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Fast and strong amplifiers of natural selection
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Selection and random drift determine the probability that novel mutations fixate in a popu-
lation. Population structure is known to affect the dynamics of the evolutionary process.
Amplifiers of selection are population structures that increase the fixation probability of
beneficial mutants compared to well-mixed populations. Over the past 15 years, extensive
research has produced remarkable structures called strong amplifiers which guarantee that
every beneficial mutation fixates with high probability. But strong amplification has come at
the cost of considerably delaying the fixation event, which can slow down the overall rate of
evolution. However, the precise relationship between fixation probability and time has
remained elusive. Here we characterize the slowdown effect of strong amplification. First, we
prove that all strong amplifiers must delay the fixation event at least to some extent. Second,
we construct strong amplifiers that delay the fixation event only marginally as compared to
the well-mixed populations. Our results thus establish a tight relationship between fixation
probability and time: Strong amplification always comes at a cost of a slowdown, but more
than a marginal slowdown is not needed.
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opulations evolve by accumulating novel mutations. Once a

new mutant arises, selection and random drift govern the

dynamics of spread until the mutant either fixates or
becomes extinct. Natural selection favors the proliferation of
advantageous mutants. But their fixation is not guaranteed,
because randomness could wipe out the mutant clone before it
reaches a sizable part of the population. A key quantity in this
process is the fixation probability, that is, the probability that the
lineage of a new advantageous mutant eventually takes over the
whole population!=3. The fixation probability is a central concept
in evolutionary theory and it is often used to characterize the
speed of evolution, as high fixation probability accelerates the
evolutionary process*-©.

Fixation probabilities are often calculated for the idealized case of
well-mixed populations’®. In a well-mixed population, all indivi-
duals are in equivalent positions and compete uniformly with all
other individuals. Biological populations are often not well-mixed,
but rather follow some spatial (or other) arrangements. Population
structure can affect evolutionary dynamics, as invading mutants
arise in specific locations and spread locally!%-13. Although—at first
sight—this local spread might appear to impede the fixation of new
mutants, certain population structures are known to increase the
fixation probability of advantageous mutants compared to a well-
mixed population!4-1°, This remarkable property of amplifying the
selective advantage of mutants has been a subject of extensive
studies, and several amplifying structures have been discovered over
the years?0-23, The epitome of this effect is achieved by strong
amplifiers, which are population structures that, in the limit of large
population size, guarantee fixation of advantageous mutants with
high probability, regardless of how small the mutant’s fitness
advantage is over the resident?4-29,

Besides fixation probability, another important quantity in the
evolutionary process is the ‘fixation time’, that is, the expected
number of generations from the arrival of the mutant until the
population resolves to a homogeneous state (which is the fixation
of either the mutant or the residents)30-32,

Amplifiers are known to substantially increase the fixation time
as compared to well-mixed populations?3-39, which in turn limits
their role as accelerators of evolution due to the following effect:
The evolutionary process operates in two very distinct regimes
depending on the magnitude of the mutation rate, relative to the
fixation time. When the mutation rate is relatively high, multiple
independent mutations typically compete for fixation, known as
clonal interference3”-42. In this regime, the rate of evolution is
primarily determined by the fixation time (as opposed to the fixa-
tion probability). In contrast, when the mutation rate is relatively
low, mutations occur mostly sequentially. The rate of evolution is
now primarily determined by the probability that a new mutation
fixates before the next one occurs, and thus amplifiers accelerate
evolution. Since the threshold between these two regimes is deter-
mined by the fixation time, amplifiers with long fixation times
realize their effect only in very low mutation rates. On the other
hand, amplification combined with short fixation time acts in a
broader range of mutation rates, but thus far has remained elusive.

A standard model of stochastic evolutionary dynamics is the
Moran process’. The fitness advantage of a mutant invading a
resident population is specified by a parameter r > 1, while residents
have fitness normalized to 1. For a well-mixed population of size N,
an invading mutant fixates with probability (1 — 1/r)/(1 — 1/rN).
For large N, the fixation probability converges to 1 — 1/r and the
process runs for approximately (1 + 1/r)-logN generations.
Ignoring the constant factor 1+ 1/r and focusing on the depen-
dence on the population size N, we say that the ‘timescale of fixa-
tion’ on the complete graph is (of the order of) log N generations.

