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Supplementary Note 1 Model description and parameters

Biophysical model

Consider a transcription factor (TF) that activates nG (≥ 2) downstream genes. The starting point
of our evolutionary model is a duplication event of the TF, where the duplicate is fixed in the
population. Gene regulation is accomplished by the binding of either TF (original or duplicate) to a
short DNA sequence of length L associated with the gene (abbreviated below as ’BS’: binding site).
For simplicity we assume each gene has only a single BS. We describe the DNA-binding preference
of each TF by its (unique) consensus sequence - the L-base-pair sequence to which it binds with
highest affinity. We begin by assuming that each TF has only a unique consensus sequence and
later on relax this assumption (see Supplementary Note 6). In our simple model, a gene is activated
when its BS is bound by an activating TF. The probability that the binding site of gene j is bound
by either TF is calculated using the thermodynamic model of gene regulation [1, 2]:

pjm({kij}, {Ci(m)}) =

∑
i Ci(m)e−εkij

1 +
∑
i Ci(m)e−εkij

, (S1)

where {kij}2i=1 is the number of sequence mismatches between the consensus sequence of the
i-th TF species and the binding site of the j-th gene and ε is the energy per mismatch. We consider
multiple environmentsm that differ in TF concentrations: Ci(m) is the dimensionless concentration
of the i-th TF in environment m. Associated with each TF i is an associated (complex) allele σi that
determines the TF concentration Ci(m) in different environments. Eq. (S1) assumes that all base
pairs have equal and additive contributions to the binding energy, such that the binding probability
only depends on the number of mismatches kij [2, 3, 4, 5].

Together, the TF consensus sequences, the BS sequences and the complex alleles σi compose
the genotype. Genotypes come from the space of all possible genotypes D, and they completely
describe the regulatory activity of the system in different environments.

We study two variants of the model, depending on whether σi is evolvable or not.

Main model

In this model variant, which is described in the main text, transcription factors are equipped with
an evolvable signal sensing domain (captured by σi). The original TF senses two distinct external
signals. Each of the downstream genes is suitable to respond to only one of the two signals. Be-
fore duplication the genes are constrained to follow the only TF available which responds to both
signals. The extra TF formed in the duplication event offers an additional degree of freedom in reg-
ulating these genes, if the TFs specialize such that each of them senses only one of the two signals
and regulates only a subset of the genes.
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This model variant is applicable to more general pathway architecture than a TF that imple-
ments both signal sensing and gene regulation in the same molecule. Often these two functions are
split between different components of the same pathway; for example, a separate upstream com-
ponent senses the signal(s) and consequently activates the TF (e.g. by phosphorylation or another
modification). Additionally, TF production is also regulated. One can also think of the evolution of
the regulatory sequences of the gene coding for the TF in terms of our model. Since our model is
defined in very general terms, it can capture such situations as well.

Alternative model

In the alternative model, which we explore in the SI, transcription factors have no explicit evolvable
signal sensing domain (no complex allele σi associated with them), but can be expressed at different
time or location as determined by Ci(m). Before duplication the genes are constrained to follow
the only TF available, and are thus expressed at the same time or location. After TF duplication,
the two copies immediately specialize to be active at different time slots (different parts of the cell
cycle, different phases of developmental process) or space (different tissues), and as such enable
distinct expression patterns for the downstream genes. This variant is a limiting case of the main
model, with the main difference being the lack of an evolvable TF signal sensing domain. It also
acts as an approximation when the signal sensing domain evolves very quickly, resulting in a quick
divergence of TF expression patterns.

Gene birth can occur via different biological mechanisms, some of them allowing for the emer-
gence of slightly modified copies of original genes or allowing for different regulation of the same
coding sequence. One such mechanism is called ’retroposition’: creation of duplicate gene copies
in new genomic positions through the reverse transcription of mRNAs from source genes (also
known as RNA-based duplication or retroduplication) [6]. These newly formed genes often lack
regulatory elements of the parental gene and may also be slightly modified due to transcription
errors (that are significantly more common than DNA-duplication errors). It was shown that tran-
scription of these so-called ’retrogenes’ is very common and often relies on regulatory elements of
neighboring genes [7].

Evolutionary model

We define fitness such that the specialized genotypes have higher fitness compared to the initial
non-specialized genotypes. The fitness of a genotype equals the squared deviation of the actual ex-
pression pjm from the ideal one p∗jm, summed over all genes j and averaged over all environments
m:

F = −s
∑
j

∑
m

αmβjm(pjm − p∗jm)2, (S2)

where s denotes the selection intensity and αm is the frequency of the m-th environment. We
define environments by the presence or absence of the signals, which result in different active
TF concentrations depending on their signal responsiveness. βjm is the penalty for each type of
deviation from the ideal expression level, allowing for diverse penalties for different genes or at
different environments. For example, a gene which is not expressed when needed can incur a
higher penalty than the expression of a gene that is not necessary in a given environment. To
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capture these latter interactions, which we call crosstalk interactions, we exploited βjm to tune the
fitness penalty in Supplementary Note 3. Expression levels pjm for a genotype are calculated using
Eq. (S1) by obtaining the dimensionless concentrations of the TFs, Ci(m), from their signal sensing
alleles σi, and the mismatches, kij , from the TF consensus sequences and the BS sequences.

Note that the fixation probability in Eq. (S3) below, depends, via the fitness, and in turn via the
binding probabilities, directly on the TFs’ signal sensing alleles σi, and the mismatches kij of the
BS sequences with the TF consensus sequences, but not onM , the match between the TF consensus
sequences. But, as shown in Fig. 2 of the main text, the set of possible kij ’s is constrained by M ,
and hence, there is implicit selection onM . Also, importantly, selection does not directly depend on
the TFs and BSs, but only via their biophysical interaction to result in appropriate gene regulation,
thereby requiring concerted evolution of TFs and BSs.

The evolutionary process proceeds via three types of mutations: The BS of each downstream
gene can acquire point-mutations at rate µ; the consensus sequence of each TF can have point-
mutations at rate rTFµ. These two mutation types can modify the (mis)match values M and kij . A
third type of mutation exists in the first model variant: the signal-sensing domain of each TF has
two components, each of them can alternate between two alleles (sensitive/ non-sensitive to one
of the two signals) at rate rsµ. Owing to the faster time-scales over which gene regulation evolves,
we consider only these types of mutations on the BSs and TFs. In particular, we assume no change
in the coding regions of the downstream genes themselves, only in their regulation.

Putting the pieces together

In our main model, we consider nG = 2 downstream genes (models considering larger sets of
downstream genes are explored in Supplementary Note 5), each of which is equipped with a bind-
ing site of lengthL, and two signals, with the presence/absence of the first (second) signal requiring
the expression/silencing of the first (second) gene. In other words, information should be passed
from the first signal to the first gene and from the second signal to the second gene.

The presence (’1’) or absence (’0’) of these two signals defines the different environments m ∈
{00, 01, 10, 11} that are possible, with αm denoting the frequency of environment m. These prob-
abilities can be expressed in terms of three important parameters - f1, f2, the frequencies of each
signal, and ρ, the correlation between the signals. We have

α11 = f1f2 + ρδ

α10 = f1(1− f2)− ρδ
α01 = f2(1− f1)− ρδ
α00 = (1− f1)(1− f2) + ρδ

where δ =
√
f1f2(1− f1)(1− f2). The frequency of each signal can be obtained as f1 = α10+α11

and f2 = α01 + α11. In the main text, we assume that both signals are present at equal frequencies,
and that each signal is present (or absent) half of the time f1 = f2 = 0.5. Hence, we have

α00 = α11 =
1

4
(1 + ρ)

α10 = α01 =
1

4
(1− ρ)

Thus when the signals are uncorrelated (ρ = 0), we have α00 = α10 = α01 = α11 = 1/4. When
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the signals are fully correlated (ρ = 1) we obtain α00 = α11 = 0.5 and α10 = α01 = 0 and vice versa
for anti-correlation (ρ = −1). We explore asymmetric environments in Supplementary Note 2.

The information transmission between signals and genes is mediated by TFs which contain
a signal-sensing domain and a DNA-binding domain. TFs, on sensing a signal, become active
and can induce the expression of a gene by binding to its binding site. We define each TF i by its
consensus sequence, the sequence of lengthL for which the TF has the highest affinity, and its signal
sensing allele σi ∈ {00, 01, 10, 11}, which describes its responsiveness to the two signals. If a TF i
is responsive to a signal and that signal is present in environment m, then its active dimensionless
concentration is Ci(m) = C0, and Ci(m) = 0 otherwise. For simplicity, we assume only these two
concentration levels.

The regulatory network is described by its genotype, D, consisting of the consensus sequences
and the signal sensing alleles of the two TFs, and the BS sequences of the (two) genes. As described
in Eq. (S1) and Eq. (1) of the main text, the probability pjm that the binding site of gene j is bound
in environment m depends on, apart from ε, the mismatches kij (which can be obtained from the
genotype sequences) between the consensus sequence of TF i and the BS of gene j, and the signal
sensing alleles σi which determine the active concentrations Ci(m).

none

environment
(signals present)

gene

activator
TF activeTF inactive

OFF
ON-s(pjm-1)2

-sβ(pjm-0)2

α
10

α
01

α
11

α
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Supplementary Figure 1: Optimal expression patterns and fitness contributions in different en-
vironments. In the basic model, we consider only TFs that are activators. The downstream genes
are by default inactive, unless activator TFs, triggered by input signals, bind to BSs and activate
gene expression. Shown are the optimal expression patterns of the two genes in the four different
environments, and the mechanistic aspects of the genotype that achieve these optimal patterns.
Grey/white background - the gene is active/inactive; solid/dashed line - the TF binds/ does not
bind the BS.

