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SUMMARY
Mosaic analysis with doublemarkers (MADM) offers one approach to visualize and concomitantly manipulate
genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of line-
age, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autono-
mous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse
genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with
knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs.
With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic
analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid
segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation pat-
terns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic
stem cell division.
INTRODUCTION

Genetic mosaic individuals contain cells of distinct genotypes.

The phenomenon of genetic mosaicism occurs naturally and is

widespread acrossmulticellular organisms. Mosaicismmay pro-

gressively emerge during life but remain silent with no obvious

phenotypes (Yizhak et al., 2019). However, mosaicism is also

associated with pathologies in humans including cancer or

many neurological disorders (Biesecker and Spinner 2013;

D’Gama and Walsh 2018). Genetic mosaic animals have been

experimentally created in a number of species, and mosaic ana-

lyses provided fundamental insights in a variety of biological sys-

tems (Xu and Rubin 1993; Rossant and Spence 1998; Lee and

Luo 1999, 2001; Yochem and Herman 2003; Zugates and Lee

2004; Zong et al., 2005; Lozano and Behringer 2007; Luo 2007;

Germani et al., 2018; Kim et al., 2019).

One powerful application inherent to induced genetic mosaics

is the ability to alter gene function at a high spatiotemporal res-

olution. A certain tissue can contain homozygous mutant cells

for a gene of interest and wild-type cells whose phenotypes

can be compared with each other directly. If the genetic mosaic

is sparse, even essential genes can be manipulated without

affecting the overall health or viability of the animal. Furthermore,

sparse genetic mosaics provide a highly effective means with

which to study the causal relationship of genetic alteration and
This is an open access article under the CC BY-N
phenotypic manifestation at the individual cell level. Genetic mo-

saics also facilitate the analysis of cell competition and provide

an assay to create models of disease. Genetic mosaics have

been most extensively generated in the fruit fly by capitalizing

upon mitotic recombination between homologous chromo-

somes (Morgan and Bridges 1919; Stern 1936; Hotta and Benzer

1970; Xu and Rubin 1993; Lee and Luo 1999, 2001; Zugates and

Lee 2004). Although technically slightly more challenging, the

generation of genetic mosaics in mice is becoming routine. A

number of experimental approaches have been established

including mosaic analysis with double markers (MADM) that is

also based on mitotic recombination (Zong et al., 2005; Luo

2007; Tasic et al., 2012; Hippenmeyer 2013).

MADM relies onCre/loxP-mediated interchromosomal recom-

bination to simultaneously generate homozygous mutant cells

for a candidate gene of interest and wild-type cells in an other-

wise heterozygous background. The induction of genetic

mosaicism can be spatiotemporally controlled by the use of

cell-type-specific Cre/ER driver lines (Zong et al., 2005; Hippen-

meyer et al., 2013; Ali et al., 2014; Beattie et al., 2020). Concur-

rent to the generation of genetic mosaicism, two split genes,

encoding green fluorescent protein (GFP) and tdTomato (tdT)

fluorescent markers, are reconstituted that permit unequivocal

tracing of individual cellular phenotypes in the homozygous

mutant and heterozygous and wild-type cells, with each labeled
Cell Reports 35, 109274, June 22, 2021 ª 2021 The Author(s). 1
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Figure 1. Extension of MADM to all 19 mouse autosomes

(A) Summary of the MADMprinciple. For MADM, two chimeric split marker genes containing partial coding sequences of EGFP and tdT are inserted into identical

genomic loci of homologous chromosomes. Following Cre-recombinase-mediated interchromosomal (trans) recombination during mitosis, the split marker

genes are reconstituted and functional green and red fluorescent proteins expressed. As a result, green GFP+, red tdT+, and yellow GFP+/tdT+ cells appear

sparsely, due to an inherently low stochastic interchromosomal recombination rate, within the genetically defined cell population expressing Cre recombinase.

Introduction of a mutant allele distal to the MADM cassette results in a genetic mosaic with homozygous mutant cells labeled in one color (e.g., green GFP+) and

homozygous wild-type sibling cells in the other (e.g., red tdT+). Heterozygous cells appear in yellow (GFP+/tdT+).

(B) Expansion of MADM to all mouse autosomes. Transgenic mice with MADM cassettes inserted close to the centromere have been generated for all 19 mouse

autosomes. The directionality (forward, centromere-telomere; reverse, telomere-centromere) of marker gene transcription is indicated.

(C) MADM labeling scheme for cassettes inserted in forward direction. MADM experiments involving forward cassettes require that the mutant allele of a

candidate gene must be linked to the T-G MADM cassette in order for mutant cells to be labeled in green upon a G2-X MADM event.

(D) MADM labeling scheme for cassettes inserted in reverse direction. MADM experiments involving reverse cassettes require that the mutant allele of a

candidate gene must be linked to the G-T MADM cassette in order for mutant cells to be labeled in green upon a G2-X MADM event.

(E) Generation of recombinant MADM chromosomes. To genetically link a mutant allele of a candidate gene of interest to the corresponding chromosome

containing the T-G MADM cassette (i.e., forward orientation), it is necessary to first cross mice bearing the T-G MADM cassette with mice bearing the mutant

allele. Resulting F1 transheterozygous offspring are then backcrossed to mice homozygous for the T-G MADM cassette. In F2, recombinant offspring emerge

from meiotic recombination events in the germline. These F2 recombinants now contain both the MADM cassette (in homozygous configuration) and the mutant

(legend continued on next page)
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in distinct colors with 100% accuracy (Zong et al., 2005; Hippen-

meyer et al., 2010; Figure 1A; Figure S1).

The MADM approach enables unparalleled lineage tracing,

and MADM-labeled cells can be assessed by histological

means, physiological analysis, and optical imaging in vivo (Espi-

nosa et al., 2009; Hippenmeyer et al., 2010; Liang et al., 2013;

Gao et al., 2014; Joo et al., 2014; Riccio et al., 2016; Beattie

et al., 2017; Henderson et al., 2019; Lv et al., 2019; Ortiz-Álvarez

et al., 2019).

MADM technology represents one approach to probe

genomic imprinting and the function of imprinted genes (Hippen-

meyer et al., 2013; Laukoter et al., 2020b). MADM can be applied

to create uniparental chromosome disomy (UPD; somatic cells

with two copies of either the maternal or paternal chromosome)

and visualize imprinting effects at morphological and transcrip-

tional levels with single-cell resolution (Hippenmeyer et al.,

2013; Laukoter et al., 2020a, 2020c).

One clinically relevant application ofMADM is the tracing of tu-

mor growth upon sparse or clonal ablation of tumor suppressor

genes and/or to assay for the effects of therapeutic agents. As

such, MADM has been used for the analysis of tumor formation

and the delineation of cancer cell of origin at the single-cell level

in the brain and distinct organs (Muzumdar et al., 2007, 2016; Liu

et al., 2011; Gonzalez et al., 2018; Tian et al., 2020; Yao et al.,

2020).

A current limitation of the MADM technology is that it can only

be applied to study candidate genes located on chromosome 7

(chr7), chr11, and chr12 and distal to the Rosa26 locus on chr6,

whereMADMcassettes have been introduced (Zong et al., 2005;

Hippenmeyer et al., 2010, 2013). Thus, less than 25%of all genes

in the mouse genome can be subjected to MADM analysis as

described above. Here, we overcome this constraint and expand

MADM technology to all mouse autosomes. We provide valida-

tion of all MADM reporters and quantitative assessment of the ef-

ficacy of MADM labeling in a variety of organs and tissues and a

number of clinically relevant stem cell niches across the entire

mouse. Furthermore, we use engineered MADM chromosomes

to systematically determine sister chromatid segregation pat-

terns in several somatic cell lineages. Our analysis revealed

that sister chromatid segregation patterns in mitotic progenitor

cell divisions are highly biased in a chromosome-specific

manner and are further affected by cell type in vivo.

RESULTS

Expansion of MADM to all mouse autosomes
For MADM, two reciprocally chimeric marker genes need to be

targeted to identical loci on homologous chromosomes (Zong

et al., 2005). The chimeric marker genes (GT and TG alleles)

consist of N- or C-terminal halves of the coding sequences for

GFP (enhanced GFP) and red fluorescent protein (tdT) inter-

spersed by an intron with the loxP site (Hippenmeyer et al.,
allele linked on the same chromosome. For experimental MADMmice, F2 recomb

of interest.

(F) Calculation of predicted meiotic recombination frequency. The probability for

mutant allele can be estimated by the genetic distance of the MADM cassette to

See also Figures S1–S4 and Table S1.
2010; Figure 1A; Figure S1). Here, we expanded MADM to all

19 mouse autosomes with the goal to enable MADM for the

vast majority, nearly genome-wide, of autosomal genes in the

mouse genome. Mouse autosomes consist of only one chromo-

some arm (i.e., telocentric conformation). We thus rationalized

that inserting the MADM cassettes as close as possible to the

centromere would maximize the number of genes located

distally to the MADM cassette insertion site for prospective

MADM experiments (Hippenmeyer et al., 2010, 2013; Figures

1A and 1B).

To identify suitable sites for MADM cassette targeting, we

applied a number of key criteria. The loci should (1) locate to

intergenic regions tominimize the probability of disrupting endog-

enous gene function and (2) permit spatially and temporally ubiq-

uitous and biallelic expression of the reconstituted GFP and tdT

markers. To fulfill the first criteria, we mapped gene by gene

the genetic landscape of the centromeric-most 20 Mbp of all

autosomes using the UCSC Genome Browser (https://www.

genome.ucsc.edu; GRCm38/mm10). Next, we assessed EST

(expression sequence tag) expressionpatterns of the neighboring

genes flanking the putative targeting sites and serving as proxy

for the spatiotemporal extent of transgene expression. The final

choice of the prime targeting loci (Figure 1B; Figures S2 and

S3; Table S1) was based upon the most ideal combination of

the above key criteria. In total, more than 20,000 protein-coding

genes, corresponding to >96% of the entire annotated mouse

genome (GRCm38/mm10), are located distally to the MADM tar-

geting loci across all 19 autosomes (Table S1).