The Moran process can be adapted to structured
populations?443. Population structure is represented by a graph,

with each node occupied by a single individual and edges marking
where a reproducing individual can place its offspring**. The well-
mixed population corresponds to the complete graph Ky. The
prime example of an amplifier is the Star graph Sy, which increases
the fixation probability to approximately 1 — 1/r2, while the time-
scale is increased to N - log N generations!421:2236 from the log N
generations of Ky. Instances of strong amplifiers, such as superstars,
funnels, and megastars have also been discovered, with the
remarkable property that for any r>1 the fixation probability
approaches 1 in the limit of large N, hence fixation is reached
almost surely?4-26. However, these structures operate on long
timescales where mutants and residents coexist for many genera-
tions until the population reaches a homogeneous state. The search
for faster strong amplifiers has lead to structures, such as the Dense
Incubators Dy?72%, with timescale that is polynomial in N45:46,
Since well-mixed populations resolve in log N generations, strong
amplification still comes at the cost of a substantial increase in the
timescale. Figure 1 illustrates the landscape of the probability-
timescale trade-off for some common structures.

All existing trade-offs between probability and time highlight
two fundamental questions about the evolutionary process: (1)
are there strong amplifiers with timescale as short as that of well-
mixed populations? And, if not, (2) what is the smallest possible
slowdown for which strong amplification is possible?

Here we answer those questions by establishing a tight rela-
tionship between the probability of fixation and the timescale of
fixation. First, we show that the timescale of any strong amplifier
is larger than the timescale of the well-mixed population. Second,
we construct strong amplifiers whose timescale is only marginally
longer than that of the well-mixed population. Therefore, we
show that strong amplification always comes at the cost of a
slowdown, but more than a marginal slowdown is not needed.

Results

Model. In the framework of evolutionary graph theory, a popu-
lation consisting of N individuals (each either a ‘mutant’ or a
‘resident’) is spread over N nodes of a fixed connected graph Gy.
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Fig. 1 Probability-timescale landscape of population structures. On a
large well-mixed population (Ky, green), a single mutant with a fixed relative
fitness advantage r >1 fixates with a constant probability 1—1/r after a
number of generations that scales logarithmically with the population size N.
On a Star graph (Sy, brown), the fixation probability increases to 1—1/r2,
but the process takes roughly Nlog N generations, an exponential slowdown
in timescale relative to Ky. Dense Incubators (Dy, purple) push the fixation
probability to 1 within a polynomial timescale. Selection reactors (SRy, blue),
introduced here (see Theorem 2), guarantee fixation with high probability
while almost matching the timescale of well-mixed populations (here S(N) is
an arbitrarily slowly growing unbounded function). No population structure
can appear in the red region (see Theorem 1).
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Fig. 2 Moran birth-death process on a population structure. Residents
(red, with fitness 1) and mutants (blue, with fitness advantage r>1) are
spread over nodes of a graph. Its nodes represent sites and its weighted
edges represent migration rates. At each discrete time step, one individual
reproduces (“Birth”, yellow) and places its offspring on a neighboring node,
replacing its initial occupant (“Death”, purple). Eventually, either the
mutants or the residents fixate on the whole population.

The nodes of Gy represent the sites and the edges (possibly
directed, weighted, and including self-loops) represent the
migration rates between neighboring sites. Each mutant has fixed
fitness r>1 and each resident has fitness 1. The individuals
reproduce asexually with a rate proportional to their fitness, and
the produced offspring migrates along an edge, replacing the
original inhabitant of that site (see Fig. 2).

Formally, the birth-death Moran process proceeds in discrete
steps according to the following stochastic rule:

(1) (Birth) Select an individual for reproduction, with prob-
ability proportional to its fitness. That individual, say at
node u, produces an offspring that is a copy of itself.

(2) (Death) Select a neighboring node v of u, with probability
proportional to the edge weight w,,,. The offspring created
at node u migrates to node v and replaces its initial
inhabitant.