In Eq. (S2) and Eq. (2) of the main text, we define the fitness of a genotype by considering the
deviation of the actual expression levels pjm from the ideal expression levels p∗jm. As shown in
Suppl. Fig. 1, we define the ideal expression level of gene j in environment m, p∗jm, such that
p∗jm = 1 if signal j is present in environment m and p∗jm = 0 if signal j is absent in environment
m. We consider the penalty βjm = 1 if gene j is required in environment m and βjm = βX (βX ∈
[0, 1]) if gene j is not required in environment m. βX quantifies the relative penalty on crosstalk
interactions between signals and genes, compared to functional interactions. We explore the role
of βX in Supplementary Note 3. In Supplementary Table 1 we list the model parameters and their
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baseline values used in calculations (unless stated otherwise).

Parameter Explanation Baseline value
L BS length, length of sequences that TFs bind 5
ε Energy contribution per bp towards TF-BS binding 3 kBT

C0
Active TF free concentration in the presence of signal, set such

that pjm = 0.5 at k = 1.5
4.5

f1 Frequency of signal 1 0.5

f2 Frequency of signal 2 0.5

ρ Correlation between input signals 0

βX

βjm when p∗jm = 0 for gene j in environment m: penalty in
fitness on activating a gene when it is not needed (crosstalk

interaction)
0.5

other β
βjm when p∗jm = 1 for gene j in environment m: penalty in

fitness on not activating a gene when it is needed (functional
interaction)

1

Ns Selection strength 25

rS
Relative mutation rate of the signal sensing domain compared

to the binding site mutation rate per bp 1

rTF
Relative mutation rate of the TF consensus sequence per bp

compared to the binding site mutation rate per bp 1

Supplementary Table 1: Model parameters and their baseline values.

With the fitness of genotypes and the mutations between them defined, we consider an evo-
lutionary framework to study the evolutionary dynamics of this regulatory system. We assume
mutation rates to be low enough such that a beneficial mutation fixes before an additional muta-
tion (beneficial or not) arises. The condition under which this assumption is valid was found by
Desai and Fisher [8] and reads log(4N∆F )

∆F � 1
4Nµb∆F . ∆F is the fitness advantage of the beneficial

mutant, N is the population size and µb is the rate of beneficial mutations.

Under this condition the population is almost always fixed (monomorphic), and its evolution-
ary trajectory is captured by a series of discrete transitions between different genotypes. Conse-
quently, when a new mutation emerges, it competes with only one other genotype. The fixation
probability of a new mutation that alters the genotype from y to x equals

Φy→x =
1− exp(−(F (x)− F (y)))

1− exp(−2N(F (x)− F (y)))
, (S3)

where the fitness F is defined by Eq. (S2) given the frequencies of the various environments αm and
the desired expression pattern of the genes p∗jm at each. Eq. (S3) applies to a diploid population in
which the mutant x appears in a single copy over a uniform background of the other genotype y.
For diploids, the fitness difference ∆F = F (x) − F (y) refers to the fitness difference between the
two homozygotes or to twice the selective advantage of the heterozygote (one copy of the mutant)
over the prevailing homozygote genotype [9]. The overall rate of substitution from genotype y to
x is given by [4]:

rxy = 2NµxyΦy→x, (S4)
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where µxy denotes the mutation rate from genotype y to x. We illustrate the evolutionary model
further in Supplementary Note 7.

Space of reduced-genotypes

The size of the genotype space is huge, |D| = 44L+2 ≈ 1013.25 for L = 5, which makes it hard
to analytically track the evolutionary model. Since the fitnesses of genotypes depend only on the
mismatches kij and the signal sensing alleles σi, and the mutations only alter kij , σi and the TF
consensus sequences’ match M , we consider the space of ”reduced-genotypes”, G = {M,kij , σi},
keeping track of only these reduced features of the genotype. The size of the reduced-genotype
space is |G| < 16(L + 1)5 ≈ 105.09 for L = 5, which is tractable. Hence, for analytical calculations,
we treat the regulatory network in the reduced-genotype space G, and for simulations, we treat the
regulatory network in the full genotypic spaceD. Note that the reduced genotype representation in
our model framework is not an approximation, but is an exact solution of the full genotype model,
with the tractability gained due to clever bookkeeping of states in the sequence space.

Classification of genotypes into “macrostates”

Since our interest is in the biological function implemented by the network, we further coarse-grain
the space of reduced-genotypes G, and classify these reduced-genotypes into six possible macro-
states,M = {No Regulation, Initial, One TF Lost, Specialize Both, Specialize Binding,

Partial}, by distinguishing only between ”strong” and ”weak” interactions. We set a threshold
kT and consider an interaction as weak, kij ∈ W , if kij > kT , and strong, kij ∈ S, if kij ≤ kT .
In the basic version of the model where both TFs have same biophysical properties (in particular
same L) kT is the same for all TF-BS interactions (but see the extension in Supplementary Note 6).
The threshold kT for each TF-BS pair ij is set such that for mismatches k < kT , pjmi

≥ 0.5 and for
k > kT , pjmi

< 0.5 when only TF i is present and other TF(s) are absent, Ci(mi) = C0.

The full genotypic space D is a union of sequences belonging to different macrostates z:

D =
⋃
z∈M

Sz, (S5)

where Sz is the set of all genotypes that belong to macrostate z. We apply the following classi-
fication rules.

No Regulation

The No Regulation macrostate consists of all genotypes in which there is no regulation of any
form (no information transmitted from the signals to genes). This can happen if both the TFs either
do not sense any signal or do not bind well to any binding sites.

x ∈ SNo Regulation if ∀i
(

(∀j kij ∈ W) OR (σi = 00)
)

(S6)
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Supplementary Figure 2: Typical genotypes in No Regulation macrostate. In the left genotype,
even though both TFs sense some signals, they do not bind well to either of the binding sites, hence
preventing any information transmission. In the right genotype one TF binds both the binding
sites but does not sense any signal and the second TF does not bind any binding site even though
it senses both signals. This way or the other no information is transmitted between the signals and
the genes.

Initial

The Initial macrostate consists of all genotypes in which there is complete regulation with no
form of specificity: both the TFs sense both signals and bind both binding sites. This is the typical
initial state right after duplication.

x ∈ SInitial if ∀i
(

(∀j kij ∈ S) AND (σi = 11)
)

(S7)

Supplementary Figure 3: Initialmacrostate genotypes. In these genotypes, both TFs sense both
signals and bind both binding sites.

One TF Lost

The One TF Lost macrostate consists of all genotypes in which one of the TFs is not involved
in any regulation while the other is involved in some regulatory activity (namely, one TF does
not sense any signal or does not bind well to any of the binding sites). This is equivalent to the
genotypes before duplication, except that there is a “lost TF”.

x ∈ SOne TF Lost if
∣∣∣i :

(
(∀j kij ∈ W) OR (σi = 00)

)∣∣∣ = 1 (S8)
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Supplementary Figure 4: Typical genotypes in One TF Lost macrostate. In the left genotype,
only the first TF is involved in regulation as it senses both signals and binds to both binding sites.
The second TF senses the green signal but does not bind any of the binding sites, hence it is not
involved in regulation and is “lost”. In the right genotype, again only the first TF is involved in
regulation as it senses the red signal and binds both binding sites. The second TF not involved in
any regulation because it does not sense any signal, although it binds the first binding site.

Specialize Both

The Specialize Both macrostate consists of all genotypes in which there is correct specializa-
tion of TFs with respect to both signal sensing and binding sites specificity. In these genotypes, one
TF senses only the first signal and binds only to the first binding site, while the other TF senses only
the second signal and binds only to the second binding site.

x ∈ SSpecialize Both if

(k11, k22 ∈ S AND k12, k21 ∈ W AND σ1 = 10 AND σ2 = 01)

OR (k12, k21 ∈ S AND k11, k22 ∈ W AND σ1 = 01 AND σ2 = 10) (S9)

Supplementary Figure 5: Genotypes in Specialize Both macrostate. Both genotypes have
specific paths from the signals to the genes. In the left genotype, while the first TF senses the red
signal and binds the first (correct) binding site, the second TF senses the green signal and binds the
second (correct) binding site. Hence, the first TF mediates the red signal to first gene pathway while
the second TF mediates the green signal to second gene pathway. In the right genotype, the TFs
exchange roles. The first TF mediates the green signal to second gene pathway while the second TF
mediates the red signal to first gene pathway.

Specialize Binding

In contrast, the Specialize Binding macrostate consists of all genotypes in which there is spe-
cialization of TFs with respect to binding site specificities, but not with respect to the signal sensing
domains.
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x ∈ SSpecialize Binding if (∀i σi 6= 00) AND((
(k11, k22 ∈ S AND k12, k21 ∈ W) AND ¬(σ1 = 10 AND σ2 = 01)

)
OR

(
(k12, k21 ∈ S AND k11,k22 ∈ W) AND ¬(σ1 = 01 AND σ2 = 10)

))
(S10)

Supplementary Figure 6: Typical genotypes in Specialize Binding macrostate. In both geno-
types, the first TF binds the first binding site and the second TF binds the second binding site, but
they have not correctly specialized in their signal sensing domains. In the left genotype, while the
second TF has specialized correctly to sense only the green signal, the first TF still senses both the
signals. Hence, while the red signal pathway is established properly, the green signal pathway is
not - both genes are activated in the presence of green signal. In the right genotype, the TFs have
specialized in signal sensitivities, but opposite to the desired response pattern.