Next, we cloned the selected genomic targeting loci and in-

serted the MADM cassettes (Hippenmeyer et al., 2010) by ho-

mologous recombination in mouse embryonic stem cells

(ESCs) (Figure S4; see STAR Methods for details). MADM cas-

settes were inserted in a centromere-to-telomere transcriptional

direction (Figure 1B, forward) except for chr3, chr5, chr6, and

chr15, which required opposite directionality (Figure 1B, reverse)

in order to best fulfill our locus choice criteria. The directionality

of reconstituted MADM marker gene transcription, upon

interchromosomal recombination, has consequences for the

coupling of mutant and wild-type genotypes with fluorescent la-

beling upon mitosis (Figures 1C and 1D). In order to genetically

link a mutant allele of a candidate gene to the corresponding

chromosome containing the MADM cassette, meiotic recombi-

nation in the germline can be used (e.g., Hippenmeyer et al.,

2010; Laukoter et al., 2020b; (Figures 1E and 1F). The probability

for meiotic recombination that results in the linkage of themutant

allele with theMADMcassette can be estimated (Figure 1F) once

the location (cM) of the mutant allele (genomic locus) has been

determined by using, for example, the Mouse Genome Infor-

matics (MGI) database (https://www.informatics.jax.org).

Homologous recombination frequencies in ESCs were rela-

tively high for all selected loci (for some, >50%), hinting at an

open chromatin structure that should be an advantage for
inants are crossed with mice bearing the G-T MADM cassette and a Cre driver

meiotic recombination resulting in the linkage of the MADM cassette with the

the location of the mutant allele divided by two.
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Figure 2. MADM labeling pattern in different organs and stem cell niches

(A) Overview of MADM labeling (green, GFP; red, tdT; yellow, GFP/tdT) inMADM-19GT/TG in combination with Hprt-Cre at P21. Diverse tissues/organs including

eye, brain, lung, spinal cord, kidney, spleen, liver, heart, and thymus are illustrated.

(legend continued on next page)
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prospective mitotic Cre-mediated interchromosomal recombi-

nation. Next, chimeric founder mice were generated by blasto-

cyst injection. Homozygous MADMGT/GT and MADMTG/TG stock

lines were established upon successful germline transmission of

the respective MADM cassettes (Figure S4) by using specific

genotyping primers (Table S2).

Ubiquitous labeling in all MADM reporter lines across
different organs
We systematically analyzed the MADM labeling pattern upon

Cre-mediated interchromosmal recombination in all MADM lines

(Figure S4E). First, we crossed all MADMGT/GT lines to mice that

carry the Cre transgene within the X-linked Hprt (encoding hypo-

xanthine guanine phosphoribosyl transferase) genomic locus.

The Hprt-Cre driver is spatiotemporally ubiquitously and consti-

tutively expressed (Tang et al., 2002). In femalemice, inactivation

of the X chromosome results in mosaic Cre expression from the

Hprt locus and thus highly variable MADM labeling patterns

(Zong et al., 2005; Hippenmeyer et al., 2013). We therefore

analyzed male experimental MADM (MADMGT/TG;HprtCre/Y) ani-

mals for a first pass comparative assessment. We detected

MADM labeling in all organs analyzed—including brain, spinal

cord, eye, heart, lung, liver, kidney, thymus, and spleen (Fig-

ure 2A)—and in all MADM lines. The relative recombination fre-

quency, at least at this superficial qualitative level, appeared to

correlate in distinct selected organs across all 19 MADM lines

(Figures 2 and S5–S9).

MADM labeling in clinically relevant adult stem cell
niches
We next evaluated a number of stem cell niches with high clinical

relevance. Because it is important to know the approximate

scale of labeling for determining sample size in a MADM exper-

iment, we chose two different MADM models in combination

with Hprt-Cre driver for these analyses, as follows: MADM-19

that shows relatively dense MADM labeling and MADM-4 that

represents one of the sparsest MADM.

First, we focused on the mammary gland (Figure 2B), the site

where breast cancer initiates. The mammary gland harbors two

typesofunipotent stemcell lineages, namely, theK14+myoepithe-

lial (or basal) cells and the K8+ luminal cells (Van Keymeulen et al.,

2011). Myoepithelial and luminal stem cell populations are derived

from a multipotent progenitor during embryonic development

(Wuidart et al., 2018), become unipotent at birth, and can both

give rise to mammary tumors upon transformation. We evaluated

the MADM-labeling pattern in the postnatal mammary gland in
(B) Schematic (left) and MADM labeling (middle/right; green, GFP; red, tdT; yellow

4 months of age. Basal/myoepithelial (middle) and luminal (right) cells are stained

(C) Schematic (left) MADM labeling (right; green, GFP; red, tdT; yellow, GFP/tdT)

are visualized by antibody staining against b-catenin (white; b-Cat). Acinar cells

(D) Schematic (left) and MADM labeling (middle/right; green, GFP; red, tdT; ye

19GT/TG;HprtCre/+ at P21 (telogen) and P28 (anagen). Bu, bulge; 2� HG, secondary

ORS, outer root sheath; Mx, matrix.

(E) Schematic (left) and MADM labeling (right; green, GFP; red, tdT; yellow, GFP

visualized by antibody staining against b-catenin (white; b-Cat). Asterisk marks a

amplifying cell; LGR5, leucine-rich repeat-containing G-protein coupled recepto

Nuclei were stained using DAPI. Scale bar: 50 mm (A) and 20 mm (B–E).

See also Figures S5–S8.
adult lactating 4-month-old femaleMADM-19GT/TG;HprtCre/+ (Fig-

ure 2B) and MADM-4GT/TG;HprtCre/+ (Figure S7A) mice and could

readilydetectGFP+ (green), tdT+ (red),andGFP+/tdT+ (yellow)cells

in both K14+ basal and K8+ luminal cells.

Next, we analyzed pancreatic epithelial cells that can be

divided into secretory acinar cells and ductal epithelial cells.

Although the tumor cell of origin for pancreatic cancer remains

controversial, oncogenic drivers can trigger pancreatic ductal

adenocarcinoma (PDAC) from both ductal and acinar cells

(Ferreira et al., 2017; Lee et al., 2019). In both, MADM-

19GT/TG;HprtCre/+ and MADM-4GT/TG;HprtCre/+ mice at postnatal

day 21 (P21), we noticed MADM-labeled cells in the acinus

and duct within the pancreas (Figure 2C and S7B).

Hair follicles are a prime stem cell model for the study of tissue

regeneration but also for skin cancer including melanoma (Sun

et al., 2019). Hair follicles are appendages of the epidermal line-

age and undergo cycling rounds of stem cell activation in order to

generate new hair (Fuchs and Nowak 2008). The stem cells are

located in the secondary hair germ (2� HG) and lower part of

the bulge (Bu) of a resting follicle (telogen follicle) (Figure 2D).

They become activated, start to proliferate, and expand the

hair follicle deep down into the dermis. Progenitors located at

the bottom of the activated follicle (anagen follicle) form the ma-

trix, from where epithelial hair lineages are specified (Hsu et al.,

2014). Such differentiated hair lineages comprise the companion

layer (CP), distinct layers of inner root sheath (IRS), and cuticle

and cortex of the hair shaft (HS), as well as the innermost hair

layer the medulla (Me). Once hair regeneration is completed,

the follicles undergo a destructive phase (catagen) and enter

the quiescent resting phase again. In the skin ofMADM-19GT/TG;

HprtCre/+ and MADM-4GT/TG;HprtCre/+ mice, we observed prom-

inent MADM labeling in all compartments of the hair follicle

and importantly in the hair follicle stem cells (Figures 2D

and S7C).

Next, we analyzed MADM labeling in the small intestine that

represents another critical model for the study of stem-cell-

mediated regeneration but also intestinal cancer (Barker et al.,

2009). Intestinal stem cells replenishing the epithelium are

LGR5+ and located in the crypt base (Barker et al., 2007). They

are intermingled with secretory Paneth cells and divide

constantly in order to rejuvenate the epithelial cell layer on the vil-

lus surface. Interestingly, LGR5+ stem cells mostly divide sym-

metrically and undergo neutral competition within the crypt,

thus driving the crypt toward monoclonality (Snippert et al.,

2010). In order to evaluate the potential for MADM-based lineage

tracing, the study of loss of gene function, and analysis of stem
, GFP/tdT) in mammary gland of lactating MADM-19GT/TG;HprtCre/+ female at

with antibodies against K14 and K8 (white), respectively.

in MADM-19GT/TG;HprtCre/+ pancreas, acinus, and duct, at P21. Epithelial cells

are identified by the presence of intracellular secretory granules.

llow, GFP/tdT) in telogen (middle) and anagen (right) hair follicles in MADM-

hair germ; SG, sebaceous gland; IRS, inner root sheath; CP, companion layer;

/tdT) in small intestine in MADM-19GT/TG;HprtCre/+ at P21. Epithelial cells are

Paneth cell, identified by the presence of intracellular granules. TAC, transit-

r 5.
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cell behavior in the intestinal crypts, we dissected the intestine of

MADM-19GT/TG;HprtCre/+ and MADM-4GT/TG;HprtCre/+ mice at

P21. We observed MADM-labeled cells in all compartments of

the intestinal unit, including the villus and the crypt (Figure 2E

and S7D).