The process ends once all individuals are of the same type—either
all mutants (‘fixation’ occurs) or all residents (‘extinction’ occurs).
The ‘fixation probability’ fp(Gy, 7) is the probability that a single
mutant with fitness r>1 appearing at a node of Gy selected
uniformly at random eventually fixates. Similarly, we denote
by ep(Gn, ) =1 — fp(Gp, 1) the ‘extinction probability’ and by
FT(Gp, 1) the ‘fixation time’, that is, the (expected) number of
generations until the process ends (here each generation consists
of N individual steps). Finally, ignoring the lower-order terms in
FT(Gp, 1) and a multiplicative constant that possibly depends on
r but not on N, we obtain the ‘timescale of fixation’ T(Gy). See
Supplementary Note 1 for further discussion.

Amplifiers and strong amplifiers. The well-mixed population is
modeled by the complete graph Ky with all edges of unit weight.
It is known?7-3° that for any fixed r > 1 we have

fp(Ky,r) > 1 — 1/r and T(Ky) = logN (1)

as N—oo,

This gives a natural baseline to which one can compare other
population structures. In particular, a population structure Gy with
N nodes is called an ‘amplifier’ if it increases the fixation probability
of advantageous mutations as compared to the complete graph Gy
of the same size, that is, if fp(Gy, 1) > fp(Ky, 7) for all > 1. Even
more strongly, a sequence {Gy}3_, of population structures of
increasing size is called a ‘strong amplifier’ (also known as a
‘superamplifier’) if, for any r>1, it satisfies fp(Gn, 1) —nN_ool.

Strong amplification is, in a sense, the strongest possible form of
amplification as it ensures the fixation of advantageous mutants
with probability close to 1.

A prominent example of an amplifier is the Star graph Sy,
consisting of one center node and N — 1 leaf nodes connected to
the center. It is known?1:33-3647 that for any fixed r> 1 the Star
graph satisfies

fp(Sy,r) —> 1 — 1/r* and T(Sy) = NlogN )

as N — oo, For example, when r =1+ s, where s is small, large
Stars roughly double the fixation probability at the cost of
lengthening the timescale from logarithmic to polynomial. A
similar increase to both fixation probability and timescale has
been known for bipartite graphs, and extensive numerical studies
on small graphs show a strong positive correlation between
fixation probability and the timescale36-48.

Strongly amplifying structures have also been discovered
over the years, such as superstars, funnels, and megastars®$2>,
while it has been recently shown that strong amplification can
be obtained out of almost every structure if one adjusts
the migration rates between neighboring sites?8. All these
results present families {Gy}y_, with the property that
fp(Gn, 1)—N_ol for any fixed r> 1, that is, fixation is essentially
guaranteed when N is large enough. At the same time, the
timescale T(Gy) grows quickly in N, sometimes even exponen-
tially, thus strong amplification comes at the cost of a substantial
slowdown of the evolutionary process. All these structures are
either directed or weighted graphs.

Recent research has shown the existence of strong amplifiers
that are undirected and unweighted?’-2%. The absence of both
weights and directions on the edges is known to lead to timescale
that is polynomial in N*>46. However, this polynomial timescale
still remains considerably slower than the logarithmic timescale of
the well-mixed population.

Two theorems. All existing results on the trade-offs between
fixation probability and the timescale highlight two fundamental
questions about the evolutionary process. (1) Are there strong
amplifiers whose timescale is as short as that of well-mixed
populations? And, if not, (2) What is the shortest possible
timescale at which strong amplification is possible?

Here we answer the two questions by establishing a tight
relationship between the fixation probability and the timescale.
First, we show that there exist no strong amplifiers with timescale
(asymptotically) comparable to that of complete graphs.

Theorem 1
For any strong amplifier {Gy}3_;, there exists an increasing
unbounded function B(N) such that

T(Gy) 2 logN - B(N). 3)

Hence, as N—oo, the timescale T(Gy) grows faster than log N,
and the graphs Gy incur a slowdown to the evolutionary process
compared to the well-mixed population. This answers question
(1) in negative and implies that any strong amplifier has to suffer
an asymptotically non-negligible slowdown. Later we give a
precise expression for S(N).