Partial

The Partialmacrostate consists of all genotypes which do not belong in any of the other macrostates
mentioned above. It contains a mixture of different regulatory architectures: both TFs regulate only
one gene with the other gene unregulated, one TF regulates both genes while the other TF regu-
lates only one gene or both TFs bind both binding sites but at least one TF has specialized in signal
sensing.

Supplementary Figure 7: Typical genotypes in Partial macrostate. In the left genotype, both
TFs regulate only the first gene while the second gene is unregulated. In the middle genotype,
the first TF regulates both genes while the second TF regulates only the second gene. In the right
genotype, both TFs regulate both genes but, unlike the Initial macrostate, here the first TF does
not mediate any information from the green signal.

Role of L in macrostate classification

Keeping ε and C0 constant while changing L keeps the threshold mismatch kT constant. Hence,
the number of mismatches |S| in the strong binding class remains the same while the number of
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mismatches |W| in the weak binding class increases. Hence, as L increases, the number of geno-
types in all macrostates except Initial increase. The volume of macrostates with a larger num-
ber of weak mismatches increases more than the volume of macrostates with a smaller number of
weak mismatches. For instance, No Regulation increases more than Specialize Binding.
As One TF Lost and Specialize Binding have the same number of weak mismatches, the
ratio of the number of genotypes in them stays the same for different L.

Supplementary Note 2 Steady state

The steady state distribution (Eq. (3) in the main text) is a general result in Population Genetics,
derived as a solution of the forward Kolmogorov Equation [9]. It is a product of two factors: the
neutral distribution (entropy term) and the fitness weight of different genotypes (energy term).
The first factor, P0(G), is the neutral distribution (see below) which results from neutral processes
only, such as mutation rates between different genotypes, assuming that all genotypes have equal
fitness values. If fitness values are unequal, the second factor, exp(2NF (G)), biases the probabilities
of attaining different genotypes accordingly. For a more comprehensive discussion and relation to
statistical physics see Ref. [10].

Distribution of M for neutral and adaptive cases

In Fig. 3 of the main text we compared the steady state distribution of M (match between the two
TFs) in the neutral case to the distribution of M if selection to diverge applies. Parameters used
were L = 5, Ns = 25, resulting in hardly distinguishable distributions. Here we repeat this calcula-
tion with different parameter values that emphasize the difference between these cases: a stronger
selectionNs = 500 and a longer binding site L = 8. A stronger selection depletes the highest match
values compared to the neutral (Bernoulli) distribution. Even under these more extreme values the
difference between the two distributions is modest, as shown in Suppl. Fig. 8. As a consequence,
using distributions ofM as estimated from genomic data may provide insufficient statistical power
to detect selection pressure on TFs to diverge.
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Supplementary Figure 8: The steady state distributions of match, M , between TF consensus
sequences when there is selection on the TFs to diverge is very similar to the neutral distri-
bution. We present analytically calculated steady state distribution of k11 (a), k21 (b) and M (c)
for Ns = 0 (no selection, blue) and Ns = 500 (strong selection, red). The neutral distributions
are always the Bernoulli distributions which here are peaked at k = 6 and M = 2. Selection to
diverge biases the distribution to have a lower match than expected under neutrality. The differ-
ence between neutrality and selection becomes obvious only when looking at the distributions of
k, the mismatches between BSs and TFs. Under neutrality the probability for match is low and the
distribution is peaked around high mismatch values. When there is selection on the TF to remain
functional it must preserve a low mismatch with at least one of the genes. Parameters: L = 8, ε = 3,
C0 = 3.269× 105.

Probabilities of major macroscopic outcomes - losing a TF and specializing

In the main text we illustrate only the most probable macrostate for each parameter combination.
Other macrostates are still possible, albeit with lower probability. Here we illustrate the proba-
bility to obtain either ’One TF Lost’ or ’Specialize Both’ macrostate at each parameter combina-
tion, as described in Supplementary Note 7. As shown in Suppl. Fig. 9, the steady state prob-
ability of specialization QSS(Specialize Both) is high at large Ns and intermediate ρ, and it
decreases as selection strength decreases or signal correlation increases. The probability of having
QSS(One TF Lost) at steady state is significant only when selection is not too weak and signals
are highly correlated. Although for these parameter values it is the dominant macrostate its proba-
bility is only ∼ 0.5, such that other macrostates are not negligible. In contrast, for parameter values
where ’Specialize Both’ dominates its probability is close to 1.
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Supplementary Figure 9: Steady state probabilities of ’Specialize Both’ (left) and ’One TF Lost’
(right) macrostates for different values of selection intensity Ns and correlation between the
signals ρ. The probability of either macrostate QSS(z) is illustrated using a color code (blue = 0,
yellow = 1). Intersection of the red dashed lines denotes the baseline parameters values.

Asymmetric signal occurrence biases final outcomes

At the baseline parameters, we assume symmetry between the occurrences of the two signals,
namely their frequencies f1 = f2 = 0.5, where f1 = α10 + α11 is the frequency of the first signal,
and f2 = α01 + α11 is the frequency of the second. In the main text, in Fig. 3, we explored the role
of signal frequency fi, together with signal correlation ρ, while maintaining symmetry (f1 = f2).
Here we explore the effect of asymmetry in signal occurrence (f1 6= f2) on the final evolutionary
outcomes and in particular on the probability to fully specialize. In Suppl. Fig. 10 we plot the most
probable macrostate as a function of the signal frequencies f1, f2 for different values of selection
intensities Ns when the signals are uncorrelated (ρ = 0); Suppl. Fig. 11 shows that at different ρ, f1

and f2 are constrained but the qualitative features of the plots are retained. When both signals are
rare, f1, f2 � 1, No Regulation macrostate dominates, as selection on both pathways is weak.
When one of the signals is frequent while the other is rare, f1 � f2, only the frequently used path-
way is maintained, and the dominant macrostate is Partial. Only when both signals are frequent
and selection is not too weak, specialization occurs. Hence, a signal-gene pathway is maintained
only if it is required often enough, and the threshold for this (boundary between Partial and
Specialize Both) depends on selection strength Ns. As selection strength Ns increases, this
threshold moves to lower f1 and f2. As the frequencies of both signals increase, the dominant
macrostate Specialize Both is replaced by Specialize Binding, where sensing one signal
is a good proxy for the other signal as well, and later by One TF Lost when one TF is sufficient
to transduce both signals.
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Supplementary Figure 10: Under medium to strong selection, specialization occurs under a broad
range of signal frequencies. Under weak selection specialization occurs only if signal frequen-
cies are sufficiently high. Phase plots of the most probable macrostate at steady state as a function
of signal frequencies f1 and f2, at three different selection strengths Ns = 10, 25, 100. The intersec-
tion between the red dashed lines, f1 = f2 = 0.5, denotes the baseline parameters used anywhere
else in this work.
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Supplementary Figure 11: For different ρ, f1 and f2 are constrained, but the phase plots in the
accessible region are similar. Phase plots of the most probable macrostate at steady state (at Ns =
25 and baseline parameters) as a function of signal frequencies f1 and f2, at three different inter-
signal correlation values, ρ = -0.5, 0, 0.5. The white region of the plots denotes forbidden areas;
ρ, f1 and f2 constrain each other and hence, not all (f1, f2) pairs are possible (see Eq. (S3)).

TFs as repressors

In the main text and in all the model variants in the SI, we assumed that TFs are activators. Here,
we explore the case that TFs act as repressors. As described in Suppl. Fig. 12 the difference is in
the mechanistic response of repressors to external signals compared to activators. In the absence of
signal, repressor TFs are in their active state, where they can bind their binding sites and repress
the corresponding genes. In the presence of signal, repressor TFs become inactive, avoid bind-
ing to their binding sites and consequently do not repress the corresponding genes. We assume
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throughout a weaker penalty βX < 1 on unnecessarily activating a gene compared to the higher
penalty β = 1 on avoiding activation of a gene when needed, for either TF type. There is however
an entropic difference between binding states realized by few TF-BS combinations and unbinding
states realized by many such combinations and hence they can occur even neutrally. Consequently,
the unequal penalties have different selective implications on activators and repressors: For acti-
vators there is a strong selection to bind (activate the gene when needed) and weak selection to
avoid binding (cross-interactions inadvertently activating an unneeded gene). For repressors it is
the opposite: strong selection to avoid binding (cross-interactions inadvertently repressing a gene
that is needed), but weak selection to bind (repress when the gene is not needed). Due to the en-
tropic difference, binding avoidance can occur even in the absence of selection, but for binding to
occur significant selection is needed. This amounts to effective rescaling of selection pressures in
the repressor case (with respect to the activator case). This result is demonstrated in Suppl. Fig. 13,
where we plot the dominant macrostate at steady state as a function ofNs and ρ at baseline param-
eters (with βX = 0.5) when the TFs act as repressors. Notice that this is mostly similar to Fig. 3 of
the main text, where TFs act as activators, except for the rescaling of the x-axis (selection pressure).
Hence transitions between macrostates: No Regulation to Partial to Specialize Both oc-
cur at larger Ns values compared to Fig. 3. In the special case that all penalties are equal βX = 1,
the activator and repressor cases provide the same results (right side of Suppl. Fig. 13).