Lastly, we validated one of the MADM reporters in a disease-

relevant setting. We used MADM-18 lines to examine the effect

of clonal loss of Apc (adenomatous polyposis coli). APC func-

tions as a tumor suppressor and mutations in APC cause

hereditary and sporadic human bowel cancers upon loss of het-

erozygosity (Behrens et al., 1998; Fodde et al., 2001). To mimic

the intestinal tumor initiation, we generated genetic mosaic

mice harboring green Apc�/� cells by using an Apc-flox allele

(Cheung et al., 2010) and red wild-type cells in an otherwise

heterozygous environment (Figure 3). At 3 months of age,

MADM-18GT/TG;HprtCre/+ control mice showed several red- or

green-labeled normal crypt-villus units (Figures 3A–3D). Note

that MADM labeling within crypt-villus units appeared exclu-

sively unicolor, reflecting monoclonality due to stochastic

competition between dividing intestinal stem cells (Snippert

et al., 2010). In contrast, all MADM-18GT/TG,Apc;HprtCre/+ experi-

mental mice, in which Apc–/– cells are labeled in green and

Apc+/+ cells in red by design, displayed one or several green-

labeled cancerous lesions (adenomas), derived from Apc�/�

stem cells, in their small intestine and colon (Figures 3E–3G;

Barker et al., 2009). Yet, we did not detect any tumors derived

from red control cells in MADM-18GT/TG,Apc;HprtCre/+ experi-

mental mice (Figure 3D). Antibody staining against phosphohi-

stone H3 (P-H3) confirmed that normal crypt-villus units display

proliferation only within the crypt compartment but not within the

villus epithelium (Figures 3B, 3C, and 3F). In contrast, adenomas

derived from green Apc�/� cells in mosaic mice contained prolif-

erating tumor cells in regions outside the crypt compartment

(Figure 3F) as previously reported (Schepers et al., 2012). In sum-

mary, we validated one of the MADM lines for functional genetic

mosaic analysis in the context of the Apcmodel (Figures 3H and

3I) for tumor initiation and growth.

Genomic imprinting phenotypes in liver cells with UPD
MADM can create UPD (Figure 4A) to analyze imprinting pheno-

types at the single-cell level that result from the imbalanced

expression of imprinted genes (Hippenmeyer et al., 2013; Lau-

koter et al., 2020b, 2020c; Pauler et al., 2021). Prominent

imprinting phenotypes have been observed in the liver where,

for instance cells with MADM-induced paternal UPD of chr7

exhibit overgrowth (Hippenmeyer et al., 2013), in accordance

with the kinship hypothesis that stipulates a major growth regu-

latory function of genomic imprinting (Haig 2004; Tucci et al.,

2019). Because imprinted genes are located throughout the

genome, we analyzed the liver in all 19 MADM reporters in com-

bination with Hprt-Cre (Figures 4B–4U) for potential imprinting

phenotypes. We readily observed the growth advantage of he-

patocytes with paternal UPD of chr7 (Figures 4H and 4V) but

also noticed that cells with paternal UPD of chr11 (Figures 4L

and 4V) and chr17 (Figures 4R and 4V) showed significant over-

representation in comparison to cells with maternal UPD. The

maternally expressed growth inhibitory imprinted genes Grb10

and Igf2r are located on chr11 and chr17, respectively. Thus,
6 Cell Reports 35, 109274, June 22, 2021
although overexpression of growth-promoting Igf2 in UPD of

chr7 leads to paternal growth dominance (Hippenmeyer et al.,

2013), the absence of growth-antagonizingGrb10 or Igf2r (Smith

et al., 2006) may result in the growth advantage of cells with

paternal UPD of chr11 or chr17. We did not find significant

UPD-mediated phenotypes in the liver of any other MADM (Fig-

ures 4B–4U).

Quantification of recombination efficiency of all MADM
chromosomes
To systematically determine recombination frequencies

comparatively in all MADMs, we quantified the absolute density

of MADM-labeled neurons in the neocortex of P21mice by using

the Emx1-Cre driver (Figures 5A, 5B, and S9). We first assessed

MADM labeling originating from G2-X events and quantified the

numbers of green GFP+ and red tdT+ projection neurons per cu-

bic millimeter (Figures 5A and 5B). The relative number of red

tdT+ versus green GFP+ projection neurons was not significantly

different across MADM lines (Figures 5B; Table S3). We classi-

fied the MADM reporters into three categories, as follows: (1)

sparse (<25 cells/mm3), (2) intermediate (25–100 cells/mm3),

and (3) dense (>100 cells/mm3). Because all MADM-targeting

loci have been selected by using the same criteria, the origin of

the variability in recombination frequency across all MADMs is

currently not clear. In mice, the pairing of homologous chromo-

somes in somatic cells is infrequent and under tight regulation,

unlike in the fruit fly Drosophila (Apte and Meller 2012). Thus,

the individual dynamic organization of different homologous

chromosomes within the nucleus may result in distinct probabil-

ities of Cre-mediated interchromosomal recombination. It is also

important to mention that insertion of the MADM cassettes at

more distal locations in the same chromosome could lead to a

distinct recombination probability. In any case, all MADM re-

porters do work as predicted from the MADM principle (Figures

1 and S1) in all organs analyzed (Figures 2, 3, 4, 5, and S5–S9).

Importantly, even the sparsest MADM lines (including MADM-4

[Hansen and Hippenmeyer, unpublished observation] and

MADM-6 [Takeo et al., 2021]) reliably permit functional genetic

mosaic analysis of candidate genes.

MADM reveals chromosome-specific biases in mitotic
sister chromatid segregation patterns
Previous in vitro studies have used mitotic recombination in

ESCs tomonitor the randomness of sister chromatid segregation

patterns uponmitosis (Liu et al., 2002; Armakolas and Klar 2006).

Against common belief, initial results indicated that sister chro-

matids derived from a homologous pair of chromosomes did

not segregate randomly to daughter cells. Instead, G2-X segre-

gation (two recombinant chromosomes segregate away from

each other), thus reflecting one particular pattern of sister chro-

matid segregation, prevailed in ESCs for chr7 (Liu et al., 2002).

Furthermore, ESC-derived endoderm cell lines exhibited com-

plete bias toward G2-X (Armakolas and Klar 2006). Conversely,

ESC-derived neuroectoderm cell lines never showed G2-X (Ar-

makolas and Klar 2006). Although these results indicated that

cell type may influence the selective segregation of sister chro-

matids, such a hypothesis is based on the analysis of only one

chromosome and has not been examined in the context of intact
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Figure 3. Apc-tumor model at single-cell resolution using the MADM-18 line

(A) Schematic representation of MADM labeling (green, GFP; red, tdT) and respective cellular genotypes in wild-type MADM-18GT/TG;HprtCre/+ mice.

(B and C) P-H3 staining (white) in small intestine inMADM-18GT/TG;HprtCre/+ mice at 3months of age. (B) Overview of unicolor (monoclonal) green wild-type crypt-

villus units with insets highlighting non-proliferative villus epithelium (i) and a proliferative cell within the crypt (white arrow) (ii); (C) overview and unicolor

(monoclonal) red wild-type crypt-villus units with insets highlighting non-proliferative villus epithelium (iii) and a proliferating cell within the crypt (iv).

(D) Quantification of the percentage of intestinal structures displaying MADM labeling. Data obtained from n = 3 maleMADM-18GT/TG;HprtCre/+ mice at 3 months

of age.

(E) Schematic representation of MADM labeling (green, GFP; red, tdT) and respective cellular genotypes in genetic mosaic MADM-18GT/TG,Apc;HprtCre/+ mice.

(F) P-H3 staining (white) in small intestine in maleMADM-18GT/TG,Apc;HprtCre/+ mice at 3 months of age with insets highlighting a proliferating adenoma cell at the

boundary to the non-proliferative villus epithelium (white arrow) (i), proliferating adenoma cells within the tumor (white arrows) (ii), non-proliferative normal villus

epithelium (iii), and proliferative cells within a normal crypt compartment (iv).

(G) Quantification of the percentage of intestinal structures displaying MADM labeling. Green Apc�/� cells display 100% transformation and tumor initiation,

whereas red wild-type cells solely give rise to normal crypt-villus-units. Data obtained from n = 3 male MADM-18GT/TG,Apc;HprtCre/+ mice at 3 months of age.

(H and I) Summary of MADM labeling in small intestine of controlMADM-18GT/TG;HprtCre/+ (H) and genetic mosaicMADM-18GT/TG,Apc;HprtCre/+ mice (I). Note that

in the mosaic, red wild-type cells give rise to normal crypt-villus units and green Apc�/� cells initiate tumor development and subepithelial invasion of adenomas.

Nuclei were stained using DAPI. Scale bar: 100 mm (B, C, and F) and 25 mm (i–iv).
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tissue. To this end, we used the entire library of MADM-rendered

homologous chromosomes to systematically trace sister chro-

matid segregation patterns of all 19 mouse autosomes in a num-

ber of somatic cell lineages in vivo.

We exploited the inimitable feature provided by the MADM

principle (Figures 5C and S1)—the differential fluorescent label-

ing of pairs of nascent sister cells uponmitosis that is dependent

on how recombinant chromosomes segregate during cell divi-

sion. G2-X segregation of recombinant MADM chromosomes

can be unambiguously identified by the presence of red and

green cells. However, G2-Z segregation, producing yellow cells,

cannot be identified without ambiguity because G1 and/or

postmitotic G0 events also result in yellow cells (Zong et al.,

2005; Figures 5C and S1). Therefore, we capitalized upon the po-

wer of unequivocal G2-X identification—but also taking into

consideration the caveat of yellow cells potentially reflecting a

mix of G2-Z and G1/G0—and defined ‘‘yellow-green-red-index’’

(YGRI) as a proxy for sister chromatid segregation patterns

(Figure 5D).

