at the apex of the nodule primordium (Fig. 1B, stage II). Afterwards, the tip-focused 134 

auxin maximum disappeared and a new auxin maximum gradually appeared within the 135 

surrounding cells near the root-nodule vascular connection (Fig. 1B, stage III). Within the 136 
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rapidly expanding stage IV nodule, auxin was concentrated throughout the nodule vascular 137 

bundles (Fig. 1B).  138 

The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) directly elicits the 139 

generation of nodule-like structures (pseudonodules) in legume species with indeterminate 140 

nodules (Hirsch et al., 1989; Wu et al., 1996; Rightmyer and Long, 2011), but not in those 141 

forming determinate nodules (Ng and Mathesius, 2018). We investigated whether NPA 142 

influences soybean nodule formation. Therefore, we incubated the rhizobium-colonized DR5-143 

V2-GUS seedlings with NPA. NPA blocked auxin efflux and disrupted the auxin gradient, 144 

resulting in a strong ectopic DR5-V2 activity around the cortical cells (stage I), pericycle cells 145 

(stage II) and vascular bundles (stage III) (Fig. 1B). A reduced auxin response in the central 146 

zone of Stage III primordium was observed (Fig. 1B), suggesting a redirection of auxin 147 

transport occurs at this stage of nodule development. Interestingly, this was not seen in the 148 

NPA-treated plant nodules at the same stage. This ectopic NPA-driven auxin response 149 

activation was associated with onset of rapid cell divisions, resulted in a three-fold increase of 150 

small nodules compared to the mock treatment (Fig. 1A, Supp. Fig. S1B-D). Additionally, 151 

NPA disrupted vascular development, leading to aberrant nodules and two infection zones 152 

within bacteroids (Fig. 1A, stage IV). Collectively, these results suggest that nodule 153 

primordium formation requires the establishment of an appropriate auxin gradient and the 154 

further nodule development of the nodule vascular bundles involves a dynamic redirection of 155 

the auxin transport. 156 

 157 

Identification of nodule-expressed GmPINs   158 

The best-characterized regulators of auxin transport are PIN efflux transporters (Petrasek et al., 159 

2006). The Arabidopsis PIN family consists of eight members, divided into canonical and non-160 

canonical types based on the length of their hydrophilic loop and subcellular localization 161 

(Viaene et al., 2013). The canonical, PM-localized PINs play a predominant role in determining 162 

the directionality of intercellular auxin flow (Adamowski and Friml, 2015). To better 163 

understand the regulatory mechanism of auxin transport for nodule development, we were 164 

motivated to study the functionality of nodule-expressed canonical GmPIN ortholog. In 165 

soybean, the PIN family has extensively expanded because of the two whole-genome 166 

duplication events. A total of 23 GmPINs have been identified in the soybean genome, of which 167 

seven pairs of the duplicated genes, namely the GmPIN1, GmPIN2, GmPIN3, GmPIN5, 168 

GmPIN6, GmPIN8 and GmPIN9 subfamilies (Wang et al., 2015a). According to the 169 

constructed phylogenetic tree, the canonical GmPIN members comprise GmPIN1 (GmPIN1a, 170 
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b, c, d, e), GmPIN2 (GmPIN2a, b), and GmPIN3 (GmPIN3a, b, c, d), which showed the highest 171 

sequence similarity with Arabidopsis AtPIN1, AtPIN2, and AtPIN3, 4, 7, respectively (Fig. 2A, 172 

Supplemental File 1). Additionally, the soybean genome contains a specific GmPIN9 group 173 

that has apparently co-evolved with GmPIN2 (Fig. 2A, Supplemental File 1&2).  174 

To search for nodule-expressed GmPINs, we extracted RNA from nodules at 14 dpi to 175 

perform reverse transcription quantitative PCR (RT-qPCR). Among the 23 GmPINs, the 176 

canonical PIN orthologs, GmPIN1, GmPIN2, GmPIN3 genes were detectable in the mature 177 

nodule. Additionally, GmPIN5a and GmPIN9d transcripts were strikingly abundant in the 178 

mature nodule, suggesting their possible involvement as well (Fig. 2B). The hydrophilic loop 179 

of GmPIN9 is shorter than the canonical PINs but longer than that of the non-canonical type 180 

(Supp. Fig. S2A); hence, the functionality of GmPIN9 during nodule development deserved 181 

our further investigation. 182 

 183 

GmPIN1, orthologs of auxin efflux carrier AtPIN1, control directional auxin flow for 184 

nodule primordium formation 185 

We first examined the expression profiles of canonical GmPINs during nodule development, 186 

including GmPIN1, GmPIN2 and GmPIN3. We established pGmPIN1a-e:GUS, pGmPIN2a-187 

b:GUS and pGmPIN3a-d:GUS constructs, using a reporter gene encoding β-glucuronidase 188 

(GUS) individually driven by an approximately 2-kb region upstream of the GmPIN coding 189 

sequence. We then introduced them into soybean seedlings via hairy root transformation. 190 

Histochemical staining of the root tip revealed that every GmPIN1 was expressed in the root 191 

stele, consistent with the expression pattern of AtPIN1 in Arabidopsis root (Supp. Fig. S3A).  192 

Upon rhizobial infection, expression of the GmPIN1b, c, d reporters was detected in the 193 

nascent nodule primordia that formed in outer cortical cells (Fig. 2C). After a series of cortical 194 

cell divisions, the primordium tip-distributed GmPIN1b, c, d gradually accumulated in the 195 

surrounding vascular bundles (Fig. 2C). In stage IV, the expression of GmPIN1b, c, d were 196 

confined to vascular bundles (Fig. 2C). By contrast, GmPIN1a appeared after primordium 197 

emergence and its expression was exclusively associated with vascular bundle development, 198 

whereas GmPIN1e had an extremely weak signal in nodule primordia (Fig. 2C). GmPIN1 199 

expression was associated with the nodule primordium and the nodule vascular bundle (Fig. 200 

2D), consistent with the spatial pattern of auxin activity during nodule development. This 201 

suggested the possible involvement of GmPIN1 in nodulation.  202 

Other GmPIN members, GmPIN2a and 2b were mainly expressed in root epidermis 203 

and outer cortex cells, and GmPIN3a-d genes were expressed in root vascular cells (Supp. Fig. 204 
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S3B). By contrast, both GmPIN2 and GmPIN3 mainly accumulated in nodule vascular bundles 205 

after establishment of the nodule primordium; only GmPIN2a and GmPIN3a were detectable 206 

in the nodule primordium tip, albeit at extremely low levels (Supp. Fig. S3B). Our analysis of 207 

the spatio-temporal expression pattern of canonical GmPINs lent further support for a 208 

predominant role of GmPIN1 in nodule development. 209 

The variation in the expression of multiple GmPIN1 orthologs allowed us to evaluate 210 

the functional conservation between GmPIN1 and AtPIN1. We established a GmPIN1-GFP 211 

fusion protein under the control of the AtPIN1 promoter. We cloned GFP in-frame in the 212 

hydrophilic loop of GmPIN1 (Fig. 3A) at the comparable position, as in AtPIN1-GFP 213 

(Benkova et al., 2003; Wisniewska et al., 2006) and introduced them into the Arabidopsis pin1-214 

En mutant. All the transgenic Arabidopsis pAtPIN1:GmPIN1a-e-GFP plants showed partial 215 

rescue of the pin-shaped inflorescence meristem phenotype of the homozygous pin1 mutant 216 

(Galweiler et al., 1998), in that they had a high percentage of normal growing stems with intact 217 

flowers and siliques (Fig. 3C). In the root stele, protein localization of GmPIN1a-e was 218 

confined to the basal side of PM (Fig. 3B), consistent with the subcellular polarity of AtPIN1. 219 

To further confirm the cellular polarity of GmPIN1a-e, we also generated transgenic 220 

Arabidopsis plants having GmPIN1a-e-GFP driven by their native GmPIN1a-e promoters. 221 

Similar to pAtPIN1:GmPIN1-GFP or in pGmPIN1:GmPIN1-GFP transgenic seedlings, 222 

GmPIN1a-e were exclusively confined to the basal PM in root stele cells (Supp. Fig. S3C), 223 

thus indicating the conservation of localization between GmPIN1 and AtPIN1 proteins.  224 

On the basis of this functional conservation and consistent polarization of the five 225 

GmPIN1 proteins, we next focused on GmPIN1b because it was detectable throughout all 226 

stages of nodule development, using it as a representative to study the dynamics of GmPIN1 227 

polarity during nodule development. For this, we generated a stable transgenic soybean line 228 

transformed with pGmPIN1b:GmPIN1b-GFP. By comparison with wild-type (WT) plants, we 229 

were able to distinguish the GFP signal from the strong auto-fluorescence of soybean tissues 230 

under the same fluorescence microscopy settings (Supp. Fig. S4). We determined the degree 231 

of polar localization of GmPIN1b as the signal ratio of apical relative to lateral side of 232 

individual cells (called the polarity index, p.i.) (Fig. 3G). In the soybean root stele, GmPIN1b 233 

displayed basal polarity (p.i.=2.6), consistent with its distribution in Arabidopsis (Fig. 3D, G). 234 

During the nodule primordium initiation (stage I) with visible anticlinal cell divisions, 235 

GmPIN1b showed predominant polarization towards the future nodule meristem (p.i.=3.2); 236 

while some of the cells exhibited dual polarization of GmPIN1b, with PM accumulation 237 

towards the imminently initiated nodule vascular bundle and towards the primary root tip (Fig. 238 
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3D, G). The predominant apical polarity of GmPIN1b towards the primordium apex suggests 239 

that auxin is being transported to nodule primordia, while the bi-polar localization of GmPIN1b 240 

implies that auxin is partly being directed away from the outer cortical cells.  241 

In stage II, GmPIN1b polarity was mainly directed to the protruding nodule primordium 242 

(p.i.=2.2); while a proportion of primordia cells displayed the lateral polarity of GmPIN1b, 243 

which might result in reduced auxin response at the nodule primordium tip (Fig. 3D, 3G, Supp. 244 

Fig. S5A). When the nodule primordium was fully established (stage III), GmPIN1b polarized 245 

towards the primordium tip as well as in the lateral direction (p.i.=1.7) (Fig. 3D, 3G, Supp. Fig. 246 

S5A), suggesting that GmPIN1 established a re-allocation route for draining auxin away from 247 

the tip region. In the mature nodule (stage IV), the GmPIN1b-GFP signal was restricted within 248 

vascular bundles (Fig. 3D, G), corresponding to the depletion of auxin at the primordium tip 249 

and its reallocation to the vascular bundles (Fig. 1B).  250 

We further examined whether GmPIN1b directs auxin flow toward the central cells of 251 

the nodule primordium or away to the peripheral cells by evaluation of apical or lateral 252 

GmPIN1b signal at stages I, II and III. Compared to the GmPIN1b signal in stage I, the apical 253 

direction of the GmPIN1b signal was significantly reduced to 53% and 62% in stage II and 254 

stage III+IV, while the lateral GmPIN1b signal was not promoted in the later stages (Fig. 3F). 255 