none

environment
(signals present)

gene

repressor

TF inactiveTF active

OFF
ON-s(pjm-0)2

-sβ(pjm-1)2

α
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α
01

α
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Supplementary Figure 12: Optimal expression patterns and fitness contributions in different
environments with repressor TFs. When TFs act as repressors, the regulatory situation differs
from the activator case (compare to Suppl. Fig. 1). With repressors, the genes are assumed to be
active by default (grey background), unless repressed by a TF (white background). In contrast to
the activator case, repressor TFs are active in the absence of a signal, consequently binding to their
binding sites and repressing their target genes. In the presence of a signal, the TFs become inactive,
and do not repress the genes (right scheme). In the table we list the optimal expression patterns of
the two genes for all four signal combinations, and the repressor role in each case. In the bottom
right we list the fitness penalties for both failure to activate and unnecessary gene activation, where
β ≤ 1.
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Supplementary Figure 13: Dominant macrostate plots vs Ns and ρ when TFs act as repressors
(a) For βX = 0.5 we find rescaling of the x-axis (selection intensity) with respect to the activator
case. (b) For equal penalties on all deviations from the desired expression pattern βX = 1, the
evolutionary outcomes for repressors are equivalent to those obtained with activators (with βX = 1
as well).

In Suppl. Fig. 14, we explore the role of signal frequency, fi, on the dominant macrostate in
the case of TFs acting as repressors. Note that this is a reflection, on the fi axis, of the plot in the
activators case (Fig. 3 of main text). At low signal frequencies, fi ≈ 0, the genes are required
to be OFF together most of the time, and hence, one repressor TF can regulate both genes by al-
ways binding to their binding sites. This results in a dominance of the One TF Lost state. At
high signal frequencies, fi ≈ 1, both genes are required to be ON together most of the time, and
hence, repressor-BS binding occurs very rarely, thereby experiencing negligible selection pressure
to maintain repressor-BS binding. Hence, the dominant state is that of No Regulation, where the
repressor TFs do not bind to their binding sites, and hence, the genes are always ON.
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Supplementary Figure 14: Dominant macrostate plots vs ρ and f1 = f2 when TFs act as repressors
for (a) βX = 0.5 and (b) βX = 1.
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In Suppl. Fig. 15, we explore the effect of asymmetry in signal occurrence (f1 6= f2) on the final
evolutionary outcomes and in particular on the probability to fully specialize. We plot the most
probable macrostate as a function of the signal frequencies f1, f2 for different values of selection
intensities Ns when the signals are uncorrelated (ρ = 0); Suppl. Fig. 16 shows that the qualita-
tive features of the plots are retained at different ρ values (not all f1 and f2 are possible, though).
The principal difference from the activators case is that specialization now occurs at lower signal
frequencies, with the One TF Lost state dominating at very low fi, and No Regulation state
domination at very high fi.
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Supplementary Figure 15: Under medium to strong selection, specialization occurs under a broad
range of signal frequencies. For repressor TFs under weak selection, specialization occurs only
if signal frequencies are low. Plots show the most probable macrostate at steady state (for ρ = 0)
as a function of signal frequencies f1 and f2, at three different selection strengths Ns = 10, 25, 100
when TFs act as repressors. The intersection between the red dashed lines, f1 = f2 = 0.5, denotes
the baseline parameters used anywhere else in this work.

0 0.25 0.75 1

f
1

0

0.25

0.75

1

0 0.25 0.75 1 0 0.25 0.75 1

f
1

f
1

f
2
0.5

0.5 0.5 0.5

ρ = −0.5 ρ = 0.5ρ = 0

Supplementary Figure 16: Most probable macrostate at steady state only weakly depends on
the signal correlation ρ. Plots show the most probable macrostate at steady state (at Ns = 25
and baseline parameters) as a function of signal frequencies f1 and f2, at three different signal
correlation values, ρ = -0.5, 0, 0.5. The white region of the plots represents impossible parameter
combinations; ρ, f1 and f2 constrain each other and hence, not all (f1, f2) pairs are possible for
different ρ (see Eq. (S22)).
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Supplementary Note 3 Role of βX , the relative fitness penalty on
crosstalk interactions

Transcription factors often bind weak secondary binding sites besides their primary target(s). This
can lead to spurious activity of genes called crosstalk, i.e., deleterious activation of genes that does
not happen via their primary regulatory pathway. For example, in our model a gene can be acti-
vated even if the signal to which it should respond is absent only because of (weak) binding of a
transcription factor responding to another signal to its binding site. Previously, we studied the ef-
fect of crosstalk interference on gene regulation, and showed how it can place global constraints on
the gene regulatory system [11]. Here, we explore the potential role of such crosstalk interactions
in shaping the evolutionary trajectories of TF specialization.

The fitness of each reduced-genotype x ∈ G depends on the difference between the actual ex-
pression pattern the genotype generates and the ideal expression pattern as defined in Eq. (S2).

F (x) = −s
∑
j

∑
m

αmβjm(pjm − p∗jm)2. (S11)

Here, βjm weigh the penalties on different deviations from the desired expression level p∗jm. In a
certain environment m some genes should be active, p∗jm = 1, while others should remain inactive,
p∗jm = 0. In our model, we allow for different penalties in either case. We penalize deviations from
desired activity p∗jm = 1 by setting βjm = 1. We consider deviations from desired inactivity p∗jm = 0

as less crucial and penalize them to a lesser extent βjm = βX , βX ∈ [0, 1]. At the two extremes, if
βX = 0, no penalty on these crosstalk terms applies, while if βX = 1, penalties on all deviations are
equally important. In the main text, we used an intermediate value of βX = 0.5. In this section we
explore the role of βX on the steady state distribution prior to and after TF duplication and on the
evolutionary dynamics of specialization.

Steady state before duplication

A steady state distribution is attained before duplication, when only a single TF regulates all genes.
In Suppl. Fig. 17 we illustrate the most probable macrostate prior to duplication for different values
of cross-interaction penalties βX . The macrostates possible before duplication are Initial (both
genes regulated), No Regulation (none regulated) and some (but not all) variants of Partial -
see Suppl. Fig. 17A for illustration. For βX ' 1, the fitness penalty on mistakenly activating a gene
is comparable to the fitness penalty on not fully inducing genes when needed, resulting in net-
work configurations in which only one of the two genes is regulated (corresponding to Partial

macrostate immediately after duplication for most ρ < 0). This is because, while configurations
with only one gene regulated have one functional interaction and no crosstalk interactions, config-
urations with both genes regulated have two functional interactions and two crosstalk interactions.
As βX decreases, the selection against crosstalk interactions becomes weaker, resulting in config-
urations in which both genes are regulated (Initial macrostate immediately after duplication)
even when ρ < 0.
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Supplementary Figure 17: Dominant macrostate at steady state before duplication depends on
βX (crosstalk interaction penalty). (A) Illustration of the different macrostates when only a single
TF exists. Macrostates before duplication are defined in terms of the macrostate they would result
in, if a duplication occurred on those genotypes. (B) Most probable macrostate at steady state
before duplication, as a function of selection strength, Ns, and the correlation between the two
external signals, ρ, for different values of βX , the relative weight of fitness penalties corresponding
to crosstalk interactions. (C) The most probable macrostate at steady state before duplication, as a
function of βX and ρ at Ns = 25.

Steady state after duplication

We proceed to observe the effect of varying βX on the steady state after duplication, analogous
to Fig. 3 of the main text where we assumed βX = 0.5. In Suppl. Fig. 18, we show the phase
plot of the most probable outcome of duplication at steady state for different values of βX . The
qualitative features of this phase plot are invariant to changes in βX , as long as βX > 0. For ρ not
too close to 1, we obtain transitions from No Regulation to Partial and to Specialize Both

as Ns increases. For large enough Ns, as ρ increases, there is a shift from Specialize Both to
One TF Lost, via Specialize Binding, the width of which increases as βX decreases. This is
because there is reduced selection pressure on avoiding crosstalk interactions as βX decreases. For
small βX , as ρ increases, it is sufficient that one of the TFs senses both signals while the TFs are
still specialized in binding. As ρ increases even further, it is sufficient to have one TF mediating
both pathways, marking the shift to the One TF Lost macrostate. These transitions occur very
prominently for very small βX ≈ 0, where One TF Lost is the most probable outcome for all ρ
values. Many models of duplication do not consider crosstalk interactions in their fitness function,
and hence deal with the case of βX = 0, making it important for comparison to our results.
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Supplementary Figure 18: Dependence of steady state after duplication on βX , the fitness penalty
on cross-interactions. (A) The most probable macrostate at steady state after duplication, as a
function of selection strength,Ns, and the correlation between the two external signals, ρ, is plotted
for six different values of βX . (B) The most probable macrostate at steady state after duplication,
as a function of βX and ρ at Ns = 25. An increase in βX has a a similar effect to an increase in
selection intensity on all interactions by varying Ns.