First, we systematically determined the YGRI of pyramidal

projection neurons in the P21 neocortex for all 19 MADM re-

porters in combination with the Emx1-Cre driver (expressed in

cortical progenitor cells and thereby limiting G0 events) (Fig-

ure 5E; Table S3). Contrary to the prediction and expectation

based on cell culture data (no G2-X in neuroectodermal lineage

[Armakolas and Klar 2006]), we always observed G2-X events.

Interestingly, the YGRI values ranged from �1 for MADM-2

and MADM-17 to �10 for MADM-15 (Figure 5E, top). The values

of the YGRI did not correlate with the sizes of the respective

MADM chromosomes. Next, we compared the values of the

YGRI with the absolute recombination frequencies (RFI, recom-

bination frequency index), i.e., density of G2-XMADM labeling as

indicated in Figure 5B. In the ranking plot in which the axes

indicate YGRI versus RFI, therewas no apparent correlation (Fig-

ure 5E, bottom) of YGRI with RFI. In summary, we detected high-

ly distinct YGRI for different MADM chromosomes, suggesting

distinct sister chromatid segregation patterns in the cortical

Emx1+ projection neuron lineage.

Previous studies implicated left-right dynein (LRD)—the only

protein thus far in amammalian cell culture system—in the selec-

tive sister chromatid segregation process (Armakolas and Klar
Figure 4. MADM-induced uniparental chromosome disomy (UPD) resu

(A) MADM scheme for imprinted genes. G2-X MADM events generate differenti

maternal [matUPD] or the paternal [patUPD] chromosome). (Top) The GTMADM c

the father (P, blue), and green cells show patUPD (PP) and red cells matUPD (MM

twice the normal dose and paternally expressed genes are not expressed in cells

by factor two and maternally expressed genes are not expressed in cells with pat

father and TG MADM cassette inherited from mother. Here, cells with matUPD a

(B–U) Representative images of horizontal liver cryosections withMADM labeling (

Hprt-Cre driver at P21. Higher resolution image (U) represents inset in (T) in left l

(V) (Top) Representative images (left, middle) of liver inMADM-7GT/TG;HprtCre/+wit

GFP+ matUPD (middle) at P21; and quantification (right) of absolute (cells/mm

Representative images (left, middle) of liver inMADM-11GT/TG;HprtCre/+ with green

matUPD (middle) at P21; and quantification (right) of absolute (cells/mm3) and r

sentative images (left, middle) of liver in MADM-17GT/TG;HprtCre/+ with green GF

matUPD (middle) at P21; and quantification (right) of absolute (cells/mm2) and rel

using DAPI. Bars represent mean ± SEM. Data show MADM-7GT/TG;HprtCre/+ n =

Scale bar: 200 mm.
2007). Intriguingly, mutations in the gene (Dnah11) encoding

LRD causes randomization of left-right laterality in mice (half of

the animals develop with mirror-imaged visceral organs) (Hum-

mel and Chapman 1959; Supp et al., 1997). Based on the above

findings from cell culture, we next assessed whether Dnah11

could play a role in biased chromosome-specific sister chro-

matid in vivo as well. We crossed the MADM system to iv (situs

inversus) (a spontaneous mutation in Dnah11 [Hummel and

Chapman 1959]) background and analyzed YGRI of chr7,

chr12, and chr18 in cortical Emx1+ projection neurons (Fig-

ure 6A). However, contrary to the in vitro data (Armakolas and

Klar 2007), we could not observe randomization (i.e., a drop of

YGRI value to 1) of sister chromatid segregation for the three

tested chromosomes (chr7, chr12, and chr18). These data

suggest that cultured differentiated ESC lineages and cortical

excitatory neurons in vivo differ in mechanisms of biased sister

chromatid segregation.

Chromosome-specific biases of sister chromatid
segregation differ in distinct cell types
To determine the possible influence of cell type on biased, chro-

mosome-specific, sister chromatid segregation patterns, we first

analyzed Emx1+ cortical astrocytes and hippocampal CA1 pyra-

midal cells. The YGRI for cortical astrocytes was markedly

different from the YGRI for cortical projection neurons or hippo-

campal CA1 pyramidal cells for a representative set of 10 MADM

chromosomes analyzed (Figures 6B and 6C). Next, we intro-

duced Nestin-Cre to label neural lineages beyond forebrain

projection neurons and astrocytes. We focused on cerebellar

Purkinje cells and determined the YGRI. Strikingly, the YGRI

for Purkinje cells was also markedly different in most MADMs

compared to the YGRIs for cortical projection neurons and astro-

cytes and hippocampal CA1 pyramidal cells (Figures 6B and 6C).

Finally, we assessed sister chromatid segregation patterns for

a non-neural somatic cell type.We focused on T cells (CD3+) and

B cells (CD19+) within the hematopoietic lineage and determined

the YGRI for six different MADM chromosomes by fluorescence-

activated cell sorting (FACS) analysis (Figure 6D). Although the

distinct MADM chromosomes showed different YGRI values,

the YGRI for T cells in comparison to B cells was not significantly

different for all six chromosomes analyzed. No significant
lts in paternal growth dominance in liver

ally labeled cells with near-complete UPD (cells with two copies of either the

assette is inherited from the mother (M, pink) and the TGMADM cassette from

). In such a scenario, imprinted maternally expressed genes are expressed at

with matUPD (red). In contrast, paternally expressed genes are overexpressed

UPD (green). (Bottom) Reverse scheme with GT MADM cassette inherited from

re labeled in green and cells with patUPD in red fluorescent color.

GFP, green; tdT, red) in MADM-1 (A) to MADM-19 (T and U) in combination with

ateral lobe of liver in MADM-19.

h green GFP+ patUPD and red tdT+matUPD (left) or red tdT+ patUPD and green
3) and relative (PP/MM) numbers of MADM-labeled cells with UPD. (Middle)

GFP+ patUPD and red tdT+ matUPD (left) or red tdT+ patUPD and green GFP+

elative (PP/MM) numbers of MADM-labeled cells with UPD. (Bottom) Repre-

P+ patUPD and red tdT+ matUPD (left) or red tdT+ patUPD and green GFP+

ative (PP/MM) numbers of MADM-labeled cells with UPD. Nuclei were stained

6, MADM-11GT/TG;HprtCre/+ n = 5, MADM-17GT/TG;HprtCre/+ n = 6 mice.
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correlation could be established when the YGRI of T/B cells was

compared to the YGRI of the neural lineages. Altogether, these

data indicate that the highly biased and chromosome-specific

sister chromatid segregation patterns are further affected by

cell type in somatic cell lineages in vivo.

DISCUSSION

The analysis of gene function in multicellular systems in vivo re-

quires quantitative and high-resolution experimental tools to

analyze the cellular phenotype. Here, we expanded the MADM

technology to enable, in principle, the genetic mosaic dissection

of cell-autonomous gene function of most genes (>96%) across

the entire mouse genome with single-cell resolution. Although

functional genetic mosaic analysis clearly represents the most

salient utility of MADM, we also extended the application spec-

trum and used MADM as a proxy to trace the randomness of

mitotic sister chromatid segregation patterns upon somatic

stem cell division. We first discuss these biological findings in

a more general context before we elaborate on the overarching

potential of the genome-wide MADM resource for future genetic

mosaic analysis.

Non-random mitotic sister chromatid segregation in
mouse in vivo

Asymmetric stem cell division requires the non-equivalent distri-

bution of cell-fate determinants including proteins, mRNA, or

intracellular organelles (Gönczy 2008; Knoblich 2008; Taverna

et al., 2014). Recently, an intriguing model has been postulated

whereby asymmetric cell division might also be promoted by dif-

ferentiation of sister chromatids by epigenetic means, followed

by selective segregation of ‘‘unequal’’ sister chromatids to

daughter cells (Bell 2005; Armakolas et al., 2010; Yamashita

2013). However, experimental evidence supporting such a

model in mice was so far obtained solely from in vitro studies

in ESCs and derived lineages and only for one chromosome

(chr7; Figure 7, left; Liu et al., 2002; Armakolas and Klar 2006).

In our study we systematically traced sister chromatid segrega-

tion patterns of the entire set of mouse autosomes in vivo. We

observed that the prevalence of G2-X events, approximated in
Figure 5. Mitotic interchromosomal recombination efficiency and siste

projection neurons

(A) Representative images of MADM-labeling pattern (green, GFP; red, tdT; yello

with the Emx1-Cre driver at P21. (Top) MADM-9GT/TG;Emx1Cre/+; (middle) MADM

(B) Classification ofMADM lines. (Top) Sparse (< 25 cells/mm3). (Middle) Intermedi

± SEM. Data show M7, M11, and M19 (n = 5); M2, M3, M5, M8–M10, and M12–

(C) MADM principle illustrating G2-X and G2-Z segregation patterns. Upon Cre-

settes in G2 phase of the cell cycle, recombinant chromosomes can either segreg

unlabeled cell) or each recombinant chromosome may segregate to distinct daug

mitosis.

(D) Definition of yellow-green-red-index index (YGRI). The YGRI is calculated fro

compensate for G2-Z events that leads to labeling of only one daughter cell (yello

events contribute to the total number of yellow cells.

(E) YGR index in neuronal lineages. (Top) YGRI for cortical projection neurons in P

driver. Note that (1) YGRI varies from 1 to 10 but is never below 1 and (2) YGRIs

represent mean ± SEM. Data show M2, M3, M5, and M7–M19 (n = 6); M4 and

recombination frequency index (RFI). Note that MADM chromosomes with a high

See also Figures S1 and S9.
the value of YGRI, in the same cell type (cortical projection neu-

rons) and by using identical an Emx1-Cre driver vastly differed,

up to one order of magnitude for different chromosomes. How-

ever, the relative amount of G2-X segregation did not correlate

with the absolute recombination frequency. Thus, high absolute

recombination frequency does not predict a bias in recombinant

sister chromatid segregation toward G2-X nor G2-Z. Previous

work has postulated that it is highly unlikely that biased sister

chromatid segregation may have evolved for a site-specific

recombination system not indigenous tomouse cells (Armakolas

et al., 2010). Yet, we note that the dynamic state of chromatin ar-

chitecture may influence absolute recombination frequency

(proximity of loxP sites). We also cannot exclude that the location

of the genomic recombination loci, and thus the size of resulting

recombinant sister chromatids, may influence segregation bias.