The comparison of GmPIN1b polarization at different stages of nodule development further 256 

indicated that the re-allocation of auxin away from nodule primordium tip is caused by the 257 

reduction of apical polarization of GmPIN1. 258 

In vascular bundles of mature nodules, GmPIN1b was highly polarized within the 259 

differentiated vasculature (p.i.=21.0) but was non-polar within the undifferentiated vasculature 260 

(p.i.=1.0, Fig. 3D, G). The polarization of GmPIN1b within the mature vasculature of root-261 

nodule junction suggested that auxin might be directionally transported via the nodule 262 

vasculature. Interestingly, GmPIN1b polarity was disrupted by NPA. NPA relocated the 263 

GmPIN1b polarity to the lateral side that was perpendicular to nodule primordium cells 264 

(p.i.=1.4 in NPA-treated nodule primordia, compared to p.i.=2.3 in the untreated ones) (Fig. 265 

3E-G, Supp. Fig. S5B). Consequently, NPA-rearranged GmPIN1 polarity resulted in ectopic 266 

formation of nodule primordia (Fig. 1A, 3E). Taken together, the dynamic polarization of 267 

GmPIN1 in the nodule primordium is consistent with the presence of multiple cell proliferation 268 

sites during soybean determinate nodule development, which begins in the outer cortex and 269 

proceeds outwards as well as inwards.  270 

 271 

GmPIN1s regulate nodule primordium formation 272 
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Soybean has evolved five PIN1 orthologues compared with the sole PIN1 identified in 273 

Arabidopsis, suggesting a functional redundancy of GmPIN1 genes. Among them, GmPIN1a, 274 

b and c showed the closest sequence similarity to AtPIN1 (Fig. 2A), while GmPIN1d and e 275 

might be an ancestral PIN1 form (Kohlen et al., 2018). Using the CRISPR/Cas9 approach, we 276 

designed a sgRNA that simultaneously edits the first exon of GmPIN1a, b and c, from which, 277 

we subsequently obtained two independent, triple mutants of Gmpin1abc (named Gmpin1abc-278 

L1 and -L2) via Agrobacterium-mediated stable transformation in soybean (Fig. 4A). These 279 

Gmpin1abc mutants displayed slightly shorter primary roots, fewer lateral roots, and had less 280 

biomass in their shoot tissues, compared to WT (Supp. Fig. S6A-D).  281 

To understand the contribution of GmPIN1 to auxin transport, we examined the auxin 282 

transport capacity in Gmpin1abc mutants. Without rhizobium inoculation, Gmpin1abc mutants’ 283 

acropetal auxin transport was reduced by 89%, compared to WT (Fig. 5H). The decreased 284 

acropetal auxin transport in Gmpin1abc mutants resulted in strongly reduced auxin content 285 

(46%-53%) compared to WT, and a reduced DR5-V2-GUS activity (Supp. Fig. S6E, F). 286 

Quantification of the total nodule number (per plant) and nodule density (nodule number per 287 

cm2 of root area) both demonstrated that Gmpin1abc had fewer nodules than the WT (Fig. 4B, 288 

C, E). Despite the reduction in nodulation events in Gmpin1abc mutants, their average nodule 289 

size was not significantly changed, as indicated by diameter distribution profile of more than 290 

1000 nodules (Fig. 4D, F). The nodulation phenotype of the Gmpin1abc mutant indicates that 291 

GmPIN1 is involved in regulation of nodule formation. 292 

We then generated stable transgenic plants that constitutively overexpressed GmPIN1a-293 

c (35s:GmPIN1a-c). The 35s:GmPIN1a-c lines all exhibited curling roots and an unusual 294 

thickening of hypocotyls (Supp. Fig. S7A, B), features similar but not entirely identical to 295 

agravitropic root growth seen in Arabidopsis 35s:AtPIN1 plants (Zhang et al., 2010). Further 296 

analysis of nodulation phenotypes showed that the induction of GmPIN1a, b and c all 297 

significantly reduced nodule size (Fig. 4G-J). The retarded growth of 35s:GmPIN1 nodules 298 

could be due to the disrupted auxin maximum at nodule primordia, leading to delayed 299 

organogenesis, or due to an impaired auxin concentration within the enlarged nodule that 300 

impeded nodule expansion. 301 

To understand the causal relationship of the defective nodulation phenotype in 302 

Gmpin1abc mutants and gain-of-function GmPIN1 lines, we examined the density of nodule 303 

primordia at 5 dpi, when most of the nodules had just emerged as primordia. We divided the 304 

nodules into two categories: primordia (without the resident bacteroids) and developing 305 

nodules (with bacteroids). Compared with WT, Gmpin1abc mutants had a significantly 306 
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decreased density of nodule primordia but this did not influence their developing nodules (Fig. 307 

5A-C), further supporting the involvement of GmPIN1 in nodule primordium formation. 308 

Strikingly, 35s:GmPIN1a has almost no detectable nodule primordia at 5 dpi (Fig. 5A-C, I).  309 

To further understand the functionality of GmPIN1-mediated auxin transport during 310 

nodule primordium formation, we established a spot inoculation system in soybean (Fig. 5D) 311 

to closely examine auxin transport efficiency and nodule primordium morphology within the 312 

spot inoculation area. To this end, 0.5-cm root segments of WT and Gmpin1abc mutants below 313 

the root-shoot junction were subjected to a continuous BXYD3 spot inoculation for 48h (Fig. 314 

5D, Supp. Fig. S7C). Auxin concentration was individually measured in the above (upper, U) 315 

and below (lower, L) root segments close to the inoculated site. In WT, rhizobial infection did 316 

not influence auxin levels in upper root segments, but decreased the auxin content to 72% in 317 

the lower segments, compared to the uninfected roots (Fig. 5G). Auxin concentration was 318 

generally decreased in Gmpin1abc roots, compared to WT. In Gmpin1abc mutants, rhizobial 319 

inoculation did not change auxin level in the upper root segments but caused auxin elevation 320 

in the lower segments (247% and 196%) (Fig. 5G).  321 

The opposite responsiveness of WT and Gmpin1abc intrigued us to further examine 322 

auxin transport rates of inoculated root segments. Radiolabeled [3H]-IAA was applied to the 323 

upper segments and the transported [3H]-IAA was measured in the lower segments at 48 hours 324 

post inoculation (hpi). In WT or Gmpin1abc-L2 mutants, rhizobial inoculation did not 325 

significantly change the efficiency of acropetal auxin transport across the inoculated roots (Fig. 326 

5H). It is worth noting that rhizobial inoculation tended to decrease auxin transport in WT 327 

(92%), while it tended to increase auxin transport in Gmpin1abc-L1 and L2 mutants (121% and 328 

111%), compared to the uninfected samples (Fig. 5H). Reduction of auxin levels below the 329 

inoculation site supported the notion that auxin transport regulation happens prior to the 330 

formation of visible nodule primordia. Whereas, the minor change of acropetal auxin transport 331 

upon rhizobium infection suggested that nodule primordium initiation in the outer cortex is not 332 

sufficient to influence acropetal auxin transport within the primary root vasculature. The 333 

unexpected elevation of auxin level in lower segments of Gmpin1abc suggests that a possible 334 

upregulation of auxin biosynthesis occurs within inoculated-Gmpin1abc roots.  335 

We further examined nodule primordium morphology at 5 days after rhizobia spot-336 

inoculation. The visible nodule primordium with a series of anticlinal and periclinal divisions 337 

were homogenously distributed in inoculated WT root segments, while clusters of aberrantly 338 

dividing cortical cells and nodule primordia were discretely distributed in Gmpin1abc mutants 339 

(Fig. 5E), compared to the normal cortical cells in the uninfected roots (Supp. Fig. S7D). We 340 
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then introduced DR5-V2-GUS in WT, Gmpin1abc mutants and 35s:GmPIN1a to visualize the 341 

auxin distribution. A robust auxin gradient with a peak concentration was present at the tip of 342 

WT nodule primordium (stage I) (Fig. 5F). Despite the DR5-V2 signal remaining clear in 343 

nodule primordium of Gmpin1abc mutant, the mutant failed to establish a focused auxin 344 

gradient in the primordium apex (stage I) (Fig. 5F). The defective auxin maximum in 345 

Gmpin1abc resulted in the ectopic formation of nodule primordia, leading to the clustered 346 

spacing of nodule primordia. By contrast, overexpression of GmPIN1a in 35s:GmPIN1a roots 347 

resulted in ectopic auxin deposition in the cells beneath the primordium tip, which interfered 348 

with the directional auxin transport that would guide nodule primordia to grow outwards. 349 

Consequently, 35s:GmPIN1a exhibited a delay in nodule organogenesis (Fig. 5A, F). These 350 

results collectively demonstrate that a GmPIN1-mediated auxin gradient regulates nodule 351 

primordium formation.  352 

   353 

Flavonoids and cytokinin influence PIN1 distribution and polar localization during 354 

nodulation  355 

An auxin maximum and GmPIN1b, c, d expression emerged in nodule primordium founder 356 

cells, suggesting the involvement of auxin transport in the initial step of nodule formation. 357 

However, GmPIN1a, b, c expression was exclusively restricted within the root vasculature 358 

(Supp. Fig. S3A), which pointed to an unknown nodulation signal eliciting the lateralization of 359 

GmPIN1 to prime the auxin signal at these founder cells. 360 

         Flavonoids are crucial signaling molecules that can trigger the synthesis of Nod factors 361 

from rhizobia, ensuring successful symbiotic infection of host plant tissues (Liu and Murray, 362 

2016). A variety of flavonoid compounds have been characterized, and most of them act as 363 

inhibitors of auxin transport (Brown et al., 2001; Santelia et al., 2008; Ng et al., 2015) by 364 

interfering with PIN expression and its polar localization (Peer et al., 2004; Santelia et al., 2008; 365 

Kuhn et al., 2017). According to the multiple steps of signal exchange during nodule formation, 366 

different flavonoids may play distinct roles across individual steps of nodulation (Zhang et al., 367 

2009). The isoflavone compound genistein is a well-characterized Nod-factor inducer in 368 

soybean (Ip et al., 2001; Subramanian et al., 2006; Lang et al., 2008). We thus checked the 369 

effect of genistein on the expression pattern of GmPIN1b, serving as a representative GmPIN1. 370 

Soybean plants with pGmPIN1b:GUS showed an expanded distribution of GmPIN1b into their 371 

cortical cells by genistein treatment (Supp. Fig. S8A, C). The flavonoid 7,4’-dihydroxyflavone 372 

(DHF) is a Nod gene-inducing flavone compound in M. truncatula, known to function very 373 

early during nodulation (Zhang et al., 2009). Application of exogenous DHF to soybean 374 
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pGmPIN1b:GUS trans-genetic plants also showed an expanded distribution of GmPIN1b into 375 

the cortical cells (Supp. Fig. S8A, C), consistent with the genistein treatment. These results 376 

indicated that the isoflavone genistein and flavonoid DHF affect GmPIN1 distribution. 377 