Evolutionary dynamics

To understand how βX affects the evolutionary dynamics of specialization, we first obtained the
dynamics of the most probable macrostate as a function of ρ and βX for fixed selection intensity
Ns = 25 (baseline parameters). In Suppl. Fig. 19, we plot a few snapshots of the phase diagram
of the most probable macrostate at different time-points after duplication, starting from t = 0 (im-
mediately after duplication), to t = ∞ (steady state after duplication). Specialization is faster for
smaller ρ because the fitness benefit of eliminating crosstalk interactions is larger. Likewise, spe-
cialization is faster for larger βX as the selection strength against crosstalk interactions is higher.
A huge region of the (βX , ρ) plane corresponding to small βX or large ρ, most of which starts at
Initial and specializes via the slow pathway of One TF Lost.
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Supplementary Figure 19: Snapshots of the most probable macrostate at different time-points
post-duplication. The most probable macrostate as a function of signal correlation, ρ, and βX , the
relative weight of fitness penalties corresponding to crosstalk errors, for Ns = 25. The left-most
phase plot corresponds to the time-point immediately after duplication, and the right-most phase
plot corresponds to the steady state after duplication. For other parameters, the baseline values
have been used. βX = 1 corresponds to equal-magnitude selection strengths on functional as well
as crosstalk interactions; βX = 0 corresponds to no selection against crosstalk interactions. In the
main text, we choose βX = 0.5 as the baseline parameter value.
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Supplementary Figure 20: How do the slow and fast pathways to specialization depend on βX?
For large βX , the time to specialization shortens for all pathways and the fraction of trajectories
to specialization taken via fast pathways (through Partial macrostate) increases. Pie charts il-
lustrate the fraction of slow (lavender) and fast (green) trajectories for different values of βX . The
black line (right y-axis) shows the ratio between average specialization times, which does not signif-
icantly change with βX . For other parameters, the baseline values were used. βX = 1 corresponds
to equal-magnitude selection strengths on functional as well as crosstalk interactions; βX = 0 cor-
responds to no selection against crosstalk interactions. In the main text, we choose βX = 0.5 as the
baseline parameter value.

Next we sought to understand which pathways are taken towards specialization for different
βX by running many repeats of simulations at each βX . For each βX , we found the most probable
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genotype at steady state before duplication and ran many repeats of the simulation starting from
that genotype. In Suppl. Fig. 20, we explore the dependence on βX of fraction of the two pathways
to specialization (slow via One TF Lost and fast via Partial), and also the corresponding times
to specialization. First of all, specialization becomes quicker as βX increases from 0 to 1. This is
because stronger selection against the crosstalk interactions eliminates them faster. Secondly, the
relative speed of the fast pathway (compared to the slow pathway) depends only very weakly on
βX . Thirdly, about 80% of trajectories follow the slow pathway, and this depends only very weakly
on βX , till βX = 0.75. In contrast, for βX = 1, the fast pathways via Partial become predominant.
This occurs because the steady state before duplication (which acts as the initial condition for the
trajectories) flips from Initial to Partial.

Supplementary Note 4 Evolutionary dynamics

Evolutionary trajectories between the post-duplication unspecialized configuration (’Initial’) to full
specialization (’Specialize Both’ macrostate) are multi-step processes that require several mutations
and transiently pass through various macrostates. Here we describe the various trajectories for this
functional transition.

Evolutionary pathways - first model variant

In Suppl. Fig. 21 we detail the different pathways to specialization. The pathways proceeding via
One TF Lost are slow compared to the pathways proceeding via Partial which are faster. The
mutation initiating the process in all pathways is neutral and hence the ratio between rS (signal
sensing domain mutations rate) and rTF (TF mutation rate) determines which pathway is more
likely to occur - see Suppl. Fig. 22.

Along the slow One TF Lost pathway, typically, first a TF consensus sequence mutation oc-
curs that weakens the binding of one TF to both binding sites. Once binding is lost, further mu-
tations cause the TF consensus sequence to neutrally drift away. Meanwhile, the lost TF gains a
sensing mutation such that it senses only one of the two signals. Next, a BS mutation in one of
the binding sites flips its TF preference such that the system moves into Specialize Binding

macrostate. This is a beneficial mutation as one of the signal-BS pathways becomes specific. This
involves evolving a TF-BS link essentially from scratch; the lost TF consensus sequence is a ran-
dom number of mismatches away from the binding site sequence, and the beneficial BS mutation
can occur only when the TF consensus sequence, by chance, becomes close enough to the BS se-
quence. From Specialize Binding, another beneficial sensing mutation leads the system to
full specialization (BS and signal).

There are multiple routes in the Partial pathway. In one of the routes, first a neutral TF
consensus sequence mutation occurs such that the TF loses binding to only one of the two binding
sites resulting in Partial macrostate. This is different from the first mutation in One TF Lost

pathway where the TF loses binding to both binding sites. From here, a sensing domain mutation
specializes one of the signal-BS pathways, making this mutation beneficial. Further, a neutral BS
mutation brings the system to Specialize Binding, from where a beneficial sensing domain
mutation leads the system to specialization.

In the second and third routes via the Partial macrostate, first a neutral sensing domain mu-
tation occurs. Next, either a beneficial TF consensus sequence mutation can bring the system onto
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the previous route or if the sensing domain mutation rate is high, another neutral sensing domain
might occur first. From here, a beneficial TF consensus sequence mutation and a beneficial BS
mutation again lead to full specialization.

TF

TF

S

TF

BS

BS

S

S

S

Initial

One TF Lost One TF Lost Specialize Binding

Specialize Binding

Specialize Both

Partial Partial

Partial

S

Partial

S

PartialTF

BS

r
S
 >> Lr

TF

FAST

SLOW

r
S
 << Lr

TF

r
S
 ~ Lr

TF

r
S
 ~ Lr

TF

TF TF

large neutral 

landscape

re-evolve 

from scratch

beneficial

deleterious

neutral

state with one

beneficial 

mutation

state with two

beneficial 

mutations

*

**

Supplementary Figure 21: Pathways to specialization differ in the order and nature of mutations.
Here we detail the various mutations occurring along the different pathways to specialization.
For each mutation, we show the type of mutation (in text on the arrows): TF consensus sequence
mutation (TF), binding site sequence mutation (BS), TF signal sensing domain mutation (S) and
whether it is beneficial, (nearly) neutral or deleterious (style of the arrows). We also illustrate
the macrostates along each pathway using the same color code in the background as in the main
text. The number of beneficial mutations in each macrostate relative to the Initial macrostate
is depicted by box style (see legend). Text in red indicates the conditions on mutation rates that
favor the different pathways. Note that from the One TF Lost state marked with a star, the “lost”
TF can actually take up new functions (by sensing and binding to signals and binding sites other
than those considered in our model), leading to “neo-functionalization”. Also, the Partial state
marked with two stars acts as the initial condition in the alternative model variant, with the TFs
already specialize in signal sensing immediately post-duplication.
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Supplementary Figure 22: The ratio between rS and rTF determines the dominant pathway. We
plot the fraction of fast Partial pathways as a function of rS (signal sensing domain mutation
rate) and rTF (TF mutation rate). Other parameters remain at their baseline values (see Supple-
mentary Note 1). Color code denotes the fraction of fast pathways (specialization is reached via
’Partial’ intermediate state).

Evolutionary pathways - second model variant

The second model variant (see Supplementary Note 1) assumes that immediately post-duplication,
TFs are expressed at different times (or are already specialized with respect to their signal sensitiv-
ity), and that this is fixed for the rest of the evolutionary time. This Partial macrostate is marked
by two stars in the pathway schematic Suppl. Fig. 21. In this setting, selection to specialize starts
with a phase of fast diversification where each pair of TF-BS mutates (in orchestrated manner) to
diverge from the other. The fitness benefit in diversification is large at the beginning when the TFs
are identical, but diminishes the more distinct they become. This is illustrated in Suppl. Fig. 21
by the two TF and BS beneficial mutations that lead to specialization. After specialization, further
TF diversification proceeds as a nearly neutral process, and hence occurs more slowly. These two
phases, the fast adaptive one followed by the slow nearly-neutral one, are illustrated in Suppl.
Fig. 23.
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Supplementary Figure 23: In the second model variant (TFs specialized in the signal sensitivi-
ties or expression times immediately post-duplication) a significant proportion of evolutionary
time is spent in neutral evolution phase. Selection only works in the beginning of the evolu-
tionary trajectory to exert diversification, but a significant part of TF diversification occurs almost
neutrally with only a modest fitness benefit involved. We illustrate dynamical trajectories of the
match between TFs, M , and the fitness, F , obtained in stochastic simulations. (a) shows a single
trajectory and (b) shows an average over 400 independent repeats of the simulation. Each time unit
is a simulation iteration in which a mutation in one of TFs occurs, but does not necessarily fix (see
Supplementary Note 7).

Time to specialization

In Suppl. Fig. 24, we plot the average time to specialization via slow and fast pathways for various
values of L, rTF and rS . The ratios of these times are plotted in Fig. 4 of the main text. Increasing
either mutation rate by changing rTF or rS speeds up specialization via both pathways because
mutations occur faster. Increasing L slows down the slow One TF Lost pathway because of an
increase in size of the neutral landscape; strikingly, increasing L does not lengthen the fast pathway
through Partial states.
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Supplementary Figure 24: Time to specialization via different pathways for different parameters.
We plot the mean times to specialization, τ̄slow and τ̄fast, via the slow (left panel) and the fast (right
panel) pathways, while varyingL (grey curve, top axis), rTF (red, bottom axis) and rS (blue, bottom
axis) separately. Other parameters remain at their baseline values. We find opposite dependence
of the time to specialize on the binding site length L in the distinct pathways. While for pathways
going via ’One TF Lost’ (left panel) time increases with L due to increase in the sequence space,
it mildly decreases with L for pathways going via ’Partial’. For all pathways time decreases if
mutation rates increase.