Such a hypothesis may be tested in the future by systematic

introduction of loxP sites at defined genomic distance intervals.

Our observation that distinct cell types show different YGRI for

the same chromosome could reflect a different recombination

activity of respective Cre drivers in a particular cellular lineage.

For our MADM-based analysis, we used Emx1- and Nestin-Cre

drivers that are mostly active in dividing neural stem cells and

turned off in postmitotic cells. The contribution of G0 recombina-

tion is thus expected to be minimal. Still, all YGRIs in neural lin-

eages were R1, with some up to an order of magnitude higher

indicating increasing rates of G2-Z segregation. However, a

certain rate of G1 recombination (also producing yellow cells

that increase the YGRI) besides G2-Z segregation may add to

the overall YGRI. Although G1 recombination events did not

occur in cultured ESCs (Liu et al., 2002; Armakolas and Klar

2006), we cannot currently exclude that interchromosomal

recombination efficiency could be distinct in G1 versus G2

phases of the cell cycle for different cell types in vivo. However,

for any given cell division cycle, the relative recombination

events in G1 versus G2 should be the same. Thus, different

YGRIs for different chromosomes must reflect chromosome-

specific sister chromatid segregation patterns in genetically

identical cells (here, Emx1+ cortical projection neurons). Perhaps

most striking was the finding that YGRIs of 10 different chromo-

somes in astrocytes were rather constant and low, indicating a
r chromatid segregation patterns for all MADM reporters in cortical

w, GFP/tdT) in cerebral cortex in three exemplary MADM lines in combination

-17GT/TG;Emx1Cre/+; (bottom) MADM-19GT/TG;Emx1Cre/+. Scale bar: 100 mm.

ate (25–100 cells/mm3). (Bottom) Dense (>100 cells/mm3). Bars represent mean

M18 (n = 6); M4 and M6 (n = 8), and M1 (n = 12 mice).

mediated interchromosomal recombination at the loxP site in the MADM cas-

ate together to the same daughter cell (G2-Z segregation; yellow, GFP/tdT and

hter cells (G2-X segregation; green, GFP+ and red tdT+ cell, respectively) upon

m the number of yellow cells divided by the average of green and red cells to

w) and an (invisible) unlabeled cell. Note that yellow cells emerging from G1/G0

21 neocortex of all 19 MADM reporter lines in combination with the Emx1-Cre

do not correlate with the sizes of the respective MADM chromosomes. Bars

M6 (n = 8); and M1 (n = 12). (Bottom) YGRI ranking in correlation (red line) to

recombination frequency do not necessarily present high YGRI and vice versa.
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uniformly high relative frequency for G2-X events in astrocyte

progenitors, which is in stark contrast to the values for the

same chromosomes in projection neurons that emerge also

from the same (Emx1+) stem cell lineage. Thus, sister chromatid

segregation appears highly biased in a chromosome-specific

manner in mitotic cortical Emx1+ progenitors. Furthermore, the

rank orders of YGRI for each chromosome in different cell types

were not the same, suggesting that the bias of sister chromatid

segregation patterns results from a complex combination of

chromosome and cell-type-specific mechanisms (Figure 7,

right).

Previous studies found that cultured ESC clones that were

differentiated into an neuroectoderm lineage never showed

G2-X segregation (Liu et al., 2002; Armakolas and Klar

2006). These findings are in stark contrast to our in vivo results

that demonstrate for all 19 mouse autosomes a substantial

amount of G2-X segregation in at least 4 distinct neural cell

lineages. Furthermore, our analysis of Dnah11 indicates that

the involved molecular mechanisms likely differ (at least for

chr7) when comparing cell culture to intact brain tissue. We

cannot fully explain the cause of the differences in results

obtained in cell culture and in vivo, but systemic and/or tis-

sue-wide acting mechanisms could be involved (Knouse

et al., 2018).

The phenomenon of biased sister chromatid segregation ap-

pears to be evolutionarily conserved (Pimpinelli and Ripoll

1986; Beumer et al., 1998). In asymmetrically dividing male

germline stem cells in Drosophila, sister chromatids of X and Y,

but not autosomes, are segregated non-randomly (Yadlapalli

and Yamashita 2013). In such a context, SUN-KASH proteins,

proposed to anchor sister chromatids to the centrosome,

seem to be involved, besides regulators of DNAmethylation (Ya-

dlapalli and Yamashita 2013). Although the underlying molecular

mechanismsmay or may not be conserved, it will be intriguing to

assess the physiological function in future studies and experi-

mentally approach the hypothesis postulating that biased sister

chromatid segregation could be a mechanism to instruct the cell

fate of nascent daughter cells during asymmetric stem cell divi-

sion (Bell 2005; Armakolas et al., 2010; Yadlapalli and Yamashita

2013). Because MADM enables both clonal lineage tracing with
Figure 6. Sister chromatid segregation patterns based on YGRI in Dna

(A) (Left) Summary of YGRI analysis in selected MADM reporters with Dnah11 d

neocortex inMADM-7, MADM-12, andMADM-18 reporter lines in combination wi

of YGRI to 1 would indicate random sister chromatid segregation but that the YGR

show n = 3 mice for each genotype.

(B) Representative confocal microscopy images at P21 with MADM labeling (GFP

Cre (cerebellum) or Emx1-Cre (cerebral cortex and hippocampal CA1 area) drive

(Pcs), cortical pyramidal neurons (Pys), and CA1 pyramidal neurons (CA1 Pys). S

(C) YGRI for selectedMADM reporters in different neuronal lineages at P21. YGRI o

progenitors and cerebellar Purkinje cells derived from Nestin+ progenitors sign

chromosomes analyzed. Values represent mean ± SEM. Data show pyramidal ne

M11,M12,M16,M18, andM19 (n = 6); M10 (n = 7); M17 (n = 8); cerebellar Purkinje

and M5 (n = 6 mice).

(D) (Left) White blood cell preparations from spleen in MADM reporters with Hprt-

yellow GFP+/tdT+ CD3+ T cells (black) and CD19+ B cells (blue) were quantified. (

intermediate (MADM-8, MADM-15, and MADM-17), and dense (MADM-18 and

distinct YGRI but YGRI for T cells and B cells was not significantly different for all M

M18 (n = 3); M4, M17, and M19 (n = 4); M15 (n = 5 mice). Welch’s unequal varian

pM18 = 9.8E�01, pM19 = 5.0E�01.
concurrent genetic manipulation, such an approach promises

high potential to systematically address the physiological role

of biased sister chromatid segregation in the future.

Genome-wideMADMmice library for single-cell genetic
mosaic analysis
Genetic dissection of cell-autonomous gene function

and system-wide effects

The MADM technology enables a variety of genetic in vivo

paradigms to study a broad spectrum of cell and developmental

processes (Zong et al., 2005; Luo 2007; Muzumdar et al., 2007;

Hippenmeyer 2013; Hippenmeyer et al., 2013). One exclusive

application of the MADM system is the feature enabling the ge-

netic dissection of the relative contributions of cell-autonomous

and extrinsic systemic and/or tissue-wide components to the

overall cellular phenotype upon the loss of candidate gene func-

tion (Hansen and Hippenmeyer 2020). In fact, single-cell pheno-

types in classical conditional or full knockout mutants often

reflect a combination of both cell-autonomous gene function

and environment-derived cues that may remedy or exacerbate

any observed phenotype. It is thus important to qualitatively

and quantitatively determine the relative contribution of the

intrinsic and extrinsic components to the overall loss of the

gene function phenotype. To this end, the MADM system

offers an unmatched experimental solution. The candidate

gene function can be either ablated in a very sparse mosaic (or

single clones) or tissue wide in all cells. Yet, in both paradigms,

single-cell MADM labeling enables the high-resolution quantita-

tive phenotypic analysis (Joo et al., 2014; Beattie et al., 2017;

Laukoter et al., 2020b; Takeo et al., 2021). The MADM lines

in conjunction with the above paradigms thus potentially permit

the systematic dissection of the level of cell autonomy of any

gene function in a given tissue, provided appropriate Cre driver

lines exist. Insights at the single-cell resolution as obtained

from MADM-based approaches in combination with systematic

candidate gene interrogation (Beattie et al., 2017; Laukoter et al.,

2020b) likely will have implications for our general understanding

of diseases including neurodevelopmental disorders (D’Gama

and Walsh 2018; Jayaraman et al., 2018; Buchsbaum and Cap-

pello 2019; Pinson et al., 2019; Subramanian et al., 2020).
h11 knockout (KO) and in different somatic cell lineages

epletion (in iv mice). (Right) YGR index for cortical projection neurons in P21

th the Emx1-Cre driver in control andDnah11KO (iv) mice. Note that a decrease

I was not decreased uponDnah11mutation. Bars represent mean ±SEM. Data

, green; tdT, red) from selected MADM reporters in combination with a Nestin-

r used for quantifications in Figures 5C and 6A. Arrows indicate Purkinje cells

cale bar: 100 mm.

f cortical astrocytes and hippocampal CA1 pyramidal cells derived from Emx1+

ificantly differ from the YGRI of cortical pyramidal neurons for most MADM

urons (n = 6); cortical astrocytes (n = 6); CA1 pyramidal neurons M5, M7, M8,

cells M7,M8,M11,M16,M17, andM19 (n = 3); M12 andM18 (n = 4); M10 (n = 5)

Cre at P21 were subjected to FACS. The number of green GFP+, red tdT+, and

Right) YGRI for six different MADM chromosomes including sparse (MADM-4),

MADM-19) lines. The different MADM recombinant chromosomes displayed

ADMchromosomes analyzed. Bars represent mean ±SEM. Data showM8 and

ces t test, pM4 = 7.5E�01, pM8 = 7.9E�01, pM15 = 7.7E�01, pM17 = 6.4E�01,
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Figure 7. Models of biased sister chromatid segregation patterns in ESCs in vitro and in mouse in vivo

(Left) Previous studies (Liu et al., 2002; Armakolas and Klar 2006) using mitotic recombination and in combination with restriction-site sensitivity for genotyping in

ESC cultures reported that in ESC-derived neuroectodermal lineages no G2-X (recombinant chromosomes segregate away from each other during cell division)

events could be observed. In contrast, lineages derived from endodermal stem cells showed exclusively G2-X segregation patterns. Based on these findings, it

could be anticipated that inMADM therewould be no red and green cells in neural lineages (e.g., in the brain), whichwas not the case for all MADMchromosomes.