Corresponding to the expanded distribution of GmPIN1b, genistein and DHF treatment 378 

resulted in a significantly increased DR5-V2-GUS signal along the outer cortex and epidermal 379 

cells, but a decrease in quiescent center of root tip (Supp. Fig. S8B, D). These data collectively 380 

demonstrate that the isoflavone/flavonoid influences GmPIN1 distribution and auxin 381 

accumulation, and probably leading to the alteration of auxin transport during nodulation. 382 

Appropriate integration of various phytohormones is essential for determining when 383 

and where organogenesis occurs, such as the coordination between auxin and cytokinin 384 

(Schaller et al., 2015; Pierre-Jerome et al., 2018; Kurepa et al., 2019). Cytokinin plays a major 385 

role in the control of cortical cell divisions during nodule primordium formation (Murray et al., 386 

2007; Reid et al., 2017), which consequently promotes nodule numbers (Supp. Fig. S9A, B). 387 

To understand whether cytokinin functions upstream of auxin, we applied a synthetic cytokinin, 388 

6-benzylaminopurine (6-BA), onto pGmPIN1b:GmPIN1b-GFP. Visualization of GmPIN1b 389 

localization revealed that 6-BA rearranged the cellular GmPIN1b polarity that predominantly 390 

targeted to primordium tip, resulting in a switch of GmPIN1b polarity to the lateral side that 391 

was perpendicular to the primordium cells (Fig. 6A, B). Cytokinin-mediated directional 392 

alteration of PIN polarity during nodule meristem formation was consistent with its effect on 393 

lateral root initiation (Marhavy et al., 2014). Interestingly, a directional alteration of GmPIN1 394 

polarity by 6-BA treatment resulted in a series proliferation in the outer cortical cells of WT 395 

plants, comparable with the cell morphology in spot inoculated-Gmpin1abc mutants (Fig. 6C, 396 

5G). Hence, these findings suggested that cytokinin-regulated re-polarization action of 397 

GmPIN1 might facilitate a rapid auxin stream redirection, which provides an efficient approach 398 

to initiate nodule primordium. Taken together, the influence of flavonoid and cytokinin on 399 

GmPIN1 cellular localization might coordinate an appropriate auxin gradient for nodule 400 

organogenesis. 401 

 402 

GmPIN9d is a nodule vascular bundle-abundant auxin transporter  403 

The above results confirmed the important role of GmPIN1 during nodule primordium 404 

formation. Apart from the typical canonical and non-canonical GmPINs, there was an 405 

additional GmPIN9 subfamily conspicuously present in soybean that showed a very close 406 

evolutionary relationship with the PIN2 clade (Fig. 2A). Our RT-qPCR analysis of GmPIN9a-407 

d expression levels showed that GmPIN9d was extremely enriched in the mature nodule (Fig. 408 
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7C). In contrast, the transcripts of GmPIN9a, GmPIN9b, GmPIN9c were rather low or not 409 

detectable (Fig. 7C), making GmPIN9d the most likely candidate involved in nodulation.  410 

We next generated a stable transgenic soybean plant with a GUS reporter gene driven 411 

by the 2-kb promoter region of GmPIN9d. A series of cross-sections spanning leaf to root 412 

tissues, integrated with histochemical staining, from 10-day-old pGmPIN9d:GUS seedlings 413 

demonstrated that GmPIN9d was weakly expressed in aerial tissues but enriched in both root 414 

and nodule. Either in the hypocotyl or root organs, GmPIN9d was confined within the vascular 415 

bundles (Fig. 7A, B). Histochemical co-staining of xylem cells using phloroglucinol confirmed 416 

that GmPIN9d was located in protoxylem cells (Fig. 7A). Intriguingly, GmPIN9d was 417 

particularly abundant in the conjunctive vascular bundles lying between the root and nodule 418 

(Fig. 7B), which suggested a potential role of GmPIN9d in the later stage of nodule growth 419 

when primordia were already established. 420 

Because GmPIN9d is a soybean-evolved PIN, we tested if GmPIN9d is indeed a 421 

functional auxin transporter. To do this, we cloned GmPIN9d-GFP under control of the 422 

Arabidopsis PIN2 promoter (pAtPIN2:GmPIN9d-GFP) and introduced it in the Arabidopsis 423 

PIN2 knockout mutant, eir1-4 that showed agravitropic roots (Muller et al., 1998). Compared 424 

to pAtPIN2:GmPIN2b-GFP which entirely rescued the agravitropic root phenotype of eir1-4 425 

mutant, pAtPIN2:GmPIN9d-GFP displayed a partial restoration (Supp. Fig. S11A-C), 426 

suggesting that GmPIN9d might carry out a comparable function as PIN2 protein for polar 427 

auxin transport. Importantly, much of the GmPIN9d-GFP localized to the internal structures 428 

reminiscent of the endoplasmic reticulum (ER) (Supp. Fig. S11B), suggesting that it either acts 429 

at the ER, or that its trafficking to the membrane is impaired in Arabidopsis.  430 

We further generated Gmpin9d mutants using CRISPR/Cas9. Two homozygote mutant 431 

alleles were identified, designated Gmpin9d-#1 and 9d-#2, with an early stop codon that arose 432 

from a 2-bp and 40-bp deletion, respectively (Fig. 8A). The 7-day-old Gmpin9d mutants had 433 

slightly decreased length and density of lateral roots, but did not display other obvious 434 

developmental defects in adult plants (Fig. 8B, Supp. Fig. S10A-C). Next, the auxin response 435 

reporter DR5-V2-GUS was introduced to hairy roots of the WT and the Gmpin9d mutant. The 436 

DR5-V2-GUS activity was much reduced in both the roots and nodules of Gmpin9d mutant 437 

(Fig. 8C), supporting the involvement of GmPIN9d in auxin homeostasis.  438 

The GmPIN9 clade is located between canonical and non-canonical PIN types, 439 

according to our phylogenetic analysis (Fig. 2A). This raised a problem: might GmPIN9d 440 

polarly transport auxin as a canonical PIN, or does it regulate auxin homeostasis as a non-441 

canonical PIN? To address these questions, we measured free and conjugated auxin levels in 442 
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both the WT and Gmpin9d mutants, using High-Performance Liquid Chromatography (HPLC). 443 

In comparison to WT, the free auxin level decreased by approximately 50% in roots and 20% 444 

in nodules of Gmpin9d mutants (Fig. 8G-H), results consistent with the previous observation 445 

of DR5-V2 activity (Fig. 8C). However, the conjugated form of auxin, indole-3-acetyl-aspartate 446 

(IAA-asp), in Gmpin9d mutants occurred at a level comparable to WT (Supp. Fig. S10D-E), 447 

supporting a transporter function of GmPIN9d. Finally, using radiolabeled [3H]-IAA, we 448 

measured the auxin transport capacity of GmPIN9d in 2-cm equivalent root segments of the 449 

WT and Gmpin9d mutants. Both Gmpin9d-#1 and #2 mutants underwent a significant decrease 450 

in auxin transport in the rootward (acropetal) but not shootward (basipetal) direction, in 451 

comparison with WT (Fig. 8D-F). Altogether, these results show that GmPIN9d can transport 452 

auxin to the root tip.  453 

 454 

GmPIN9d-dependent auxin transport is required for nodule enlargement 455 

Although the free auxin level was diminished by approximately 50% in roots of Gmpin9d 456 

compared to WT, the density of nodules and nodule primordia were not significantly changed 457 

(Fig. 8I-J). However, the profile of nodule size in Gmpin9d was slightly shifted compared to 458 

WT (Fig. 8K), suggesting the involvement of GmPIN9d for nodule expansion. Still, the 459 

phenotypic defects of Gmpin9d single mutants were mild might be caused by complicated gene 460 

redundancy of PIN family. The acropetal auxin transport capacity of GmPIN9d was 461 

reminiscent of GmPIN1, prompting us to speculate that GmPIN9d might work synergistically 462 

with GmPIN1 to achieve polar auxin transport within nodule vascular bundles.  463 

We then examined the subcellular localization of GmPIN9d, via visualization of the 464 

Arabidopsis transgenic pAtPIN2:GmPIN9d-GFP seedlings. GmPIN9d showed dual 465 

localization in both ER and PM by colocalization of GmPIN9d-GFP with FM4-64-stained PM 466 

and HDEL-labelled ER (Supp. Fig. S11D-E). PM-associated PIN proteins are located on the 467 

PM, meanwhile be trafficking among endomembrane system via endocytosis and exocytosis 468 

pathways (Chen et al., 2011; Adamowski and Friml, 2015).  469 

To further investigate whether GmPIN9d is associated with the PM, we applied 470 

Brefeldin A (BFA), which is widely used as a vesicle trafficking inhibitor (Geldner et al., 2003). 471 

BFA specifically blocks exocytosis but allows endocytosis, aggregating both secretory and 472 

endocytic endomembrane cargoes in BFA bodies. BFA treatment specifically aggregated the 473 

PM-localized GmPIN2b, but not the ER-resident AtPIN8 in BFA bodies (Supp. Fig. S11F). 474 

We found that BFA also resulted in the aggregation of GmPIN9d proteins within BFA 475 
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compartments (Supp. Fig. S11F). These data in Arabidopsis clearly evinced a dual localization 476 

of GmPIN9d in both PM and ER, similar to AtPIN6.  477 

We further detected the in vivo distribution of GmPIN9d in soybean roots and nodules, 478 

by placing the GmPIN9d-GFP fusion protein under the control of the native GmPIN9d 479 

promoter (Fig. 9A). The transformed positive hairy roots were selected based on a dTomato 480 

fluorescence-based screening system (Supp. Fig. S12A). In pGmPIN9d:GmPIN9d-GFP 481 

positive hairy roots, a strong GFP signal was present in the root protoxylem, with rootward PM 482 

localization (Fig. 9B). In particular, this GmPIN9d-GFP signal was associated with vascular 483 

bundles within the nodule and root-nodule conjunction. The strong polarization of GmPIN9d 484 

within root-nodule conjunctive vasculature suggested its possible involvement in directing 485 

auxin stream towards nodule (Fig. 9B, Supp. Fig. S11G). Such a GmPIN9d polarized pattern 486 

resembles GmPIN1 at a later stage of nodule development, pointing to their synergistic activity. 487 

Hence, we introduced the Gmpin9d-RNAi construct in Gmpin1abc triple mutants via the 488 

dTomato-based hairy root screening system. The resulting Gmpin1abc Gmpin9d-RNAi showed 489 

a comparable nodule density but much smaller nodule size than Gmpin1abc (Fig. 9C-E, Supp. 490 

Fig. S12B-D). Taken together, the above results demonstrated that GmPIN9d-dependent polar 491 

auxin transport functions at the later stage of nodule development, collaborating with GmPIN1 492 

to fine-tune nodule enlargement.  493 
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DISCUSSION 494 