Second, we show that, perhaps surprisingly, the above negative
result is tight: For any arbitrarily slowly growing, but unbounded
function B(N) we construct strong amplifiers that suffer only a
slowdown of order (N).
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Fig. 3 Selection reactors. a A selection reactor SRy(n, pin, Pout) CONsists of two compartments: A central well-mixed “hub' (orange) containing n nodes and
the remaining N — n isolated ‘leaves' in the periphery. An offspring of a reproducing individual migrates to the other compartment with probability p;,, resp.
Pout- b As a weighted graph, selection reactor SRE (n, w,,, w,) is parametrized by the hub size n, the weight wj, of all edges within the hub, and the weight w,
of all self-loops on the leaves. The migration rates p;, and pot then satisfy p;, =n/(n+w,) and poue = (N —n)/((N — n) + (n — Dwy,). € Given a slowly

growing unbounded function a(N), a selection reactor SR}, has n= |[N/a(N)] nodes in the hub and the migration rates satisfy p;, =Ppout = 1/a2(N) (here

N=9, a(9) =3, and || denotes the floor function).

Theorem 2
For any increasing unbounded function S(N) there exists a strong
amplifier {Gy}3_, such that

T(Gy) < logN - B(N). (4)

This answers question (2) on a positive note and presents
strong amplifiers that do not incur an exponential slowdown as
compared to the complete graph Ky. For instance, by setting
B(N) = loglog N we obtain strong amplifiers whose timescale
logN - loglog N is only marginally longer than the timescale
log N of the well-mixed populations. Together, the two theorems
establish a tight dichotomy: All strong amplifiers are asympto-
tically slower than the complete graphs but any slowdown is
sufficient to let strong amplification arise.

The key insight behind Theorem 1 is that the operating
principle of any amplifier is to contain a relatively large set S of
nodes that are sufficiently isolated so that they are replaced
infrequently. Broadly speaking, such nodes are necessary in order
to protect the initial mutant from going extinct before it spreads
to a sizeable portion of the graph. However, on their way to
fixation, the mutants have to spread to all nodes of the graph and
the isolated nodes of S now pose a challenge, as the structure
protects those nodes from the mutant spread. In particular, we
obtain that the slowdown B(N) is inversely proportional to the
extinction probability ep(Gy, ), and thus S(N) is unbounded for
strong amplifiers where ep(Gy, r)—0.

We obtain Theorem 2 by introducing a new population
structure called the selection reactor, and proving that selection
reactors are fast and strong amplifiers.

Selection reactors. Selection reactors are population structures
motivated by a certain two-chamber system. The population is
split into two compartments: a central well-mixed ‘hub’ and the
remaining periphery consisting of isolated ‘leaf nodes’. The oft-
spring of a reproducing individual occasionally migrates from one
compartment to the other, but the individuals directly compete
only when within the hub. A ‘selection reactor’ SRy(#, pin, Pout) 1S
thus fully described by setting four parameters (see Fig. 3a): The
total population size N, the number #n of nodes in the hub,
the probability p;, that an offspring of a leaf node migrates to the
hub, and the probability p,, that an offspring of a hub node
migrates to the periphery.

Mathematically, the structure of a selection reactor can be
represented as a weighted graph (see Fig. 3b): Every two of the n
hub-nodes are connected by an edge with weight wj, each of the
N — n leafs has a self-loop with weight w,, and every two nodes
from different compartments are connected by an edge with

weight W, =1 (see Fig. 3b). Setting the weights such that p;, =
n/(n + wp) and poye = (N — n)/((N — n) + (n — 1)w;) we obtain a
selection reactor with migration rates p;,, pou: as above.