Supplementary Note 5 Multiple genes regulated by each TF post-
duplication

Steady state after duplication

Transcription factors often regulate multiple downstream genes, rather than one gene post-duplication,
as we considered so far. Here we generalize our analysis to account for a general number of genes,
nG. The steady state distribution in the general case is

P (M, {kij}, {σi}) = P0(M, {kij})P0({σi}) exp(2NF ), (S12)

where P0 is the neutral distribution and F is the fitness of the reduced-genotype. First, we need
to account for the neutral distribution P0 (entropic factor). This is straightforward, because for
given TF consensus sequences, the probability that a particular binding site j has mismatch values
(k1j , k2j) is independent of the state of other binding sites. Thus, we can simply factor out the
probabilities for different genes:

P0(M, {kij}, {σi}) = P0({σi})P0(M)
∏
j

P0(k1j , k2j |M), (S13)

where j enumerates the genes.
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Second, we need to take care of the adaptive (energy) factor exp(2NF ) in the general case. Be-
cause F =

∑
j Fj is linear in terms of contributions Fj from each gene j, exp(2NF ) factorizes into∏

j exp(2NFj). Hence, we have

P (M, {kij}, {σi}) = P0(M)P0({σi})
∏
j

P0(k1j , k2j |M) exp(2NFj). (S14)

Now, for 〈M〉, we have,

〈M〉 =
∑

{kij},M,{σi}

MP (M, {kij}, {σi})

=
∑
{σi}

P0({σi})
∑
M

MP0(M)
∏
j

∑
k1j ,k2j

P0(k1j , k2j |M) exp(2NFj)

=
∑
{σi}

P0({σi})
∑
M

MP0(M)
∏
j

〈exp(2NFj)〉P0({kij}|M).

(S15)

〈exp(2NFj)〉P0({kij}|M) can be calculated for each gene j separately. We consider nG down-
stream genes split into two sets of size a and b (nG = a + b), such that a genes should respond to
the first signal and b genes respond to the second signal. We write this as a+ b schematically in the
figures. For the main model, we had a = b = 1.

We find that the steady state distribution ofM , the match between the two transcription factors,
is independent of the number of downstream genes - see Suppl. Fig. 25.
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Supplementary Figure 25: The steady state distribution of M , the match between TF consensus
sequences, is independent of the number of downstream genes regulated by these TFs. We present
the analytically calculated steady state distribution and stochastic simulation results for a+b =1+1,
2+2 and 3+3 downstream genes. Simulation steady state is the distribution obtained after 50,000
generations (1+1, 2+2 genes) or 150,000 generations (3+3 genes). Parameters: L = 12, Ns = 500,
ε = 3, C0 = 3.269× 105, rTF = 0.02 (TF mutation rate is 50 times lower than the BS mutation rate).

Evolutionary dynamics

Frustration of fitness landscape

Each TF needs to simultaneously regulate a subset of the genes while avoiding regulation of the
remaining ones. This increasing number of constraints, relative to the nG = 2 case, incurs a di-
minishing number of feasible evolutionary trajectories. The fitness change due to a TF consensus
sequence mutation is assessed according to its effect on the binding affinities of this TF with all
existing genes. Hence, for each TF, as nG increases, the number of constraints also increases. This
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limits the number of possible substitutions a TF can access via fewer beneficial and neutral muta-
tions. In contrast, for each binding site, the number of constraints does not change because it is only
constrained by the two TFs and not by other binding sites. To demonstrate how extra constraints
arising for nG > 2 genes affect evolutionary trajectories, we classified in Suppl. Fig. 26 the effects
of all TF mutations on fitness for various numbers of downstream genes a+ b.
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Supplementary Figure 26: The fitness landscape becomes more frustrated when nG > 2 (i.e.,
when each TF post-duplication regulates more than 1 gene). At every time point in the stochastic
simulation we analyze all possible TF consensus sequence mutations and classify them according
to their effect on fitness as beneficial (a) neutral (b) or deleterious (c). With increasing number
of downstream genes, nG = a + b, regulated by each TF (different curve colors, see legend), the
fractions of beneficial and neutral mutations decrease and the fraction of deleterious mutations
increases. This is because TFs become more constrained as nG increases, resulting in fewer potential
mutations that are beneficial or neutral.

With increasing numbers of downstream genes, evolutionary trajectories are more often stuck
in local fitness peaks. We demonstrate this effect in Suppl. Fig. 27, where we classified at each
time point in the simulation all possible TF mutations, and determined that a particular point is a
fitness peak if all possible TF mutations from that point are strictly deleterious. Evolution can still
continue thanks to the binding sites mutations which are much less constrained.
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Supplementary Figure 27: The adaptive landscape of TFs becomes more rugged the more genes
they regulate. We classify all possible TF mutations according to their fitness effect as beneficial,
deleterious or neutral. If at a certain time point all mutations of both TF are strictly deleterious,
this indicates a local fitness peak. A way out of such a peak, if there is one, proceeds by means of
BS mutation(s), following which the TF can evolve further. The figure illustrates simulation-based
statistics of the fraction of time points in which such fitness peaks are encountered for different nG,
split (un)equally, nG = a + b, between the TFs (indicated on x-axis). Clearly, the more genes a TF
needs to regulate, the more constrained it is, and the fewer are the trajectories it can take. The frac-
tion of local fitness maxima depicted in the plot were obtained by sampling the fitness landscape
along typical evolutionary trajectories, and hence does not reflect the entire fitness landscape. Each
point is an average over 160,000 points (400 independent simulation repeats, 4000 time points sam-
pled at a uniform interval between t=6000-10,000 when the dynamics is already nearly neutral (see
Supplementary Note 7 for details). Parameters: L = 8, Ns = 100, C0 = 3.269× 105, ε = 3, βX = 1.

Evolutionary pathways

The pathways to specialization in the case of multiple regulated genes are more complex than those
described in Supplementary Note 4 for nG = 2. The primary difference is that for nG > 2 some
pathways involve fitness valley crossings, where there is a chance of being stuck on local fitness
peaks/plateaus. Hence, these paths take longer times to specialize. The following are the main
pathways that are depicted in Suppl. Fig. 28. The first proceeds via One TF Lost macrostate
while the other pathways proceed only via Partial configurations.

1. The first pathway involves the One TF Lost macrostate, where as before one TF does not
bind to any binding site. Evolving a TF-BS link to this TF entails a random walk on a neutral
landscape and essentially involves regulatory evolution from scratch. After gaining a TF-BS
link from a BS mutation, the system ends up on a local fitness plateau (marked with a red box
in Suppl. Fig. 28) in the Partial state. This is because the “lost” TF (second TF in the figure)
has considerably diverged from the first TF yet has specialized only for some, but not all, of
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the genes associated with the green signal, but not for all of them. All of the TFs and BSs are
constrained to maintain match beyond some minimal level.

Hence specialization can only occur if one of the strong TF-BS links weakens. Such weakening
decreases the fitness, and hence incurs crossing a fitness valley. This pathway is consequently
very slow.

2. The remaining pathways do not involve One TF Lost macrostate and go only via Partial
macrostate. In the second pathway, first, a TF consensus sequence mutation and a signal
sensing mutation (either can occur first) lead the system to a Partial state with some of the
signal-BS pathways specialized. Then, an additional TF consensus sequence mutation pushes
the TFs further apart. This, together with BS mutations, brings the system to the local fitness
plateau (in the Partial macrostate) described in the previous pathway. This pathway is also
slow, because of the fitness valley crossing described above.

3. In the third pathway also, first, a TF consensus sequence mutation and a signal sensing mu-
tation (either can occur first) lead the system to a Partial state with some of the signal-BS
pathways specialized. From here, no additional TF consensus sequence mutations occur that
push the TFs away. Hence, there are paths for the BSs to realign their binding preferences
(to the other TF) such that fitness is always maintained and does not involving crossing any
fitness valleys. Hence, this pathway is fast.

4. In the fourth and the fifth pathways, the first two mutations are signal sensing mutations
that specialize the TFs’ signal sensing domains. From here, a TF mutation and subsequent BS
mutations can specialize without going through fitness valleys. Hence, this is a fast pathway.
For a given genotype (specifying the TF and BS sequences), this fourth pathway is either
possible or not. If it is not possible, then the only resort is the fifth pathway.

5. The fifth pathway comes into play when the fourth pathway is not possible. This happens
when any TF mutation loses some signal-BS pathways, hence dropping the fitness consider-
ably. The TFs cannot diverge at all, and this involves crossing a fitness valley. Hence, this is a
slow pathway.
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Supplementary Figure 28: Different pathways to specialization vary in the order and nature of
mutations, and might have to cross a rugged fitness landscape for nG > 2. Here we show in detail
the various mutations that occur along the different pathways (marked with numbers inside white
circles) to specialization. For each mutation, we show the type of mutation (text on the arrows):
TF consensus sequence mutation (TF) or binding site sequence mutation (BS), TF signal sensing
domain mutation (S) and whether it is beneficial or (nearly) neutral or deleterious (style of the
arrows, see legend). We also depict the macrostates along each pathway graphically, and mark
local fitness peaks/plateaus with red boxes. In red dotted curved lines, we denote parts of the
pathways which involve a fitness valley and hence, are very difficult to cross. Routes not involving
any fitness valleys (numbered 3 and 4) are fast, while those involving a fitness valley (numbered
1, 2 and 5) are slow.