Legume plants interact with rhizobia to generate nodule organs, representing a way by which 495 

legume species coordinate the mutually beneficial exchange of signals and nutrients with their 496 

symbiotic partners. Previous studies have characterized well the crucial roles of Nod factor 497 

recognition, nodule inception (NIN) transcription factor, and phytohormone cytokinin in 498 

nodule formation (Ng et al., 2015; Schiessl et al., 2019; Bozsoki et al., 2020; Laffont et al., 499 

2020). Here, we showed that dynamic GmPIN1 polarization establishes auxin canalization 500 

during nodule primordium development; flavonoids influence GmPIN1 distribution and 501 

cytokinin rearranges the cellular GmPIN1 polarity, participating in auxin gradient formation. 502 

The later stage of nodule enlargement involves the collaboration of GmPIN9d and GmPIN1-503 

dependent auxin transport within nodule vasculature (Fig. 9F). Our data thus provide insights 504 

into auxin-regulated nodule development in legume plants.  505 

    506 

Establishment of an auxin maximum is required for determinate nodule primordium 507 

formation 508 

Auxin accumulation appears in the early stage during nodule primordium formation, when the 509 

rhizobia-elicited infection threads start to grow in the proliferating cortical cells of L. japonicus 510 

(Suzaki et al., 2012), suggesting that nodule primordium formation is tightly accompanied by 511 

an auxin response. In soybean, overexpression of a nodule-expressed auxin biosynthesis 512 

enzyme GmYUC2a increases auxin content by approximately two fold, but severely delays 513 

nodule formation (Wang et al., 2019). These data suggests that maintenance of appropriate 514 

auxin concentration and distribution is a prerequisite for determinate nodule primordium 515 

formation. If auxin transport is not required for determinate nodule primordium formation, 516 

there should be a burst of local auxin biosynthesis at the nodule primordium site. YUCCA 517 

flavin monooxygenases are the major enzymes catalyzing IAA synthesis (Mashiguchi et al., 518 

2011; Stepanova et al., 2011; Zhao, 2018). In soybean, GmYUC2a is the most abundant nodule-519 

expressed YUC among all GmYUCs (Wang et al., 2019); however, GmYUC2a displays 520 

uniformly high activity in all participating cell layers during nodulation, including the root 521 

hairs, proliferating cortex cells, and nitrogen fixation zone (Wang et al., 2019). It is unlikely 522 

that a localized auxin maximum, restricted to nodule primordium founder cells, can be 523 

established solely relying on GmYUC2a. PIN-mediated polar auxin transport has been well 524 

characterized and deemed necessary for almost all organogenesis processes in plants. This 525 

raises the hypothesis that PIN-mediated auxin transport could also contribute to formation of 526 

determinate nodules. 527 
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Subramanian and colleagues mentioned that no measurable inhibition of auxin 528 

transport occurred at the site of rhizobial inoculation where flavonoids/isoflavonoids 529 

accumulate in soybean root, and they concluded that the effects of flavonoids on auxin 530 

redistribution is not required for soybean nodulation (Subramanian et al., 2007). Our study 531 

confirmed that acropetal auxin transport is not significantly affected in the rhizobia-inoculated 532 

root segments (Fig. 5H). Different kinds of flavonoids are synthesized at distinct stages of 533 

nodule formation (Mathesius et al., 1998), and the fluorescent flavonoids were visualized in 534 

different cell layers of distinct legumes. For instance, flavonoids were found in the inner 535 

cortical cells of pea (Pisum sativum) and alfalfa (Medicago sativa), but they were found in the 536 

outer cortical cells of siratro (Macroptilium atropurpureum) (Mathesius et al., 1998). These 537 

data suggest that different flavonoids play diverse roles during different stages of nodule 538 

formation and in different species of legume plants.  539 

Flavonoids have a general inhibitory effect on auxin transport (Buer et al., 2013; Ng et 540 

al., 2015; Zhang et al., 2021), and acropetal auxin transport was disrupted during indeterminate 541 

nodule formation where high amounts of flavonoids were synthesized. However, soybean 542 

nodules initiate in the cells of outer cortex, and flavonoid compounds are probably also 543 

synthesized at the outer cortex of soybean roots, lying far from the phloem. This could explain 544 

why acropetal auxin transport is not affected during nodule primordium formation in soybean. 545 

To understand whether flavonoid-mediated auxin inhibition is a necessary step for nodule 546 

primordium initiation in soybean, it is necessary to closely examine GmPIN1 distribution and 547 

auxin gradient in weak alleles of isoflavone synthase (IFS) or chalcone synthase (CHS) 548 

mutagenized soybean plants within nodule primordium cells. Despite flavonoids being the best 549 

candidates to prime the auxin signal, an obvious question remains unresolved. Soybean nodule 550 

are initiated at the outer cortex cells, while L. japonicus nodule are initiated at the inner cortex 551 

cells and the M. truncatula nodule begins from the pericycle, endodermis and cortex cells 552 

(Gauthier-Coles et al., 2018). So, how does the deposition of flavonoids in different cell layers 553 

in different kinds of legume plants modulate PINs and auxin transport?  554 

In the present study, we demonstrate that a PIN-dependent auxin transport module 555 

participates in soybean nodule primordium formation. GmPIN1b, c, d target to the founder 556 

cells of nodule primordia, reallocating the auxin stream towards the nodule primordium and 557 

flows away from the primordium. A proposed mathematic model postulates that nodule 558 

formation is associated with the reduction of PIN function and an increase of auxin 559 

concentration in all root cell layers (Xiao et al., 2014). Nevertheless, this auxin-involved 560 

nodulation module is based on specific auxin accumulation from the inner to outer cell layers; 561 
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hence, the proliferation of cortex cells should start from the interior layers and proceed 562 

outwards (Xiao et al., 2014). Yet, the determinate nodule exhibits dual directions of cell 563 

proliferation, in that it begins from cortex cells and proceeds outwards as well as inwards. 564 

Therefore, only the initial steps of nodule primordium development (proceed outwards) fit with 565 

the proposed model (Xiao et al., 2014).  566 

NPA disrupts auxin gradient formation during nodule primordium formation. In stage 567 

I, auxin accumulates with its maximum at the nodule primordium apex, compared with a bulk 568 

deposition of auxin along the dividing cortical cells in NPA-treated group; in stage II and III, 569 

auxin response gradually reduces from the nodule primordium apex, compared with an ectopic 570 

auxin accumulation in and around the dividing cortical cells (Fig. 1B). Together, the three-fold 571 

increase of small nodules in NPA-treated roots indicates that disruption of auxin efflux by NPA 572 

causes ectopic nodule primordium formation. Similar to the NPA treatment, loss of 573 

GmPIN1ABC impairs polar auxin transport, generating clusters of abnormal dividing cells and 574 

defective nodule primordia after continuous rhizobial inoculation (Fig. 5E). Hence, 575 

establishment of an appropriate auxin gradient is a prerequisite to control nodule primordia 576 

positioning. Whereas, nodule number was promoted in NPA-treated roots, which was opposite 577 

with the consequence of decreased nodules in Gmpin1abc mutants. NPA directly associates 578 

with PINs, and it inhibits PINs activity by stabilizing PIN1, PIN2, PIN3, PIN4 and PIN7  579 

homo‐ and heteromers in Arabidopsis (Abas et al., 2021; Teale et al., 2021). Apparently, NPA 580 

not only inhibits GmPIN1 activity, but also functions on other GmPINs. Hence, NPA-induced 581 

nodules might be caused by the additive effects of NPA on all GmPIN proteins. 582 

 583 

Auxin supply is involved in nodule enlargement 584 

Despite acropetal auxin transport capacity and auxin concentration being severely decreased 585 

in the root and nodule of the Gmpin9d single mutant, it did not display significant defects in 586 

nodulation. A plausible explanation for this is that GmPIN9d functions at later stages of 587 

nodulation where it is highly redundant with other PINs, including GmPIN1, GmPIN2 and 588 

GmPIN3. Mutagenesis of multiple GmPINs recently became possible via CRISPR/Cas9. After 589 

nodule primordia are formed, auxin maxima are rapidly concentrated within nodule vascular 590 

bundles, suggesting an additive effect of other auxin transporters for auxin canalization 591 

between the primordium and vascular bundles. Therefore, the nodule-expressed GmPIN2 and 592 

GmPIN3 might also participate in later stages of nodule development. The fundamental effect 593 

of auxin has been well known to stimulate cell expansion (Du et al., 2020). Hence, auxin stream 594 
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in vascular bundles could be a source of auxin to maintain auxin supply within the developing 595 

nodule, modulating nodule enlargement.  596 

 597 

MATERIALS AND METHODS 598 
 599 
 600 
Plant growth and phenotype analysis 601 

Soybean (Glycine max) cultivar Williams 82 and Huachun6, and Arabidopsis thaliana 602 

Columbia-0 were used as wild type (WT). Seeds of Arabidopsis thaliana were sown on 0.8% 603 

agar containing 1/2 Murashige and Skoog media at 22°C under 16h light/ 8h dark photoperiod. 604 

Soybean seeds were germinated in vermiculite. To analyze nodulation phenotype, 7-day-old 605 

plants were inoculated with Bradyrhizobium sp. (BXYD3) which was re-suspended in low-606 

nitrogen buffer (530 µM N, including KNO3, NH4NO3, Ca(NO3)2•4H2O, and 607 

(NH4)2SO4(15:4:12:3), and 1.2 mM CaCl2, 1.05 mM K2SO4, 0.5 mM MgSO4•7H2O, 25 µM 608 

MgCl2, 2.5 µM NaB4O7•10H2O, 0.5 µM MnSO4•H2O, 1.5 µM ZnSO4•7H2O, 0.5 µM 609 

CuSO4•5H2O, 0.15 µM (NH4)6Mo7O24•4H2O, 40 µM Fe-Na-EDTA, 250 µM KH2PO4) to 610 

OD600=0.15 for 2 h, then these inoculated plants were transferred to soil (vermiculite, and 611 

irrigated with low-nitrogen buffer) for an additional 14 days (25°C, 14h light/ 10h dark 612 

photoperiod). Light growth condition for soybean plants is white light added with blue and red 613 

LEDs, the light intensity is 13000 LUX (measured by an HR-350 Light Meter; Hipoint). The 614 

resultant plants were collected for nodule number and density quantification by ImageJ.  615 

For NPA treatment, soybean seeds were germinated in vermiculite. 7-day-old plants 616 

were inoculated with BXYD3 (OD600≧1.0) which was re-suspended in low-nitrogen buffer 617 

for 2 h, then the inoculated plants were transferred to low-nitrogen hydroponic solution with 618 

or without 1-N-naphthylphthalamic acid (NPA) (10-7 M) for additional 21 days. Nodules were 619 

harvested and analyzed.  620 

For DHF, genistein or 6-BA chemical treatments, DHF and genistein were dissolved in 621 

DMSO, and 6-BA was dissolved in NaOH as stock solutions. 7-day-old seedlings were 622 

irrigated by chemical-containing low-nitrogen solution.  623 

 624 

RNA extraction and RT-qPCR analysis 625 

RNA was extracted using the TransZol Up Plus RNA kit (TransGen Biotech), and the first-626 

strand cDNA was synthesized using TransScript All-in-One SuperMix (TransGen Biotech). 627 

qRT-PCR was performed using a Bio-Rad CFX96 real-time system (Bio-Rad) with 20 µL 628 
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volumes containing 2 µL of 1:5 diluted reverse transcription product, 0.8 µL of specific primers, 629 