To state our results, it suffices to focus solely on a subfamily
{SR*}}_, of selection reactors parametrized by a function « :
N — R which is unbounded (a(N)—co as N—eo) and slowly
growing (1<a(N) < +/N), see Fig. 3c. Specifically, for any fixed
population size N, the selection reactor SR}, consists of a hub with
n= | N/a(N)| nodes and the weights of the edges within the hub
and of the self-loops are such that whenever a node is selected for
reproduction, it replaces a node in the opposite component with
probability pi, = pour = 1/a?(N). The selection reactor attains its
amplification and timescale properties by tuning the function
a(N). In particular, we prove that the fixation probability and the
timescale satisfy fp(SRY;,r) — 1 and T(SRY) <log N - a*(N). See
the “Methods” section for a high-level overview of the arguments
and the Supplementary Note 3 for fully rigorous mathematical
proofs.

Discussion

The fixation probability and the fixation time of mutants are two
fundamental quantities of evolutionary dynamics that are affected
by a population structure. Traditionally amplifiers of natural
selection, which increase the fixation probability of advantageous
mutants, also increase the fixation time. Strong amplifiers, which
guarantee the fixation of advantageous mutants with high prob-
ability, tend to come at the cost of a dramatic increase in fixation
time. But the relationship between fixation probability and time
has been poorly understood. Here we have shown that a marginal
slowdown is necessary for strong amplification, but more than a
marginal slowdown is not needed. Thereby we provide a tight
resolution for the trade-off between probability and time.

A key component of this resolution is a new class of fast and
strong amplifiers, which we call selection reactors. The selection
reactor is a population structure with four parameters defining
the sizes of its two components (hub and periphery) and the
migration rates between them. As we show in the Supplementary
Note 3, selection reactors achieve fast and strong amplification for
a wide range of those parameters, which makes them a robust
structure. Our proof technique might be also applicable to Sparse
Incubators2, which are—to our knowledge—the only other
structure that could potentially achieve strong amplification
within a comparably short timescale.

So far we have considered the setting where the initial mutant
appears at a node selected uniformly a random. This scheme
describes situations in which new mutations occur spontaneously
at each site with the same rate. Alternatively, for mutations that
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occur during reproduction, it is more natural to place the initial
mutant at a node selected with probability proportional to the
rate at which the node is being replaced by its neighbors. This
placing is called temperature initialization??. In Supplementary
Note 3, we show that both Theorem 1 and Theorem 2 also hold
for temperature initialization.

Besides the mathematical appeal of the tight relationship
between Theorem 1 and Theorem 2, our positive result on
selection reactors has other important implications. First, due to
their simplicity, selection reactors could conceivably be con-
structed in a controlled environment, possibly using microfluidics
technology?>°9, or they could occur in natural settings. For
example, we speculate that aspects of selection reactor could
possibly be at play in germinal centers®!, which are structures
involved in the production and affinity maturation of antibodies:
Broadly speaking, a germinal center consists of a dark zone and a
light zone. Cells occasionally migrate between the two zones but
they directly compete with each other only when within the light
zone. The light zone thus resembles the hub whereas the dark
zone corresponds to the periphery.

Second, note that the fixation probability of a single mutant
against a uniform background population of residents char-
acterizes the overall rate of evolution only when each new
mutational lineage resolves before the next mutation appears and
thus no clonal interference occurs. For structures that operate on
a long timescale, the fixation probability is a crucial quantity only
when the mutation rate is very low, a restriction that has been
received with skepticism33-36, In contrast, since Selection Reactors
operate on short timescales (relative to other population struc-
tures), they avoid clonal interference even with relatively higher
mutation rates, and thus their amplifying properties remain
relevant for a broader range of parameters. This property lifts the
concept of a strong amplifier to a robust phenomenon.

Methods
Here we informally sketch the intuition behind the proofs of our results. The fully
rigorous mathematical proofs can be found in the Supplementary Note 3.

The slowdown of strong amplifiers. The key concept behind Theorem 1 is that of
temperature. Given two nodes v and u, we first denote by p,_, = W,/ (3, W,,)
the probability that when v reproduces, its offspring migrates to u (here w,, is the
weight of the connection between nodes v and u). The ‘temperature’ of a node u is
then defined as 7(u) = X,.,p,_,,» that is, it is the (expected) number of times a
node u would be replaced by one of its neighbors (per generation) in the neutral
setting r = 1. When r > 1, the replacement rate of a node u slightly changes and it
varies depending on which nodes are occupied by mutants, but it is always rela-

tively close to 7 (u).