Time to specialization

By running simulations, we calculate the time to specialization for different values of nG > 2

(total number of downstream genes) via the different pathways described in the previous section.
Specifically, we calculate the time to specialization, τ1, via the One TF Lost pathway (pathway
1), τ3+4, via the fast Partial pathways (pathways 3 and 4), and, τ2+5, via the slow Partial

pathways (pathways 2 and 5). We also calculate the fractions of these pathways. These are shown
in Suppl. Fig. 29. The slow Partial pathway (numbered 2 and 5) is absent for nG = 2. The fast
Partial pathway (numbered 3 and 4) does not involve crossing any fitness valleys, and hence
the time to specialization via this pathway decreases with increasing Ns for all nG. The time to
specialization via the slow One TF Lost pathway (numbered 1) decreases with increasing Ns for
nG = 2, and so does not involve crossing fitness valleys. For nG > 2, the time to specialization via
both the slow One TF Lost pathway and the slow Partial pathway increases as Ns increases.
Both these pathways for nG > 2 involve crossing fitness valleys. With increasing nG, the fractions
of the fast Partial pathway and slow Partial pathway increase at the expense of the slow
One TF Lost pathway.
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Supplementary Figure 29: Times to specialization via different pathways for various numbers of
downstream genes. Shown are the times to specialization via different pathways as a function of
Ns for different values of nG. We plot the times for the slow One TF Lost pathway (numbered
1, yellow), the slow Partial pathway (numbered 2 and 5, red), and the fast Partial pathway
(numbered 3 and 4, blue). Plotted as pie charts also are the fraction of various pathways for dif-
ferent nG values as pie charts; these fractions depend only very weakly on Ns. In general, the
higher the nG, the larger the fraction of fast trajectories (3 and 4) and the longer the time needed to
specialize. Pathways whose time lengths with Ns, which are the slow Partial pathway (red) and
the One TF Lost pathway (yellow) for nG > 2, involve crossing fitness barriers.

Supplementary Note 6 Promiscuity-promoting mutations

So far we considered the ”mismatch-energy model” for TF-BS specificity, where each position in
the TF and the binding site contributed equally to the total binding energy, depending on whether
the position has a mismatch between the TF consensus sequence and the BS sequence. Let the TF
consensus sequence be s∗ and the binding site sequence be s, both of length L. In general, we have

E =
∑
i

Ei (S16)

where i runs over all the positions of the binding site. For each specific position i, the contribution
is Ei = 0 if si = s∗i (match) and Ei = ε if si 6= s∗i (mismatch).

Experiments on TF-BS specificity, however, suggest that some TF (and binding site) positions
dominate while others only have minor energetic contributions. In this section we study a simple
generalization of the mismatch-energy model, where we allow for two levels of contribution: some
positions are specific (favor a unique nucleotide) and have large energetic contribution while others
are non-specific or promiscuous (all nucleotides are equally favorable) and have a smaller energetic
contribution. For each specific position i, the contribution Ei is, as in the mismatch-energy model,
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ε if there is mismatch between the TF consensus sequence and the BS sequence in that position,
and 0 if there is a match. On the other hand, for each promiscuous position i, the contribution is
Ei = εP (typically 0 ≤ εP ≤ ε), independent of si. Hence, for a TF with LP < L promiscuous
positions in total, and k mismatches in the remaining L − LP specific positions, the total binding
energy would be E = εPLP + kε. The different possible energy levels for specific and promiscuous
TFs are illustrated in Suppl. Fig. 30.
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Supplementary Figure 30: Total TF-DNA binding energies depend on number of mismatches as
well as on the number of promiscuous TF positions. We plot the different energy levels depicting
the TF-BS binding energy, E = εPLP + εk, for TFs with varying number of promiscuous positions
LP and k mismatches between the TF and BS in the remaining L − LP specific positions. Note
that lower E corresponds to tighter TF-BS binding. We illustrate this for three different values of
εP , the energy contribution per promiscuous position (different colors). Increasing line thickness
of the energy levels represents higher mismatch values k. While promiscuity-promoting mutations
increase LP by converting a specific position to a promiscuous one, regular TF mutations that hit a
promiscuous position can convert it to be specific and decrease LP .

We also introduce an additional type of mutation, called “promiscuity-promoting” mutation,
that occurs at rate rPµ. As illustrated in Fig. 5 of the main text, these mutations convert a specific
TF position in the consensus sequence to a promiscuous one. A promiscuous position can return to
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be specific again if it is hit by a consensus TF mutation (regular TF mutations we considered until
now, happening at rate rTFµ).

Promiscuity entails a cost in terms of TF-BS binding. To elucidate this cost, we consider the
dependency of the free (dimensionless) concentration, C0, of a TF, on the binding preferences of
the TF. For a TF with no promiscuous positions, C0 can be calculated in the chemical potential
framework as

C0(LP = 0) =
C

GS(ε, L) +
∑
n

exp(−En)
, (S17)

where C is the copy number of the TF, G is the number of sites on the DNA where the TF can
bind in a sequence-specific manner, n enumerates other possible energy configurations of the TF
that are sequence-independent (residing in the free solution, or nonspecific binding to DNA), and
En is the free energy in configuration n. S(ε, L) = 〈e−εk〉P (k) is the similarity between binding
sites defined in [11], with GS(ε, L) acting as the Boltzmann factor for all possible specific binding
configurations. This term captures the sequestration of TFs on the DNA due to spurious binding.
Assuming that the DNA sequence is random, P (k) ∼ B(L, 3/4) is the Binomial distribution for the
number of mismatches that a random DNA sequence has with a given TF consensus sequence.

For a promiscuous TF with LP promiscuous positions, we have,

C0(LP ) =
C

Ge−εPLP S(ε, L− LP ) +
∑
n

exp(−En)

= C0(LP = 0)

GS(ε, L) +
∑
n

exp(−En)

Ge−εPLP S(ε, L− LP ) +
∑
n

exp(−En)

= C0(LP = 0)
1 +A

e−εPLP
S(ε,L−LP )
S(ε,LP ) +A

,

(S18)

where A =
∑

n exp(−En)

GS(ε,L) is an effective parameter that captures the relative contribution of the
Boltzmann factor corresponding to spurious specific binding on the DNA, compared with all other
Boltzmann factors. We have assumed that A = 0.1 is fixed in our calculations, and the results we
present are fairly robust to the value of A. The probability that a binding site is bound by a TF with
LP > 0 promiscuous positions and k mismatches with respect to the binding site in the remaining
L− LP positions, assuming no other TF type is present, is

p =
C0(LP )e−εk−εPLP

1 + C0(LP )e−εk−εPLP
. (S19)

This probability is plotted in Suppl. Fig. 31 for various k and Lp values. While C0(LP ) can be
greater or lesser thanC0(LP = 0) depending on the value of εP , we haveC0(LP )e−εPLP < C0(LP =

0). Hence, as the number of promiscuous positions, LP , in the TF increases, the binding probability
decreases.

For instance, consider a TF with consensus sequence AAAAA (see Suppl. Fig. 31). This TF is
specific for A’s in all five positions of the binding site sequence. Each mismatch in the binding site

33



sequence (green positions in the sequences in Suppl. Fig. 31) with respect to AAAAA decreases the
binding affinity, and thereby decreases the binding probability. Now consider a promiscuous TF
with consensus sequence A ∗ AAA, where ∗ denotes a promiscuous position. The second position,
independent of the bp in the BS sequence (purple positions in the sequences in Suppl. Fig. 31),
decreases the binding affinity, but by a lesser amount than a specific position mismatch (green
positions). Hence, the binding probabilities of the promiscuous TF to AAAAA, AGAAA, ATAAA
or ACAAA are equal, and higher than the binding probability of the specific TF to CAAAA or
AGAAA or other single-mismatch BS sequences.

k: # of TF-TFBS mismatches
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Supplementary Figure 31: Binding probability of the TF to DNA decreases the more promiscuous
it is. The TF-BS binding probability is plotted as a function of the number of TF-BS mismatches k
among theL−LP specific positions for different values ofLP , the number of promiscuous positions
in the TF. We list, as an example, different sequences that are consistent with given (LP , k).

Steady state after duplication

In the presence of promiscuity-promoting mutations, we obtain the steady state distribution over
the genotypic space analytically, from which we obtain the dominant macrostate at steady state
for different ρ and Ns values (Suppl. Fig. 32). The inclusion of promiscuity-promoting mutations
does not significantly change the dominant macrostate phase plot except for a slight increase in the
range of One TF Lost macrostate.