7.2 µL of ddH2O, and 10 µL of 2×TransStart Green qPCR SuperMix (TransGen Biotech). The 630 

housekeeping gene GmActin-11 was used as a reference and relative expression levels of each 631 

gene were calculated using the 2−ΔΔCT method. All primers used in this study are listed in 632 

Supplemental Table S1. 633 

 634 

Phylogenetics and motif analysis 635 

Arabidopsis thaliana PIN genes were obtained from TAIR (http://www.arabidopsis.org). 636 

Soybean PIN genes were obtained from Phytozome (https://phytozome.jgi.doe.gov). 637 

Klebsormidium flaccidum PIN (KfPIN) was obtained from Genbank 638 

(https://www.ncbi.nlm.nih.gov). PIN genes were translated into protein sequences and aligned 639 

with Clustal X (Larkin et al., 2007). Phylogenetic analysis was constructed using MEGA X 640 

with neighbor-joining (NJ) criteria and verified using the maximum likelihood (ML) method 641 

(Kumar et al., 2018), and 1000 bootstrap replicates were performed based on the multiple 642 

alignments of the protein sequences encoded by PIN genes. NJ analysis was performed using 643 

the protein Poisson distances and the pairwise deletion of gap sites. The default parameters 644 

were used for ML analysis. Moreover, Phylogenetics conserved motifs were detected in PIN 645 

members using the motif analysis tool MEME (http://meme-suite.org/tools/meme) (Bailey et 646 

al., 2009) with the default parameters except for maximum number of motifs, 25. The PIN 647 

sequence alignment is provided as Supplemental File S1 and a machine-readable alignment is 648 

provided as Supplemental File S2. 649 

 650 

Used primers, vectors and cloning strategy 651 

Promoter fragments of GmPIN9d (2003bp), GmPIN1a (2132bp), GmPIN1b (2043bp) 652 

GmPIN1c (1917bp) GmPIN1d (1809bp) and GmPIN1e (1476bp) were amplified from 653 

Williams 82 genomic DNA. The fragments were cloned into pDONR221 using Gateway BP 654 

Clonase II enzyme mix and recombined into the pGWB633 Gateway destination vector by LR 655 

reaction to create pGmPIN:GUS (primers are provided in Supplemental Table S1). To create 656 

pAtPIN1:GmPIN1a-e-GFP, pGmPIN1a-e:GmPIN1a-e-GFP, pGmPIN9d:GmPIN9d-GFP,  657 

pAtPIN2:GmPIN2b-GFP and pAtPIN2:GmPIN9d-GFP, the insertion site of GFP was 658 

described in previous studies (Benkova et al., 2003; Xu and Scheres, 2005; Wisniewska et al., 659 

2006). GFP was inserted into the genomic fragments at position 1646 (after ATG) in GmPIN9d, 660 

at position 1680 in GmPIN2b, at position 1396 in GmPIN1a, at position 1547 in GmPIN1b, at 661 
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position 1407 in GmPIN1c, at position 1914 in GmPIN1d and at position 1904 in GmPIN1e. 662 

Genomic DNA of GmPINs and GFP were cloned into pBGWK by infusion clone technology.  663 

To generate Gmpin1abc triple mutant and GmPIN9d single mutant, sgRNA was 664 

designed according to the prediction from CRISPR-GE (http://skl.scau.edu.cn/home/). sgRNA 665 

cloning approach was performed as described previously (Bai et al., 2020). To generate the 666 

constructs with modified dTomato-tag, dTomato fragment was amplified using the primers of 667 

pGmEF1A-dTomato F2 and R2, which was driven by the promoter of pGmEF1a; Tnos 668 

fragment was amplified using the primers of pGmEF1A-dTomato F3 and R3. Then, pGmEF1a, 669 

dTomato and Tnos were assembled by Goldengate assembly kit using BsaI and T4 ligase. 670 

Finally, pGmEF1a-dTomato fragments were assembled with other fragments to create 671 

destination vectors via Goldengate cloning methods. All strategies of vectors and cloning used 672 

in this study are listed in Supplemental Table S2. Locus numbers of GmPIN genes are listed in 673 

Supplemental Table S3. Amino acid information of GmPIN proteins are listed in Supplemental 674 

Table S4. 675 

 676 

Rhizogenes-mediated hairy root transformation 677 

Rhizogenes-mediated hairy root transformation was carried out as described before (Kereszt et 678 

al., 2007). Agrobacterium strain K599 carrying the constructs was directly injected into the 679 

hypocotyl proximal to the cotyledon of the 5-day-old healthy soybean seedlings. The infected 680 

plants were grown under high humidity condition until hairy roots emerged in high-nitrogen 681 

hydroponic solution (contains 5.3 mM nitrogen including KNO3, NH4NO3, Ca(NO3)2•4H2O, 682 

(15:4:12), and 0.3 mM K2SO4, 0.5 mM MgSO4•7H2O, 25 µM MgCl2, 2.5 µM NaB4O7•10H2O, 683 

0.5 µM MnSO4•H2O, 1.5 µM ZnSO4•7H2O, 0.5 µM CuSO4•5H2O, 0.15 µM 684 

(NH4)6Mo7O24•4H2O, 40 µM Fe-Na-EDTA, 250 µM KH2PO4). After the primary roots were 685 

removed, the plants with the hairy roots were transferred into fresh wet vermiculite with 686 

irrigation of low-nitrogen buffer, and further inoculated with rhizobium strain BXYD3 for 687 

additional 14 days growth. The positive hairy roots with dTomato fluorescence were selected 688 

by hand-held lamp with 555nm excitation laser. 689 

 690 

Rhizobial spot inoculation 691 

5-day-old soybean seedlings were used for spot inoculation in low-nitrogen hydroponic system. 692 

0.5cm root segments below the root-shoot junction were covered by humid foam with BXYD3 693 

(OD600≧1.0) by continuous spot inoculation for 48h (equipped as shown in Fig. 5D). 3cm 694 
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foam (keep humid with low-nitrogen buffer) was wrapped above the inoculation site to keep 695 

roots humid. Auxin concentration was measured in the above (upper, U) and below (lower, L) 696 

root segments close to the inoculated site, and auxin transport was measured across the spot 697 

inoculation site at 48 hpi. 698 

 699 

Generation of stable transgenic soybean plants  700 

For soybean stable plant transformation, the established constructs were transformed into the 701 

Agrobacterium tumefaciens strain EHA101 or GV3101. Gmpin9d mutant was generated in 702 

Williams 82 ecotype, Gmpin1abc mutant and 35s:GmPIN1 lines were generated in Huachun6 703 

ecotype. Transformants were established and screened by PCR amplification using primers for 704 

basta and the corresponding genes (Supplemental Table S1). 705 

 706 

Histochemical GUS staining 707 

GUS staining solution contains 50 mM sodium phosphate buffer (pH 7.0), 0.1% (v/v) Triton 708 

X-100, 0.1 mM K3Fe(CN)6, 0.1 mM K4[Fe(CN)6]•3H2O, 1 mg/mL X-Gluc and 1%(v/v) 709 

dimethylformamide. Samples were stained for 1-4 h at 37°C. Chlorophyll was removed by 710 

sequential incubations in 50% ethanol, 100% ethanol, and 50% ethanol for several hours at 711 

each step. After rehydration, samples were transferred to glass slides with 50% glycerol 712 

mounted.  713 

 714 

Endogenous hormone measurement   715 

Phytohormone extraction and measurement were performed using HPLC as described 716 

previously (Yang et al., 2019) with modifications. Briefly, root or nodules were ground to 717 

powder in liquid nitrogen. Approximately 100 mg powder with the addition of a mixture of 718 

internal standards were extracted with 1 mL of ethyl acetate by vortexed for 10 min and 719 

sonicated for 20 min at 4 °C, respectively. After centrifugation at 12000 rpm for 3 min at 4 °C, 720 

the supernatant was obtained and then evaporated until dry using a vacuum concentrator 721 

(Eppendorf, Germany) at 30 °C. The dried residues were diluted in 500 µL of 70% methanol 722 

and then filtered through a 0.22 mm cellulose acetate filter.  723 

 724 

Auxin transport measurements 725 

5-day-old seedlings were used to measure the capacity of auxin transport as described 726 

previously (Lewis and Muday, 2009) with modifications. The 2cm root segments above the 727 

root tip were collected (Fig. 8D). For the measurement of acropetal or basipetal auxin transport, 728 
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the bottom or top of segmented roots were inserted into the tube that contains a consistent 729 

volume of small [3H]-IAA agar block, for 3 h incubation in the dark. 0.5cm root segments just 730 

above the inoculation site were excised and washed by 1/2 MS liquid for 15 min. Then, these 731 

segments were placed into scintillation vials containing 2 mL of scintillation fluid for 16-24 h. 732 

Radioactivity was measured as described previously (Lewis and Muday, 2009), and auxin 733 

transport efficiency was calculated according to the method described previously (Lewis and 734 

Muday, 2009).  735 

For auxin transport measurement in spot inoculation system, 2.5cm root segments 736 

below root-shoot junction area were collected (Fig. 5D), the top of segmented roots (U) were 737 

inserted into the tube that contains a consistent amount of [3H]-IAA solution, for 3 h incubation 738 

in the dark. 0.5cm root segments in L position were collected for radioactivity in scintillation 739 

vials containing 1 mL of scintillation fluid for 16-24 h. 740 

 741 

Tissue slicing and microscopy observation  742 

For resin embedding and sectioning, the different stages of nodules were collected and fixed 743 

in Formalin solution, and then dehydrated in a graded alcohol series. The fixed materials were 744 

subsequently embedded in Technovit 7100 (Kulzer GmbH) according to the manufacturer’s 745 

protocol.  746 

For pPIN:GUS and PIN-GFP analysis in soybean plants, root segments were collected 747 

and embedded within 7-8% agarose. After solidification, the samples were sliced using a Leica 748 

RM2255 microtome in transversal or longitudinal directions of 80 μm thickness. For GFP 749 

samples, the root/nodule median sections were selected under dissecting microscope with 750 

obvious vasculature, and the fluorescence were further observed by confocal microscopy under 751 

the same setting. For GUS samples, the slices were further stained by GUS staining solution 752 

for 4-8 h, or stained with 0.001% Toluidine Blue O staining for 10-20 seconds. All samples in 753 

a single experiment were stained with consistent time.  754 

For fluorescence observation, images were taken by either Zeiss LSM 880 (with 755 

Airyscan) or Leica SP8 confocal microscopes. The settings of excitation and detection were: 756 