(Right) In vivo analysis of the prevalence of G2-X events (red and green cells) in comparison with total number of yellow cells (G2-Z, G1, and G0 events) for all

MADM chromosomes and in several somatic cell lineages revealed a significant bias in the recombinant chromosome and thus sister chromatid segregation

patterns. The segregation bias showed marked chromosome specificity that was distinct for different chromosomes in the same cell type in both brain and

hematopoietic systems. The segregation bias appears also to be affected by cell type, as the level of bias was distinct for the same chromosome in different cell

types.
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Single-cell analysis of imprinting phenotypes in UPD

One MADM application includes the property to generate cells

with UPD and thus enable the study of imprinting phenotypes

at a single-cell level (Hippenmeyer et al., 2013; Laukoter et al.,

2020a, 2020c). In fact, technical limitations so far only allowed

the investigation of UPD at the whole-animal level but lacked

the resolution to obtain insights at the cellular level (Pauler

et al., 2021). It will be revealing in future studies to systematically

probe the cell-autonomous consequences of UPD at a single-

cell level and without inducing global changes in imprinted

gene expression affecting the whole animal. The library of all

19 MADM reporters will in principle enable the systematic anal-

ysis of UPD-associated cellular phenotypes in any organ, tissue,

and cell type in the mouse. Importantly, the analysis of candi-

date gene function, i.e., loss-of-function phenotypes, can be

separated from UPD-mediated imprinting phenotypes by

reverse MADM breeding schemes (Hippenmeyer et al., 2010,

2013; Joo et al., 2014; Beattie et al., 2017; Laukoter et al.,

2020b).
14 Cell Reports 35, 109274, June 22, 2021
One possible limitation or confounder for the interpretation of

MADM-based cell labeling and gene dosage is cellular poly-

ploidy (Øvrebø and Edgar 2018). It will thus be crucial in the

future to carefully analyze in organs with polyploid cells (1)

whethermore than one individual recombination event can occur

and (2) at which frequency. Depending on the probability of mul-

tiple recombination events, the color/tone of the overall MADM

labeling, and thus gene dosage, could be distinct from the above

predicted scenario for UPD and potentially offer an assay for

studying gene dosage across multiple scales. In a broader

context, because UPD in humans is associated with a variety

of diseases (Feinberg 2007; Tuna et al., 2009; Yamazawa

et al., 2010; Buiting et al., 2016) MADM-based analysis will

also contribute to our general understanding of the underlying

etiology of imprinting disorders at the single-cell level.

Analysis of cellular competition at single-cell level in

health and disease

MADM can be exploited for the study of cellular competition in a

developmental context (Joo et al., 2014; Takeo et al., 2021). For
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instance, when the TrkC neurotrophin receptor is removed

sparsely with MADM from just a few individual Purkinje cells in

the cerebellum, their dendrites have fewer and shorter branches.

In contrast, when TrkC is ablated from all Purkinje cells, the

dendrite trees look normal. Thus, a competitive mechanism

could be involved whereby the shape of the dendrite tree

depends on relative differences in neurotrophin/TrkC signaling

between Purkinje cell neighbors (Joo et al., 2014). Purkinje cell

dendritic arbors have also been shown to depend on GluD2-

and Cbln1-mediated competitive interactions (Takeo et al.,

2021). Cell competition has not only been implicated in cell

morphogenesis but also extensively studied in a variety of

contexts. Cell competition is particularly critical for overall tissue

homeostasis during growth and regeneration but also for cell

mixing and tissue invasion in cancer (Merino et al., 2016; Brás-

Pereira and Moreno 2018; Madan et al., 2018; Ellis et al.,

2019). With the availability of MADM for all mouse autosomes,

the phenomenon of cell competition can be studied holistically

and for virtually any candidate gene function associated with it

in diverse biological contexts in health and disease.

AlthoughMADM technology is versatile and offers multiple ap-

plications (discussed above), the method also has certain limita-

tions and alternative systems may be considered depending on

the biological question and context (Garcia-Gonzalez et al.,

2020; Hansen and Hippenmeyer 2020). For instance, the expres-

sion of the twomarkers relies on a single-copy insertion and thus

the expression level may be lower than, for example, that in viral-

based systems. Optimization of the MADM reporter expression

by using amplification systems such as, for example, the TIGRE

(Madisen et al., 2015; Daigle et al., 2018) might offer a solution.

Unlike TIGRE-based systems, MADM currently cannot be used

tomonitor physiological processes, but creating split transgenes

of diverse reporters in future could enable such applications in

clonally related cells in wild-type and potentially in a mutant

context. Although MADM can be used in combination with tem-

poral TM/CreER induction to label individual clones emerging

from dividing stem cells, the system cannot be used to sparsely

label and genetically manipulate postmitotic cells. Also, MADM

currently cannot be easily used for the overexpression of trans-

genes in a mosaic setting. However, a number of recently

developed systems—such as MASTR (Lao et al., 2012), Dual

ifgMosaic (Pontes-Quero et al., 2017), iSuRe-Cre (Fernández-

Chacón et al., 2019), MADR (Kim et al., 2019), or BATTLE

(Kohara et al., 2020) among others—allow for sparse and tunable

mosaic labeling and/or genetic manipulation including overex-

pression of transgenes in postmitotic cells in a variety of cellular

contexts. However, a clear advantage over the above methods

and special property of MADM relies on the built-in control

with two distinct fluorescent colors for mutant analysis and the

functional assessment of gene dosage. Thus, MADM can be

used for unparalleled comparative mutant versus heterozygote

and control analysis at once and at a single-cell resolution in

any given tissue in situ.

Lastly, MADM technology based on gene targeting in ESCs is

currently available only in mice. Future expansion of the system

to other species by endonuclease-mediated transgenesis like

CRISPR-Cas9 technology can be anticipated. Altogether, the

genome-wide MADM resource presented in this study likely
will catalyze the genetic dissection of cell-autonomous gene

function and thus molecular mechanisms with single-cell resolu-

tion across a broad spectrum of biological questions in health

and disease.
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Antibodies

Keratin 8 #ab59400 Abcam RRID:AB_942041

Keratin 14 #PRB-155P BioLegend (former Covance) RRID:AB_292096

Beta-Catenin #8480 Cell Signaling RRID:AB_11127855

Histone H3 phospho (Ser10) #3377 Cell Signaling RRID:AB_1549592

CD3-HorizonV451 eBioscience RRID:AB_1272193

CD19 APC eBioscience RRID:AB_469358

Fc Block CD16/32 BioLegend RRID:AB_469358

Alexa Fluor 647 Anti-Rabbit IgG Molecular Probes RRID:AB_2762835

Anti-DIG AP Merck RRID:AB_2313640

Hoechst H33258 Sigma No identifier

DAPI Thermo-Fisher Scientific No identifier

Chemicals, Peptides, and Recombinant Proteins

ACK Lysis Buffer Gibco Cat#A1049201

DIG DNA Labelling Mix Merck 11277065910

Blocking Reagent Merck Cat#11096176001

Positively Charged Nylon Membrane Merck Cat#11209272001

CDP-Star Merck Cat#11759051001

Horse Serum Thermo-Fisher Scientific Cat# 26050088

Triton X-100 Sigma-Aldrich Cat#T878

GoTaq Master-Mix Promega Cat#M7123

TaKaRa PCR Amplification Kit TaKaRa Cat#R011A

TaKaRa TaqI Kit TaKaRa Cat#1189A

Nuclease-free Water Thermo-Fisher Scientific Cat#10977035

DABCO Roth Cat#0718.2

Mowiol Roth Cat#0713.2

Recombinant DNA

MADM-1-GT targeting vector This study N/A

MADM-1-TG targeting vector This study N/A

MADM-2-GT targeting vector This study N/A

MADM-2-TG targeting vector This study N/A

MADM-3-GT targeting vector This study N/A

MADM-3-TG targeting vector This study N/A

MADM-4-GT targeting vector This study N/A

MADM-4-TG targeting vector This study N/A

MADM-5-GT targeting vector This study N/A

MADM-5-TG targeting vector This study N/A

MADM-6-GT targeting vector This study N/A

MADM-6-TG targeting vector This study N/A

MADM-8-GT targeting vector This study N/A

MADM-8-TG targeting vector This study N/A

MADM-9-GT targeting vector This study N/A

MADM-9-TG targeting vector This study N/A

(Continued on next page)

Cell Reports 35, 109274, June 22, 2021 e1



Continued
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MADM-10-GT targeting vector This study N/A