The key step towards Theorem 1 is to show that any strong amplifier contains
many nodes, each with a low temperature (“cold” nodes): We show that if ep
(Gn» 1)—0, then Gy contains a set S of nodes such that |S| o« N and such that each
node u € S satisfies

T (1) o< ep(Gy;, 7). ©)

The intuition here is that otherwise a substantial portion of newly occurring
mutants would be likely to be replaced by one of their neighbors before
reproducing even once.

Next we examine the impact of § on the timescale. Initially, at most one node of
S is occupied by a mutant. On their way to fixation, mutants have to spread to the
whole of S. This results in a coupon-collector-like process®2, where it takes
increasingly more attempts to spread to the next node in S. Since S has size
proportional to N, mutants will have to make at least of the order of N - log N
attempts to spread into S. The low temperature 7 (u) of each node u € S implies
that mutants attempt to spread to u only once every 1/7 (u) steps. Overall, this
process requires N - log N - 1/7 (u) steps or roughly logN - B(N) generations,
where

1 1

PO T * G ©

is unbounded since ep(Gy, r)—0 as N—oo.

Fixation probability analysis. Given a selection reactor SRY;, recall that we denote
by n= | N/a(N)] the size of the hub and denote by £= N — n the number of its
leaves. When a leaf node replaces a hub node, we say it ‘fires in’, likewise a hub
node can ‘fire out’ to replace a leaf. The probabilities p;, (resp. poy) that a
reproducing node fires in (resp. out) satisfy pin = pour = 1/a?(N).

First, observe that as a(N) is unbounded, we have n < ¢, and thus the initial
mutant spawns in one of the leaves with high probability ¢/N. Second, this initial
mutant can disappear only due to a resident firing out from the hub. In any one
step, this event has probability roughly p~ o £ - poy - § X gy Whereas the
initial mutant fires in the hub with probability roughly p* o< % p;, & Zryw
Thus the initial mutant has enough time to place offspring in the hub roughly
pH/(p* + p~) x a(N) times. Third, we argue that mutants spread to a half of the
hub: We show that with fewer than #/2 mutants in the hub, in each step there is a
bias towards gaining a mutant in the hub rather than losing one. This implies that
each of the roughly a(N) offsprings of the first mutant has a constant chance of
spreading to a half of the hub. We then show that, with high probability, at least
one of the offspring does so. Fourth, we show that from this point on, mutant
fixation is almost guaranteed, as any attempt from the residents to regain the hub
has to convert back #/2 mutants, which is exponentially unlikely due to its well-
mixed structure. Thus SR}, achieves strong amplification.

Timescale analysis. To understand the timescale of selection reactors, we
decompose the evolutionary process into two components.

(1) The active process, which tracks the active steps of the Moran process, where
the population changes state (i.e., a mutant replaces a resident or vice-versa).

(2) The waiting process, which tracks the steps of the process where the
population state does not change.

We then define a potential function y that assigns a number to each state and
attains its maximum value upon fixation. In expectation, y increases by a constant
in each active step but it can fluctuate. Nevertheless, we show that y will attain any
specific value k at most a?(N) times, in expectation. Next, we denote by W, the
maximum number of expected waiting steps that the process makes when in a state
with potential equal to k. Although W} depends on k, we show that asymptotically

%Wk < N -logN - &*(N). )

Since every time the process is in a state with potential k, it will wait for at most W
steps in expectation, and any such state is visited at most a?(N) times in
expectation, we obtain that total expected number of steps for the selection reactor
is at most

zk:ocz(N) - W, < N-logN - a®(N). ®)

Dividing this by N gives the timescale of the process
T(SRY) < logN - a®(N) = logN - B(N), 9)
by choosing a(N) = {/B(N).

Organization of the supplementary information. The organization of the sup-

plementary information is as follows: In Supplementary Note 1, we introduce the
necessary terminology and notation, together with the mathematical tools we are
using in the proofs. In Supplementary Note 2, we formally state our mathematical
results and provide a high-level overview of the ideas behind the proofs. In Sup-

plementary Note 3, we then provide those formal proofs.
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