GFP: 488 nm, 505-550 nm; FM4-64: 535 nm, 610 nm. All images in a single experiment were 757 

captured with the same setting.  758 

For nodule primordium assay, 5dpi seedlings were used to quantify the density of 759 

nodule primordium. The 1cm root segments were consistently collected from lateral roots in 760 

root-shoot junction areas. 5 to 10 individual root segments were collected from each plant, and 761 

at least 8 plants were analyzed. For nodule primordium assay in spot inoculation system, root 762 
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segments were collected from the foam-covered inoculated site. Root sections with 80 μm 763 

thickness were produced using a vibratome (Leica). The root sections were then stained by 764 

0.25% potassium permanganate for 10-30 seconds and soaked into Schiff’s fuchsin-sulfite 765 

solution. Nodule primordium was observed by Nikon Ti-E light microscope and the density 766 

was quantified by ImageJ. 767 

 768 

Statistical analysis, image analysis and figure preparation 769 

Statistical data were analyzed in Graphpad Prism 7 (GraphPad Software, La Jolla California 770 

USA, www.graphpad.com). Statistical images were generated by Graphpad Prism 7. Camera 771 

and confocal images were prepared with ImageJ (http://imagej.nih.gov/ij/). All the experiments 772 

were carried out at least in triplicate. 773 

 774 

Accession numbers 775 

Soybean gene accession numbers: GmPIN1a (Glyma.08G054700), GmPIN1b 776 

(Glyma.07G102500), GmPIN1c (Glyma.09G176300), GmPIN1d (Glyma.03G126000), 777 

GmPIN1e (Glyma.19G128800), GmPIN2a (Glyma.13G101900), GmPIN2b 778 

(Glyma.17G057300), GmPIN3a (Glyma.07G217900), GmPIN3b (Glyma.20G014300), 779 

GmPIN3c (Glyma.07G164600), GmPIN3d (Glyma.09G117900), GmPIN5a 780 

(Glyma.09G251600), GmPIN5b (Glyma.18G241000), GmPIN6a (Glyma.13G038300), 781 

GmPIN6b (Glyma.14G120900), GmPIN8a (Glyma.05G109800), GmPIN8b 782 

(Glyma.17G157300), GmPIN8c (Glyma.09G240500), GmPIN8d (Glyma.18G255800), 783 

GmPIN9a (Glyma.09G061800), GmPIN9b (Glyma.15G168100), GmPIN9c 784 

(Glyma.09G097300), GmPIN9d (Glyma.15G208600). Arabidopsis PIN accession 785 

numbers:AtPIN1(AT1G73590), AtPIN2(AT5G57090), AtPIN3(AT1G70940), 786 

AtPIN4(AT2G01420), AtPIN5(AT5G16530), AtPIN6(AT1G77110), AtPIN7(AT1G23080), 787 

AtPIN8(AT5G15100). KfPIN:(KJ466099). 788 

 789 

SUPPLEMENTAL DATA 790 

Supplemental Figure S1. NPA promotes small nodule formation. 791 

Supplemental Figure S2. Structure of GmPINs. 792 

Supplemental Figure S3. Expression pattern of GmPINs. 793 

Supplemental Figure S4. Auto-fluorescence in GFP channel in WT roots and nodules. 794 

Supplemental Figure S5. GmPIN1b is polarly localized toward nodule primordium apex. 795 

Supplemental Figure S6. Phenotype analysis of Gmpin1abc triple mutant. 796 
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Supplemental Figure S7. Phenotype analysis of GmPIN1 overexpression lines. 797 

Supplemental Figure S8. Flavonoids influence GmPIN1b and auxin distribution. 798 

Supplemental Figure S9. Cytokinin treatment increases nodule density. 799 

Supplemental Figure S10. Conjugated IAA is not influenced in Gmpin9d mutants. 800 

Supplemental Figure S11. GmPIN9d has a dual cellular localization in both ER and PM. 801 

Supplemental Figure S12. dTomato-based hairy root selection system. 802 

Supplemental Table S1. Primers used for genotyping and RT-qPCR analysis. 803 

Supplemental Table S2. Cloning Strategy. 804 

Supplemental Table S3. GmPIN gene locus number. 805 

Supplemental Table S4 Amino acid information. 806 

Supplemental File S1 PIN sequence alignments. 807 

Supplemental File S2 Readable tree file.  808 
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 832 

FIGURE LEGENDS 833 

Figure 1. NPA disrupts auxin distribution and nodule formation. 834 

(A-B) 7-day-old WT (A) or DR5-V2-GUS transgenic soybean plants (B) were infected by 835 

BXYD3, and then incubated in low-nitrogen hydroponic solution containing 10-7 M NPA or 836 

DMSO (as mock control). Root-shoot junctions were collected in series at 4-14 dpi for resin 837 

embedding and sectioning. The morphology of stage I to IV soybean nodules was examined 838 

by sectioning in the longitudinal direction (A). Red boxes label the primordium area, dotted 839 

lines label the vascular bundles, and black arrows highlight the nodule or nodule primordium 840 

(A). DR5-V2 activity in different nodule stages was stained and captured by sectioning in 841 

longitudinal (L) or transverse (T) directions (B). St: root stele. Red dot lines label the sectioning 842 

areas in transverse direction. Red arrows highlight the dividing cortical cells. Scale bars, 100 843 

μm (A, B). 844 

Figure 2. Expression pattern of GmPINs during nodule development.  845 

(A) The phylogenetic tree of PIN proteins from Arabidopsis (At), Glycine max (Gm) and 846 

Klebsormidium flaccidum (Kf) was constructed using MEGA X. These PIN genes were 847 

grouped as canonical, non-canonical and soybean-specific PIN types. 848 

(B) Transcript level of 23 GmPIN genes was detected by RT-qPCR in nodules at 14dpi (n≥3), 849 

Gmactin11 was the normalization gene. 850 

(C) pGmPIN1a, b, c, d, e:GUS constructs were introduced in WT soybean plants by hairy root 851 

transformation, the positive roots were infected by BXYD3. Root segments were collected at 4 852 

to 14 dpi. Root sectioning was performed for the further histochemical staining.  853 

(D) Cartoon model represents the spatial and temporal expression pattern (different colors) of 854 

GmPIN1s during nodule development.  855 

Scale bars, 100 μm (C). Error bar=S.D. 856 

Figure 3. GmPIN1 localization is conserved with AtPIN1 and direct auxin flow during 857 

nodule primordium formation. 858 

(A) Predicted topology of GmPIN1 proteins. The following GmPIN1-GFP constructs were 859 

established based on the insertion position of GFP in the hydrophilic loop. 860 

(B-C) GmPIN1a-e distribution and polarity were visualized in roots of the transgenic 861 

Arabidopsis plants (pAtPIN1: GmPIN1-GFP in pin1-En Arabidopsis (At.) mutant background 862 

(B, C). The phenotypes of inflorescence and silique (inset boxes) were shown in C. Polar 863 
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localization of GmPIN1 in the basal side of PM in root stele (inset boxes) is highlighted by 864 

white arrows (B). 865 

(D) GmPIN1b localization was visualized in roots and different stages of nodules in the 866 

transgenic soybean plant pGmPIN1b:GmPIN1b-GFP. The polarity of GmPIN1b (with 867 

predominant polarity toward nodule apex) was highlighted by white arrows. Dot lines label the 868 

area of C1-derived cell layers or vascular bundle. Pictures with bright field view were shown 869 

in the inset boxes of upper panels. The images in lower panels showed the enlarged views of 870 

boxed areas in the representative cartoon (1: undifferentiated vascular bundles; 2 and 3: 871 

differentiated vascular bundles). Yellow and blue dotted lines represent GmPIN1b signal on 872 

periclinal and anticlinal directions at stage I. 873 

(E) GmPIN1b localization was visualized in nodule primordium (stage II) of NPA (10-7 M, 874 

4days)-treated pGmPIN1b:GmPIN1b-GFP seedlings White arrows label GmPIN1b polarity 875 

toward nodule apex. 876 

(F-G) GmPIN1b signal toward the nodule apex (apical) or perpendicular to the nodule apex 877 

(lateral) was individually measured in F (n=136, 189, 89, 129, 136, 189, 89, 129). The 878 

comparison ratio of GmPIN1b signal in different nodule primordium stage relative to those in 879 

stage I was shown as percentage in F. Polar index of GmPIN1b was quantified by calculation 880 

of GmPIN1b signal ratio of apical-targeted GmPIN1b signals relative to them in the lateral 881 

sides (G: n=90, 136, 189, 89, 129, 40, 102).  882 

Scale bars, 5μm (B), 50μm (B, inset box), 5mm (C), 100μm (D upper panel, E), 20μm (D lower 883 

panel). Error bar=S.D. In D-E: Ep, epidermis; C1, 1st cortical cell layer; C2, 2nd cortical cell 884 

layer; Ed, endodermis; Pc, pericycle; St, stele; VB, vascular bundle. Root tip growth directions 885 

(g) were labelled by red arrows (D, E). Nodule primordium apex (apical-targeted GmPIN1b) 886 

was labelled by yellow arrows, and the lateral localization (perpendicular to the apical direction) 887 

of GmPIN1b was labelled by blue arrows (D, E). P-values were determined by two-tailed 888 

Student’s t-test assuming equal variances (***p< 0.001; ****p<0.0001; ns, not significant).  889 

Figure 4. Nodulation phenotypes of Gmpin1abc triple mutant and GmPIN1 890 

overexpression lines. 891 

(A) Gmpin1abc triple mutants were generated via CRISPR-Cas9 gene editing approach. The 892 

sequence of GmPIN1a, b, c with the gRNA targeted sites was designed in the first exon of 893 

GmPIN1 genes. gRNA targeted sequences were framed by green, and the mutation or deletion 894 

sequences were labelled by red. Two independent triple mutant lines with edited genes are 895 

shown. 896 
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(B-J) 7-day-old WT, Gmpin1abc mutants and 35s:GmPIN1a, b and c lines were infected by 897 

BXYD3, and the nodulation phenotypes were analyzed at 14 dpi. Nodule number (per plant) 898 

and density (number per cm2) were quantified in C (n=15, 9, 20, 17) and E (n=15, 9, 20, 17). 899 

Profile of nodule diameter was tracked in D (n=2138, 945), F (n=2236, 1404), H (n=848, 930, 900 

480), I (n=1111, 471), J (n=1318, 961, 1096) (all from upper to lower groups). 901 

Scale bars, 1cm (B, G). Error bar=S.D. P-values were determined by two-tailed Student’s t-902 

test assuming equal variances (**p< 0.01; ***p< 0.001). 903 

Figure 5. Loss-of-function and gain-of-function of GmPIN1 disrupted auxin distribution 904 

and nodule primordium initiation. 905 

(A-C, I) 7-day-old WT, Gmpin1abc-L1 and 35s:GmPIN1a-L11 plants were infected by BXYD3 906 

for additional 5 days growth. Consistent 1cm root segments were collected from lateral roots 907 

at the root-shoot junction area. Root segments were sectioned in longitudinal direction and co-908 

stained by Chameleon and Schiff’s fuchsin-sulfite reagents (A). Nodule primordium density 909 

and developing nodule density were individually quantified as profiles in B (n=106) and C 910 