MADM-10-TG targeting vector This study N/A

MADM-13-GT targeting vector This study N/A

MADM-13-TG targeting vector This study N/A

MADM-14-GT targeting vector This study N/A

MADM-14-TG targeting vector This study N/A

MADM-15-GT targeting vector This study N/A

MADM-15-TG targeting vector This study N/A

MADM-16-GT targeting vector This study N/A

MADM-16-TG targeting vector This study N/A

MADM-17-GT targeting vector This study N/A

MADM-17-TG targeting vector This study N/A

MADM-18-GT targeting vector This study N/A

MADM-18-TG targeting vector This study N/A

MADM-19-GT targeting vector This study N/A

MADM-19-TG targeting vector This study N/A

Oligonucleotides

See Table S2 N/A

Experimental Models: Cell Lines

Parental ES cell line C2, Stock Number:

011989-MU

A. Nagy MMRRC_011989-MU

Experimental Models: Organisms/Strains/Lines

Mouse: MADM-1-GT This study N/A

Mouse: MADM-1-TG This study N/A

Mouse: MADM-2-GT This study N/A

Mouse: MADM-2-TG This study N/A

Mouse: MADM-3-GT This study N/A

Mouse: MADM-3-TG This study N/A

Mouse: MADM-4-GT This study N/A

Mouse: MADM-4-TG This study N/A

Mouse: MADM-5-GT This study N/A

Mouse: MADM-5-TG This study N/A

Mouse: MADM-6-GT This study N/A

Mouse: MADM-6-TG This study N/A

Mouse: MADM-7-GT The Jackson Laboratory RRID:IMSR_JAX:021457

Mouse: MADM-7-TG The Jackson Laboratory RRID:IMSR_JAX:021458

Mouse: MADM-8-GT This study N/A

Mouse: MADM-8-TG This study N/A

Mouse: MADM-9-GT This study N/A

Mouse: MADM-9-TG This study N/A

Mouse: MADM-10-GT This study N/A

Mouse: MADM-10-TG This study N/A

Mouse: MADM-11-GT The Jackson Laboratory RRID:IMSR_JAX:013749

Mouse: MADM-11-TG The Jackson Laboratory RRID:IMSR_JAX:013751

Mouse: MADM-12-GT The Jackson Laboratory RRID:IMSR_JAX:021460

Mouse: MADM-12-TG The Jackson Laboratory RRID:IMSR_JAX:021461

Mouse: MADM-13-GT This study N/A

Mouse: MADM-13-TG This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: MADM-14-GT This study N/A

Mouse: MADM-14-TG This study N/A

Mouse: MADM-15-GT This study N/A

Mouse: MADM-15-TG This study N/A

Mouse: MADM-16-GT This study N/A

Mouse: MADM-16-TG This study N/A

Mouse: MADM-17-GT This study N/A

Mouse: MADM-17-TG This study N/A

Mouse: MADM-18-GT This study N/A

Mouse: MADM-18-TG This study N/A

Mouse: MADM-19-GT This study N/A

Mouse: MADM-19-TG This study N/A

Mouse: Emx1-Cre The Jackson Laboratory RRID:IMSR_JAX:005628

Mouse: Hprt-Cre The Jackson Laboratory RRID:IMSR_JAX:004302

Mouse: Nestin-Cre Petersen et al. 2002 N/A

Mouse: Apc-flox The Jackson Laboratory RRID:IMSR_JAX:009045

Mouse: iv mutant (Dnah11 mutant) The Jackson Laboratory RRID:IMSR_JAX:001045

Software and Algorithms

ZEN Digital Imaging for Light Microscopy Zeiss http://www.zeiss.com/microscopy/en_us/

products/microscope-software/zen.html#

introduction

FACS Diva BD Biosciences N/A

Graphpad Prism 8.0 Graphpad https://www.graphpad.com/scientific-software/prism/

FlowJo Becton, Dickinson and

Company; 2019

https://www.flowjo.com/

Photoshop Adobe adobe.com/products/photoshop

ImageJ https://imagej.nih.gov/ij/

Other

FACS Aria III BD Biosciences N/A

LSM 800 Confocal Zeiss N/A

SlideScanner VS120 Olympus N/A

Cryostat Cryostar NX70 Thermo Fisher Scientific N/A

Peqlab FUSION SL Advance Peqlab N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Simon

Hippenmeyer (simon.hippenmeyer@ist.ac.at).

Materials availability
All published and inaugural reported reagents and mouse lines will be shared upon request within the limits of the respective

material transfer agreements. All MADM lines will be made publicly available through The European Mouse Mutant Archive

(EMMA) and distributed from the University of Veterinary Medicine in Vienna or the Institute of Science and Technology Austria in

Klosterneuburg.

Data and code availability
This study did not generate code and all data have been presented in Figures and Supplemental Figures. Original imageswill bemade

available upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Generation, breeding and husbandry of mouse lines
Experimental procedures were discussed and approved by the institutional ethics and animal welfare committees at IST Austria,

Stanford University, and at University of Veterinary Medicine Vienna in accordance with good scientific practice guidelines and na-

tional legislation (license number: IST Austria: BMWF-66.018/0007-II/3b/2012 and BMWFW-66.018/0006-WF/V/3b/2017; University

of Veterinary Medicine Vienna: BMWF-68.205/0023-II/3b/2014 and BMBWF-68.205/0010-V/3b/2019). Mice with specific pathogen

free status according to FELASA recommendations (Mähler Convenor et al., 2014) were bred and maintained in experimental rodent

facilities (room temperature 21 ± 1�C [mean ± SEM]; relative humidity 40%–55%; photoperiod 12L:12D). Food (V1126, Ssniff Spe-

zialitäten GmbH, Soest, Germany) and tap water were available ad libitum.

Mouse lines with MADM cassettes inserted in Chr. 7 (Hippenmeyer et al., 2013), Chr. 11 (Hippenmeyer et al., 2010), and Chr. 12

(Hippenmeyer et al., 2013), Emx1-Cre (Gorski et al., 2003), Nestin-Cre (Petersen et al., 2002), Hprt-Cre (Tang et al., 2002), Apc-flox

(Cheung et al., 2010), and ivmice [Dnah11mutation (Hummel and Chapman 1959)] have been described previously.Nestin-Cre mice

were a kind gift fromW. Zhong. Bodyweight and signs of anemiawere evaluated for geneticmosaicMADM-18GT/TG;Apc;HprtCre/+ and

correspondingMADM-18GT/TG;HprtCre/+ control mice once per week. All analyses were carried out in mixed genetic background. The

two lines of each chromosome, with the exception of Chr. 7, 11 and 12, were designated as C57BL/6N;CD1-MADM-GTtm1(Chr1)Biat

and C57BL/6N;CD1-MADM-TGtm1(Chr1)Biat, as indicated here for Chr. 1. No sex specific differences were observed under any exper-

imental conditions or in any genotype.

METHOD DETAILS

Molecular biology
Generation of MADM targeting constructs

Molecular cloning and generation of recombinant DNA to construct all plasmids (incl. targeting vectors, plasmids with southern

probes etc.), and all nucleic acid procedures as described below were carried out according to standard cloning protocols (Sam-

brook et al., 1989).

Genomic DNA isolation from mouse ES cells

Mouse ES cells were lysed in Lysis Buffer (1M Tris-HCl pH = 7.5, 0.5M EDTA, 5M NaCl, 20% Sarcosyl, 20 mg/ml Proteinase K) over-

night at 55�C. Next day, DNA was precipitated with isopropanol for 2 hr at room temperature with agitation and then carefully trans-

ferred into a fresh tube containing TE-buffer. The tubes were left open for 10min to allow residual isopropanol to evaporate. DNAwas

then incubated for 3 hr at 37�C.
Southern blot

DIG-labeled probes were generated via PCR amplification of plasmid templates containing the probe sequence using a mix of

nucleotides containing Digoxigenin-11-dUTP (DIG-dUTP). The PCR reaction was next separated by electrophoresis and the corre-

sponding band was cut and gel purified using the Monarch DNA gel extraction Kit-NEB.

Genomic DNAwas digested with the corresponding enzymes overnight at 37�C and electrophoresed in 0.8% agarose gels for 6 hr

at low voltage together with Lambda Hind III marker. Next day, the agarose gels were depurinized in 0.25M HCl, denaturated in 0.4

NaOH and transferred overnight into a positively charged nylon membrane. Next day, agarose gels were assessed under UV light to

verify complete transfer of DNA to the membrane. The nylon membrane was then neutralized in 0.5M Tris-HCl (pH = 7.5) and cross-

linked with UV light. The membrane was incubated in hybridization buffer (5x SSC, 2% Blocking reagent, 50% Formamide, 0.1%

Sarcosyl, 0.02% SDS) for 4 hr at 42�C in glass tubes in a rotating oven. In the meantime, the DIG-labeled probe was denaturated

at 95�C for 10min and then quickly chilled on ice for 5min. The DIG-labeled probe in Hybridization buffer was added to themembrane

and incubated overnight at 42�C in glass tubes in a rotating oven. Next day, stringency washes were performed with Wash Solution I

(2xSSC, 0.1% SDS) at room temperature, followed byWash Solution II (0.2x SSC, 0.1% SDS) at 68�C. Next day, the membrane was

blocked in blocking solution (1% blocking reagent, 0.1M Maleic acid, 0.15M NaCl) for 1 hr. Then anti-DIG AP antibody (1:20,000) in

Blocking Solution was added to the membrane, incubated for 30 min at room temperature and then washed with Wash buffer (0.1M

Maleic acid, 0.15M NaCl, 0.3% Tween) for 15 min. Finally, the membrane was incubated with CDP-Star (1:100) chemiluminescent

substrate in CDP-Star detection buffer (0.1M Tris-HCl, 0.1M NaCl, pH = 9.5) for 5 min, wrapped in transparent film and kept in

the dark for 1 hr. The pattern of probe hybridization was detected in a Peqlab FUSION SL Advance system for chemiluminescent

imaging.