(n=106). The overall nodule primordium density was analyzed in I (n=106). The middle panels 911 

of WT in A show 3× enlarged views of boxed areas in the images of left panels. 912 

(D,E-G,H) 0.5cm root segments below root-shoot junction of 5-day-old WT, Gmpin1abc-L1 913 

and Gmpin1abc-L2 were performed by 48h continuous BXYD3 spot inoculation (equipped as 914 

the cartoon in D). Auxin content in the upper (U) and lower (L) root segments close to the 915 

inoculated position was measured in G (uninfected roots were used as controls) (n=5, 3, 3, 4, 916 

4, 3, 5, 5, 4, 4, 4, 4). Polar auxin transport (PAT) efficiency was measured in the acropetal 917 

direction in H (n=12, 14, 10, 13, 12, 11; red arrow in D labelled PAT direction). The 918 

comparison ratio of auxin content in L relative to those in U is shown as a percentage in G, and 919 

the comparison ratio of auxin transport capacity in infected groups to uninfected groups was 920 

shown as percentage in H. Nodule primordium morphology in WT and Gmpin1abc mutants 921 

was observed at 5dpi after spot inoculation (E). Cartoons simulate cell morphology of each 922 

genotype, and green color indicates the dividing cortical cells (E). The percentage in E indicates 923 

the proportion of roots with aberrant dividing cortical cells in the total counting roots. 924 

(F) DR5-V2-GUS construct was introduced in WT, Gmpin1abc-L1 and 35s:GmPIN1a-L11 925 

plants by hairy root transformation, and different stages of nodule were collected at 8dpi for 926 

sectioning. Auxin distribution was visualized by histochemical GUS staining. 927 

Scale bars, 200μm (A), 100μm (E, F). Error bar=S.D. P-values were determined by two-tailed 928 

Student’s t-test assuming equal variances (*p<0.05; **p< 0.01; ****p< 0.0001; ns, not 929 

significant). 930 
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Figure 6. Cytokinin rearranges GmPIN1b polarity.  931 

(A-B) Nodule primordium of BXYD3-infected pGmPIN1b:GmPIN1b-GFP soybean plants 932 

were analyzed at 8dpi (with or without 1μM 6-BA treatment for 16h). GmPIN1b-GFP signal 933 

in the apical (yellow arrows) and lateral (blue arrows) directions of nodule primordium was 934 

calculated and shown as lateral/apical ratio in (B) (n=126 from 22 sections, 152 from 36 935 

sections), and the distribution frequency of GmPIN1b signal ratio was shown in the right chart 936 

(B, grey dot line marked the cutoff value). The cells with GmPIN1b signal ratio above the 937 

cutoff value was highlighted by yellow stars (A). Root tip growth directions (g) were labelled 938 

by red arrows (A).  939 

(C) 7-day-old WT plants were infected by BXYD3, and then they were irrigated with low-940 

nitrogen hydroponic solution containing 0.1μM 6-BA or DMSO (as mock control) for 941 

additional 7 days. Cortical root cell morphology was observed by root sectioning. Numbers in 942 

the right panels showed 4× enlarged views framed in the left image . The percentage indicates 943 

the proportion of roots with a cluster of dividing cortical cells in the total counting roots. 944 

Scale bars, 100μm (A), 500μm (C). Error bar=S.D. P-values were determined by two-tailed 945 

Student’s t-test assuming equal variances (****p< 0.0001). 946 

Figure 7. GmPIN9d is specifically expressed in the protoxylem cells of vascular bundles 947 

and root-nodule junctions. 948 

(A) Different tissues of 10-day-old pGmPIN9d:GUS transgenic soybean plants were in series 949 

collected for sectioning and histochemical staining. Xylem cells were indicated by 950 

phloroglucin co-staining. Numbers in the right and lower panels indicate the areas labelled in 951 

the left image. Pictures in the lower panels showed 3× enlarged views of the images in the 952 

upper panels. 953 

(B) pGmPIN9d:GUS transgenic soybean plants were infected by BXYD3, roots and different 954 

stages of nodules were collected for sectioning and histochemical staining.  955 

(C) Transcript levels of GmPIN9a, b, c, d genes were detected in different soybean tissues by 956 

RT-qPCR, and Gmactin11 was used as the normalization gene. The relative transcript levels 957 

are shown by heatmap. 958 

Scale bars, 100μm (A) and 200μm (B).  959 

Figure 8. GmPIN9d transports auxin in an acropetal direction. 960 

(A) Gmpin9d mutants were generated via CRISPR-Cas9 gene editing. gRNA targeted sites of 961 

GmPIN9d are framed in green, and the mutation or deletion sequences are labeled in red. Two 962 

independent mutant lines with editing manner were shown. 963 

(B) Global morphology of 21-day-old Gmpin9d mutants.  964 
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(C) DR5-V2-GUS construct was introduced in WT, Gmpin9d#2 mutant background by hairy 965 

root transformation, and the positive hairy roots were infected by BXYD3. Roots and nodules 966 

were collected at 14dpi for sectioning and histochemical staining.  967 

(D-F) Auxin transport capacity of WT and Gmpin9d mutants was assayed in 2cm root segments 968 

as described in D, and acropetal and basipetal auxin transportation were tracked by [3H]-IAA 969 

(n=9, 12, 6 in E; n=11, 10, 13 in F). 970 

(G-H) Free IAA level was individually measured in the roots and nodules of WT and Gmpin9d 971 

mutants (G: n=12, 15, 11; H: n=15, 15, 15). 972 

(I-K) 7-day-old WT and Gmpin9d mutants were infected by BXYD3. The nodule primordium 973 

density was analyzed at 6dpi (I: n=121, 137, 129), the nodule density was measured at 14dpi 974 

(J: n=8, 8, 7), and the profile of nodule diameter was tracked (K: n=560, 536, 473). 975 

Scale bars, 10cm (B), 100μm (C). Error bar=S.E.M in E-H, S.D. in I, J. P-values were 976 

determined by two-tailed Student’s t-test assuming equal variances (*p< 0.05; **p< 0.01; ns, 977 

not significant). 978 

Figure 9. GmPIN9d works synergistically with GmPIN1 to coordinate nodule 979 

enlargement. 980 

(A) GmPIN9d-GFP construct was established based on the insertion position of GFP in the 981 

hydrophilic loop. 982 

(B) pGmPIN9d:GmPIN9d-GFP construct was introduced in WT soybean plant by hairy root 983 

transformation, and the positive roots were infected by BXYD3. Roots and nodules were 984 

collected at 14dpi for sectioning, and GmPIN9d-GFP signal was visualized. Cells with polar 985 

GmPIN9d are highlighted by white arrows. The numbered images show 5×enlarged views (red 986 

boxes) in Supp. Fig. S11G images. Root tip growth directions are labelled by red arrows, and 987 

directions of nodule apex were indicated by yellow arrows. VB, vascular bundle. 988 

(C-E) WT and Gmpin1abc mutants were transformed by Gmpin9d-RNAi construct (with 989 

dTomato-tag). The positive hairy roots were selected based on fluorescence and further 990 

infected by BXYD3, and the profile of nodule diameter was tracked in D (n=613, 618, 624) at 991 

14dpi. Expression level of GmPIN9d was detected by RT-qPCR (E, n=4), Gmactin11 was used 992 

as the normalization gene (E). 993 

(F) Model for polar auxin transport in nodule primordium and developing nodule. Stage I, 994 

GmPIN1 mainly directs auxin flow to the outer cortical cells, and partial auxin flows away 995 

from outer cortical cells. Stage II and III: GmPIN1-dependent auxin stream flows towards the 996 

nodule primordium, and some auxin is retrieved to the neighboring cells. Stage IV: auxin 997 

stream is transported within vascular bundles towards nodule via GmPIN1 and GmPIN9d-998 
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dependent polar auxin transport. Auxin accumulation is depicted in green, auxin gradient is 999 

indicated in light green, and the presumptive routes of auxin flow are depicted by arrows (red 1000 

arrows: GmPIN1-mediation; purple arrows: GmPIN9d-mediation). Flavonoid and cytokinin 1001 

act as the elicitors to mediate rapid auxin stream redirection.  1002 

Scale bars, 100μm (B), 1cm (C). Error bar=S.D. 1003 

 1004 

 1005 

 1006 

  1007 
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Figure 1. NPA disrupts auxin distribution and nodule formation.
(A-B) 7-day-old WT (A) or DR5-V2-GUS transgenic soybean plants (B) were infected by BXYD3, and then
incubated in low-nitrogen hydroponic solution containing 10-7 M NPA or DMSO (as mock control). Root-shoot
junction area were collected in series at 4dpi till 14dpi for resin embedding and sectioning. The morphology of
soybean nodules in stage I to IV was sectioned in longitudinal direction (A). Red boxes label the primordium area,
dotted lines label the vascular bundles, and black arrows highlight nodule or nodule primordium (A). DR5-V2
activity in different nodule stages was stained and captured by sectioning in longitudinal (L) or transversal (T)
direction (B). St: root stele. Red dot lines label the sectioning areas in transversal direction. Red arrows highlight
the dividing cortical cells. Scale bars, 100 μm (A, B).
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Figure 2. Expression pattern of GmPINs during nodule development.
(A) The phylogenetic tree of PIN proteins from Arabidopsis (At), Glycine max (Gm) and Klebsormidium flaccidum
(Kf) was constructed using MEGA X. These PIN genes were grouped as canonical, non-canonical and soybean-
specific PIN types.
(B) Transcript level of 23 GmPIN genes was detected by RT-qPCR in nodules at 14dpi (n≥3), Gmactin11 was the
normalization gene.
(C) pGmPIN1a, b, c, d, e:GUS constructs were introduced in WT soybean plants by hairy root transformation, the
positive roots were infected by BXYD3. Root segments were collected at 4dpi till 14dpi. Root sectioning was
performed for the further histochemical staining.
(D) Cartoon model represents the spatial and temporal expression pattern (different colors) of GmPIN1s during
nodule development.
Scale bars, 100μm (C). Error bar=S.D.
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Figure 3. GmPIN1 are localization conserved with AtPIN1 and direct auxin flow during nodule primordium formation.
(A) Predicted topology of GmPIN1 proteins. The following GmPIN1-GFP constructs were established based on the insertion position of
GFP in the hydrophilic loop.
(B-C) GmPIN1a-e distribution and polarity were visualized in roots of the transgenic Arabidopsis plants (pAtPIN1: GmPIN1-GFP in pin1-
En Arabidopsis (At.) mutant background (B, C). The phenotypes of inflorescence and silique (inset boxes) were shown in C. Polar
localization of GmPIN1 in the basal side of PM in root stele (inset boxes) was highlighted by white arrows (B).
(D) GmPIN1b localization was visualized in roots and different stages of nodules in the transgenic soybean plant pGmPIN1b:GmPIN1b-
GFP. The polarity of GmPIN1b (with predominant polarity toward nodule apex) was highlighted by white arrows. Dot lines label the area
of C1-derived cell layers or vascular bundle. Pictures with bright field view were shown in the inset boxes of upper panels. The images in
lower panels showed the enlarged views of boxed areas in the representative cartoon (1: undifferentiated vascular bundles; 2 and 3:
differentiated vascular bundles). Yellow and blue dot lines represent GmPIN1b signal on periclinal and anticlinal directions at stage I.
(E) GmPIN1b localization was visualized in nodule primordium (stage II) of NPA (10-7 M, 4days)-treated pGmPIN1b:GmPIN1b-GFP
seedlings White arrows label GmPIN1b polarity toward nodule apex.
(F-G) GmPIN1b signal toward nodule apex (apical) or perpendicular to nodule apex (lateral) was individually measured in F (n=136, 189,
89, 129, 136, 189, 89, 129). The comparison ratio of GmPIN1b signal in different nodule primordium stage relative to those in stage I was
shown as percentage in F. Polar index of GmPIN1b was quantified by calculation of GmPIN1b signal ratio of apical-targeted GmPIN1b
signals relative to them in the lateral sides (G: n=90, 136, 189, 89, 129, 40, 102).
Scale bars, 5μm (B), 50μm (B, inset box), 5mm (C), 100μm (D upper panel, E), 20μm (D lower panel). Error bar=S.D. In D-E: Ep,
epidermis; C1, 1st cortical cell layer; C2, 2nd cortical cell layer; Ed, endodermis; Pc, pericycle; St, stele; VB, vascular bundle. Root tip
growth directions (g) were labelled by red arrows (D, E). Nodule primordium apex (apical-targeted GmPIN1b) was labelled by yellow
arrows, and the lateral localization (perpendicular to the apical direction) of GmPIN1b was labelled by blue arrows (D, E). P-values were
determined by two-tailed Student’s t-test assuming equal variances (***p< 0.001; ****p<0.0001; ns, not significant).
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Figure 4. Nodulation phenotypes of Gmpin1abc triple mutant and overexpressed GmPIN1 lines.
(A) Gmpin1abc triple mutants were generated via CRISPR-Cas9 gene editing approach. The sequence of
GmPIN1a, b, c with the gRNA targeted sites was designed in the first exon of GmPIN1 genes. gRNA targeted
sequences were framed by green, and the mutation or deletion sequences were labelled by red. Two independent
triple mutant lines with editing manner were shown.
(B-J) 7-day-old WT, Gmpin1abc mutants and 35s:GmPIN1a, b and c lines were infected by BXYD3, and the
nodulation phenotypes were analyzed at 14 dpi. Nodule number (per plant) and density (number per cm2) were
quantified in C (n=15, 9, 20, 17) and E (n=15, 9, 20, 17). Profile of nodule diameter was tracked in D (n=2138,
945), F (n=2236, 1404), H (n=848, 930, 480), I (n=1111, 471), J (n=1318, 961, 1096) (all from upper to lower
groups).
Scale bars, 1cm (B, G). Error bar=S.D. P-values were determined by two-tailed Student’s t-test assuming equal
variances (**p< 0.01; ***p< 0.001).
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Figure 5. Loss-of-function and gain-of-function of GmPIN1 both disrupted auxin distribution and nodule primordium
initiation.
(A-C, I) 7-day-old WT, Gmpin1abc-L1 and 35s:GmPIN1a-L11 plants were infected by BXYD3 for additional 5 days growth.
Consistent 1cm root segments were collected from lateral roots at root-shoot junction area. Root segments were sectioned in
longitudinal direction and co-stained by chameleon and schiff’s fuchsin-sulfite reagents (A). Nodule primordium density and
developing nodule density were individually quantified as profile in B (n=106) and C (n=106). The overall nodule primordium
density was analyzed in I (n=106). The middle panels of WT in A showed 3× enlarged views of boxed areas in the images of
left panels.
(D,E-G,H) 0.5cm root segments below root-shoot junction of 5-day-old WT, Gmpin1abc-L1 and Gmpin1abc-L2 were performed
by 48h continuous BXYD3 spot inoculation (equipped as the cartoon in D). Auxin content in the upper (U) and lower (L) root
segments close to the inoculated position was measured in G (uninfected roots were used as controls) (n=5, 3, 3, 4, 4, 3, 5, 5,
4, 4, 4, 4). Polar auxin transport (PAT) efficiency was measured in acropetal direction in H (n=12, 14, 10, 13, 12, 11; red arrow
in D labelled PAT direction). The comparison ratio of auxin content in L relative to those in U was shown as percentage in G,
and the comparison ratio of auxin transport capacity in infected groups to uninfected groups was shown as percentage in H.
Nodule primordium morphology in WT and Gmpin1abc mutants was observed at 5dpi after spot inoculation (E). Cartoons
simulate cell morphology of each genotype, and green color indicates the dividing cortical cells (E). The percentage in E
indicated the proportion of roots with aberrant dividing cortical cells in the total counting roots.
(F) DR5-V2-GUS construct was introduced in WT, Gmpin1abc-L1 and 35s:GmPIN1a-L11 plants by hairy root transformation,
and different stages of nodule were collected at 8dpi for sectioning. Auxin distribution was visualized by histochemical GUS
staining.
Scale bars, 200μm (A), 100μm (E, F). Error bar=S.D. P-values were determined by two-tailed Student’s t-test assuming equal
variances (*p<0.05; **p< 0.01; ****p< 0.0001; ns, not significant).
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Figure 6. Cytokinin rearranges GmPIN1b polarity.
(A-B) Nodule primordium of BXYD3-infected pGmPIN1b:GmPIN1b-GFP soybean plants were analyzed at 8dpi
(with or without 1μM 6-BA treatment for 16h). GmPIN1b-GFP signal in the apical (yellow arrows) and lateral (blue
arrows) directions of nodule primordium was calculated and shown as lateral/apical ratio in (B) (n=126 from 22
sections, 152 from 36 sections), and the distribution frequency of GmPIN1b signal ratio was shown in the right
chart (B, grey dot line marked the cutoff value). The cells with GmPIN1b signal ratio above the cutoff value was
highlighted by yellow stars (A). Root tip growth directions (g) were labelled by red arrows (A).
(C) 7-day-old WT plants were infected by BXYD3, and then they were irrigated with low-nitrogen hydroponic
solution containing 0.1μM 6-BA or DMSO (as mock control) for additional 7 days. Cortical root cell morphology
was observed by root sectioning. Numbers in the right panels showed 4× enlarged views framed in the left image.
The percentage indicated the proportion of roots with a cluster of dividing cortical cells in the total counting roots.
Scale bars, 100μm (A), 500μm (C). Error bar=S.D. P-values were determined by two-tailed Student’s t-test
assuming equal variances (****p< 0.0001).
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Figure 7. GmPIN9d is specifically expressed in the protoxylem cells of vascular bundles and root-nodule
junctions.
(A) Different tissues of 10-day-old pGmPIN9d:GUS transgenic soybean plants were in series collected for
sectioning and histochemical staining. Xylem cells were indicated by phloroglucin co-staining. Numbers in the
right and lower panels indicated the areas labelled in the left image. Pictures in the lower panels showed 3×
enlarged views of the images in the upper panels.
(B) pGmPIN9d:GUS transgenic soybean plants were infected by BXYD3, roots and different stages of nodules
were collected for sectioning and histochemical staining.
(C) Transcript level of GmPIN9a, b, c, d genes was detected in different soybean tissues by RT-qPCR, and
Gmactin11 was used as the normalization gene. The relative transcript was shown by heatmap.
Scale bars, 100μm (A) and 200μm (B).
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Figure 8. GmPIN9d transports auxin in an acropetal direction.
(A) Gmpin9d mutants were generated via CRISPR-Cas9 gene editing approach. gRNA targeted sites of
GmPIN9d were framed by green, and the mutation or deletion sequences were labelled by red. Two independent
mutant lines with editing manner were shown.
(B) Global morphology of 21-day-old Gmpin9d mutants.
(C) DR5-V2-GUS construct was introduced in WT, Gmpin9d#2 mutant background by hairy root transformation,
and the positive hairy roots were infected by BXYD3. Roots and nodules were collected at 14dpi for sectioning
and histochemical staining.
(D-F) Auxin transport capacity of WT and Gmpin9d mutants was assayed in 2cm root segments as described in D,
and acropetal and basipetal auxin transportation were tracked by [3H]-IAA (n=9, 12, 6 in E; n=11, 10, 13 in F).
(G-H) Free IAA level was individually measured in the roots and nodules of WT and Gmpin9d mutants (G: n=12,
15, 11; H: n=15, 15, 15).
(I-K) 7-day-old WT and Gmpin9d mutants were infected by BXYD3. The nodule primordium density was analyzed
at 6dpi (I: n=121, 137, 129), the nodule density was measured at 14dpi (J: n=8, 8, 7), and the profile of nodule
diameter was tracked (K: n=560, 536, 473).
Scale bars, 10cm (B), 100μm (C). Error bar=S.E.M in E-H, S.D. in I, J. P-values were determined by two-tailed
Student’s t-test assuming equal variances (*p< 0.05; **p< 0.01; ns, not significant).
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Figure 9. GmPIN9d works synergistically with GmPIN1 to coordinate nodule enlargement.
(A) GmPIN9d-GFP construct was established based on the insertion position of GFP in the hydrophilic loop.
(B) pGmPIN9d:GmPIN9d-GFP construct was introduced in WT soybean plant by hairy root transformation, and
the positive roots were infected by BXYD3. Roots and nodules were collected at 14dpi for sectioning, and
GmPIN9d-GFP signal was visualized. Cells with polar GmPIN9d was highlighted by white arrows. The numbered
images showed 5×enlarged views (red boxes framed) in Supp.Fig. 11G images. Root tip growth directions were
labelled by red arrows, and directions of nodule apex were indicated by yellow arrows. VB, vascular bundle.
(C-E) WT and Gmpin1abc mutants were transformed by Gmpin9d-RNAi construct (with dTomato-tag). The
positive hairy roots were selected based on fluorescence and further infected by BXYD3, and the profile of nodule
diameter was tracked in D (n=613, 618, 624) at 14dpi. Expression level of GmPIN9d was detected by RT-qPCR
(E, n=4), Gmactin11 was used as the normalization gene (E).
(F) Model for polar auxin transport in nodule primordium and developing nodule. Stage I, GmPIN1 mainly directs
auxin flow to the outer cortical cells, and partial auxin flows away from outer cortical cells. Stage II and III:
GmPIN1-dependent auxin stream flows towards the nodule primordium, and partial auxin is retrieved to the
neighboring cells. Stage IV: auxin stream is transported within vascular bundles towards nodule via GmPIN1 and
GmPIN9d-dependent polar auxin transport. Auxin accumulations are depicted in green, auxin gradient is indicated
by light green, and the presumptive routes of auxin flow are depicted by arrows (red arrows: GmPIN1-mediation;
purple arrows: GmPIN9d-mediation). Flavonoid and cytokinin act as the elicitors to mediate rapid auxin stream
redirection.
Scale bars, 100μm (B), 1cm (C). Error bar=S.D.
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