Generation of transgenic MADM mice
Targeting of MADM constructs to mouse ES cells by electroporation

The linearized MADM targeting constructs were introduced into C57BL/6N embryonic stem cells (Parental ES cell line C2, Stock

Number: 011989-MU, Citation ID: RRID: MMRRC_011989-MU, A. Nagy Basic ES Cell line) by electroporation using a Bio-Rad

Gene Pulser Xcell. After selection with 150mg/ml G418, surviving clones were analyzed for correct targeted integration by Southern

blot hybridization (see above). Metaphase spread chromosome counting was performed on ES cells of clones with confirmed correct

targeting of the MADM cassettes before they were prepared for blastocyst injection.
e4 Cell Reports 35, 109274, June 22, 2021
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Production of chimeras

Host blastocysts were produced by superovulation of BALB/cRj females by intraperitoneal (IP) injection with 5.0 IU of equine cho-

rionic gonadotropin (Folligon; Intervet) and, 48 hr later, with 5.0 IU of human chorionic gonadotropin (Chorulon; Intervet) followed

by mating with males of the same strain. Morula stages were harvested from isolated oviducts at day 2.5 days post coitum (dpc)

and cultured in M16 medium overnight in an incubator at 37�C and 5% CO2 to produce host blastocysts. About 10-15 ES cells

were injected into a single blastocyst. The injected embryos were cultured for 2-3 hr to recover and then transferred into the right

uterus horn of 2.5 dpc pseudopregnant RjOrl:Swiss surrogate mothers as described earlier in detail (R€ulicke 2004, R€ulicke et al.,

2006). The offspring were selected based on their chimeric coat color. High-percentage male chimeras (> 80%) were bred with

C57BL/6NRj females and the offspring were selected by coat color and genotyped by PCR for the respective GT or TG MADM

transgenes.

Genotyping of MADM reporters, Apc-flox and iv mice
For primer sequences see Table S2. Forward and reverse primer 1 is specific for eachMADM reporter. In the absence of MADM cas-

settes the forward/reverse primer 1 PCR will result in the WT band as indicated. The reverse primer 2 is generic and located in the

MADMcassette. The forward/reverse primer 2 PCRwill result in theMADMband as indicated. The combined use of all three (forward,

reverse primer 1, and reverse primer 2) in a single PCR reactionwill enable the distinction ofWT (single band atWT size), heterozygote

(two bands, one at WT and one at MADM size), and homozygous MADM (single band at MADM size) stock mice. Note that

MADMGT/GT and MADMTG/TG stock mice should be maintained individually. The distinction of MADM-GT versus MADM-TG is

possible by using GT-cassette (GT-for and GT-rev) and TG-cassette (TG for and TG rev) specific primers, respectively. Male mice

can be identified by using Y chromosome (Ychrom for and Ychrom rev) specific primers. Presence of transgenes encoding Cre re-

combinase can be confirmed by using Cre primers (Cre for and Cre rev) as indicated.

Genotyping of Apc-flox mice was performed according to the protocol available at JAX. Genotyping of iv mice was performed

using TaKaRa PCR Amplification Kit followed by a 16h enzymatic digestion using TaKaRa TaqI at 65�C. Separation of wt (50bp)

and mutant (100bp) band was performed on a 6% agarose gel.

Isolation of MADM-labeled tissue
Mice were deeply anesthetized through injection of ketamine/xylazine/acepromazine solution (65 mg, 13 mg and 2 mg/kg body

weight, respectively), and confirmed to be unresponsive through pinching the paw. Perfusion was performed with PBS followed

by ice-cold 4% PFA. Tissue was further fixed in 4% PFA overnight at 4�C. Brain, thymus, heart, lung, liver, kidney, spleen, eye

and spinal cord were surgically removed and cryopreserved in 30% sucrose for 48 hr and then embedded in Tissue-Tek O.C.T.

(Sakura). All samples were stored at �20�C or �80�C until further usage. Samples were sectioned in a cryo microtome at a

10 mm (liver) or 45mm (all other samples) thickness. Brain samples were collected in 24 multi-well dishes and then mounted onto

Superfrost Glass Slides (Thermo Fisher Scientific), all other samples were directly mounted on glass slides.

For isolation of skin, pancreas, mammary gland intestine and colon, no perfusion was required. Mice were sacrificed by cervical

dislocation and back skin was prepared for histology as previously described (Amberg et al., 2015). Briefly, back skin was shaved and

surgically removed above the spine and placed on lint-free surface. Abdominal mammary glands, pancreas and small intestines were

surgically removed. Small intestines and colonswere cut open longitudinally andmade into Swiss rolls. All samples were incubated in

4% PFA at room temperature for 4hrs, then cryoprotected in 30% sucrose overnight at 4�C and embedded into Tissue-Tek O.C.T.

(Sakura). All samples were stored at�20�C. Intestine samples from APCmice were sectioned at a 30mm thickness. All other samples

were sectioned at a 20mm thickness and directly mounted onto Superfrost Glass Slides (Thermo Fisher Scientific).

Histology and immunostaining of MADM-labeled tissue
For immunofluorescence staining in skin, pancreas, mammary gland and intestine, sections were thawed at room temperature for

15 min and encircled with DAKO hydrophobic pen. Then, they were washed 3x for 5 min with PBS. Antigen retrieval was performed

by adding pre-warmed citrate buffer pH = 6.0 to the samples and incubating them at 85�C for 30 min. Samples were washed 3x for

5 min with PBS, then incubated in blocking solution (10% horse serum, 0.5% Triton X-100 in PBS) for 1h at room temperature. Pri-

mary antibodies were diluted in staining solution (5% horse serum, 0.5% Triton X-100 in PBS) and added to the samples over night at

4�C. Next day, samples were washed 3x for 5min with PBS and incubated with secondary antibodies (1:1000) and Hoechst (Sigma,

1mg/ml stock, 1:1000) diluted in staining solution for 2hrs at room temperature. After washing 3x for 5min with PBS, samples were

mounted with Mowiol and stored at 4�C until they were imaged at a Zeiss LSM800. Primary antibodies: Keratin 8 (Abcam, 1:100),

Keratin 14 (BioLegend, 1:500), beta-Catenin (Cell Signaling, 1:100), phospho-H3(Ser10) (Cell Signaling, 1:800). Secondary antibody:

donkey anti-rabbit Alexa647 (Molecular Probes). Mounted brain sections were washed 3x for 5 min in PBS, DAPI stained (1:20’000)

for 10 min and then embedded in mounting medium containing 1,4-diazabicyclooctane (DABCO; Roth) and Mowiol (Roth).

Flow cytometry
Mice were sacrificed by cervical dislocation and spleens were collected in ice-cold PBS. Spleens were minced through a 70mm cell

strainer. The strainers were then flushed with 10ml PBS-FBS (1x PBS, 2% FBS) and cell suspensions were centrifuged for 6min at

1,200rpm. Cell pellets were resuspended in 1ml ACK lysis buffer (GIBCO) and incubated for 30sec. Lysis reaction was stopped by
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adding 10ml PBS-FBS. Cells were centrifuged for 6 min at 1,200 rpm. Pellets were resuspended in 1ml PBS-FBS and transferred to

5ml round-bottom FACS tubes via a 70mm cell strainer. Tubes were filled up with PBS-FBS and centrifuged for 6 min at 1,200 rpm.

Cells were incubated with Fc block (BD Biosciences) for 5 min and then incubated with 100ml of antibody mastermix for 30min on ice.

Antibodies CD3 HorizonV451 (eBioscience) and CD19 APC (eBioscience) were diluted 1:200. Finally, 4ml of PBS-FBS were added

and cells were centrifuged for 6 min at 1,200 rpm. Flow cytometric sorting of GFP+, tdT+ and GFP+ tdT+ cells was performed on a BD

AriaIII. Analysis was performed using FlowJo.

Analysis of MADM-labeled brains and peripheral tissue
Representative images were acquired at an inverted LSM800 or LSM880 confocal microscope (Zeiss) using 10X/20X objectives or

40X/63X oil objectives for acquisition of higher magnification images of immunostained tissue. Images where then processed using

Zeiss ZenBlue software and Photoshop (Adobe). Images for quantificationwere acquired at an inverted LSM800 or LSM880 confocal

microscope (Zeiss) or SlideScanner VS120 (Olympus) using 10X objective and processed via custom scripts in ImageJ. Tiled images,

encompassing the entire region of interest were imported into Photoshop software (Adobe) and the boundaries for the region of in-

terest were traced. MADM-labeled cells were manually counted based on respective marker expression.

Adenomas in MADM-18GT/TG;Apc;HprtCre/+ mice intestine or colon were classified based on pathological criteria described previ-

ously (Behrens et al., 1998; Fodde et al., 2001; Barker et al., 2009) such as nucleic dysplasia (enlarged and elongated nuclei, strong

nuclear staining), invasion of adenomatous epithelium into the lamina propria and up into the villus, coverage of adenomatous epithe-

lium by a normal surface mucosa, polypoid lesion morphology with depressed center, mitotic figures within the adenomatous

epithelium.

QUANTIFICATION AND STATISTICAL ANALYSIS

See Table S3 for complete information regarding quantifications and statistics used in this study. Table S3 includes all graphed

values, including SEMs, p values, and exact values of n. Statistical analysis was performed in the software Prism8 (GraphPad). Eval-

uation of data was performed by the Welch’s unequal variances t test (Figures 4, 5B, 6A, and 6D), Welch’s ANOVA (Figures 5E, 6C,

and 6D) or two-way ANOVA (Figure 6C). Data expressed as ratio was log-transformed prior to the statistical test. For Figures 4 and

5B, n was defined as the density of green/red cells per mm3 from one animal resulting from the quantification of 4-20 sections. For

Figures 5 and 6, nwas defined as the YGR index for one animal resulting from the quantification of 10-24 sections (Figures 5E, 6A, and

6C), or from FAC-sorted cells from one animal (Figure 6D). The YGRI was defined as the ratio of yellow cells divided by the average of

green and red cells.
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