We also plot the mean number of promiscuous positions at steady state in Suppl. Fig. 33. This
number decreases with selection intensity, because promiscuous positions decrease the TF binding
probability (see Suppl. Fig. 31) making them less favorable once specialization has occurred.
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Supplementary Figure 32: Most probable macrostate in the presense of promiscuity-promoting
mutations. We plot the most probable macrostate at steady state, z∗SS, for different ρ and Ns, for
nG = 2 and relative mutation rate rP = 3, keeping other parameters at their baseline values. We
choose rP = 3 so that at each position, a specific bp has equal effective mutation rate towards a
promiscuous state or another specific bp.
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Supplementary Figure 33: Mean number of promiscuous TF positions at steady state decreases
with selection intensity. We plot the mean number of promiscuous positions at steady state, 〈LP 〉
(out of L = 5), for different values of signal correlation ρ and selection strength Ns. Steady state
values of 〈LP 〉 are within a relatively small range. As selection strength increases, 〈LP 〉 decreases,
yet still remains above zero. Parameter values: nG = 2, rP = 3; other parameters are at their
baseline values.

Evolutionary dynamics

Time to specialization

In general, promiscuity-promoting mutations accelerate specialization, as shown in Suppl. Fig. 34.
The speedup of the fast Partial pathway (3 and 4) is not very large, but the speedup of the slow
Partial (2 and 5) and the slow One TF Lost (1) pathways is considerable, an effect that in-
creases with increasing Ns (see Suppl. Fig. 28 for details of the pathways). Promiscuity-promoting
mutations act by converting deleterious BS mutations into neutral or beneficial ones. By that they
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effectively lower or even remove fitness barriers. This effect is more significant with a large num-
ber of downstream genes, where more constraints on TF evolution exist. The fraction of different
pathways does not change much if promiscuity-promoting mutations are present. Note that as
a function of Ns, the fraction of fast Partial pathways does not change considerably, but the
fraction of slow Partial pathways decreases while increasing the fraction of slow One TF Lost

pathways.
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Supplementary Figure 34: Promiscuity-promoting mutations accelerate specialization. We plot
the times to specialization via different pathways that are depicted in Suppl. Fig. 28, as a function of
Ns for different values of nG (the number of downstream genes per TF), in the absence (solid lines)
and presence (dotted lines) of promiscuity-promoting mutations. Specialization times are shown
for the slow One TF Lost pathway (numbered 1, yellow), the slow Partial pathway (numbered
2 and 5, red), and the fast Partial pathway (numbered 3 and 4, blue). In general, promiscuity-
promoting mutations shorten evolutionary specialization times. This effect is particularly marked
for the slow pathways (One TF Lost and slow Partial) and for large numbers of downstream
genes nG. The pie charts illustrate the fraction of the various pathways at each nG value. For
nG = 8, we plot the pie charts for the different Ns values marked on the x-axis.

Typical trajectory

Promiscuity-promoting mutations play different roles in different phases of the evolutionary tra-
jectory. While after specialization they are less favorable (because they lower binding affinity and
potentially destabilize the specialized state), during adaptation they can facilitate fitness valley
crossing. In Suppl. Fig. 35, we plot the trajectory of the average number of promiscuous TF po-
sitions as a function of time. Starting with no promiscious positions in the Initial state, the
number of promiscuous positions increases during the transient One TF Lost state, and then de-
creases to reach its steady state value after reaching the Specialize Both state. The speedup of
evolution is mainly during the transient One TF Lost phase, where the number of promiscuous
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positions peaks.
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Supplementary Figure 35: Number of promiscuous positions transiently peaks during adapta-
tion and relaxes after specialization to an intermediate steady state value. We plot the average
number of promiscuous positions 〈LP (t)〉 as a function of time for L = 5, nG = 4, Ns = 250 and
rP = 10; other parameters are at baseline values. Solid black arrow indicates the increase in the
number of promiscuous positions in the transient One TF Lost phase, while the dotted black ar-
row indicates their decrease after specializing. The red dotted line indicates the steady state value
of 〈LP 〉.

Supplementary Note 7 Comparison between biophysically-realistic
model and simple models

Gene duplication literature often studies models with a small number of discrete alleles, for exam-
ple, binary alleles informing whether TF-BS binding occurs. Throughout this work we employ a
different approach by including a biophysical description of TF/DNA interactions. Consequently,
a large number of different genotypes can often realize each functional architecture (macrostate),
capturing naturally the important effects of neutral processes (mutational entropy). Our frame-
work reduces to biallelic models at L = 1 and alphabet size D = 2 (and multiallelic version with
D = 4), so we can directly study the relationship between the results for a biophysically realis-
tic fitness landscape and various common simplifications. We refer to these simpler models with
L = 1 here as the biallelic-like model. The biallelic-like model cannot reproduce some of the results
obtained with the biophysically-realistic model of the main text. In particular, certain important
macrostates do not exist in the biallelic-like model. We also find an opposite dependence on time
to specialization for the different pathways (One TF Lost vs. Partial). In Suppl. Fig. 36 we
plot the dominant macrostate at steady state for two values of D. For D = 4 (right panel of the fig-
ure), many qualitative features are retained from the more realistic main text model: for instance,
the change from No Regulation to Partial to Specialize Both as Ns increases, and the
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change from Specialize Both to Specialize Binding to One TF Lost as ρ increases. For
D = 2, we have Partial macrostate dominating at Ns = 0, because its entropy is larger than
that of the No Regulation macrostate. Also, at large Ns and large ρ, Partial dominates via the
genotypes in which all TF-BS links are strong but the signal sensing domain is not specialized.
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Supplementary Figure 36: Dominant macrostate at steady state for biallelic-like models. Here
we plot the dominant macrostate at steady state as a function of Ns and ρ for biallelic-like models
with alphabet size D = 2 (left panel) and D = 4 (right panel). Color code used to indicate different
macrostates is the same as in the main text.

Certain variants of Partial that exist in the general model do not exist in the biallelic-like
model, as shown in Suppl. Fig. 37. These states have intermediate fitness and they arise in the
fast Partial pathway of the main text model, where they form a bridge between the Initial
and the Specialize Both macrostates. Hence, in biallelic models, fast Partial pathways do
not exist and instead, passing through Partial entails either losing a BS or specializing very fast
in the signal sensing domain. These states have low fitness in the biallelic-like model and hence
Partial pathway is actually slow. This is plotted in Suppl. Fig. 38.

Supplementary Figure 37: This type of Partial macrostate is absent in biallelic-like models.
In biallelic-like models, strong TF-BS link means an exact match between TF and BS. Hence, the
description of Partial states of the kind shown here is impossible.

In summary, biallelic-like models and the biophysically realistic model share a few similari-
ties but also differ in certain important aspects. Biallelic-like models, while being very simplistic,
still capture a few key qualitative features of the steady state distribution, for example, the transi-
tions of dominant macrostates along the ρ and Ns axes. On the other hand, biallelic-like models
paint a completely different picture of evolutionary dynamics and timescales. Because they do not
consider intermediate-fitness Partial states, unlike in the biophysically realistic model, time to
specialization through Partial becomes slower than through One TF Lost.
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Supplementary Figure 38: Biallelic-like models reverse the relation between different pathways
to specialization: Partial pathways are the slow ones and One TF Lost pathways are faster,
in contrast to the full model studied in the main text. We plot the times to specialization via
One TF Lost (left panel) and via Partial (right panel), at Ns = 100, while changing rTF (red
curve) and rS (blue curve) separately, keeping the other parameters at their baseline values in each
case. We also show the fraction of these pathways as pie charts (upper pie charts refer to different
rTF values; lower ones to different rS values).
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Supplementary Methods

Markov chain formulation

As explained in Supplementary Note 1, we assume that the time between the emergence and fixa-
tion of a beneficial mutation is much shorter than the time until the emergence of the next beneficial
mutation. Hence, by neglecting the times between emergence and fixation (or loss) of mutations the
population can be captured at any time by a single genotype. This so-called “fixed state assump-
tion” lets us describe the state of the population as a probability distribution over the possible
genotypes, P (D, t) or as a probability distribution over the possible reduced-genotypes, P (G, t).
This can be obtained via a continuous-time discrete-space Markov chain defined over the genotype
spaceD or the reduced-genotype space G = {M,kij , σi}. The transition rate between y and x, where
either x, y ∈ D are genotypes, or x, y ∈ G are reduced-genotypes, is the rate of substitution [4]:

rxy = 2NµxyΦy→x (S20)

where N is the population size, µxy is the mutation rate from (reduced-) genotype y to (reduced-
) genotype x, and Φy→x is the probability of fixation of a single copy of x in a population of y
(Eq. (S3)). As the probability of fixation Φy→x depends on x and y only via their fitness values F (x)

and F (y), and µxy can be obtained analytically for reduced-genotypes, it is sufficient to consider
the Markov chain on the space of reduced-genotypes G = {M,kij , σi} rather than on the whole
genotype space D. Each reduced-genotype x = (M,kij , σi) can be realized by multiple genotypes
(DNA sequences), whose number is given by Nseq(kij |M) (Eq. (S23) and Eq. (S24)) below. Now,
the evolution of the probability distribution P (G, t) is captured by

∂P (G, t)
∂t

= RP (G, t), (S21)

where R is the transition rate matrix of the underlying Markov chain where each entry rxy denotes
the rate of transition from y to x.

Steady state after duplication

The probability distribution at steady state, PSS(G) = P (G, t → ∞), is the non-trivial solution of
RPSS(G) = 0. It is also possible to obtain PSS(G) by invoking the set of detailed balance conditions,
rxyPSS(y) = ryxPSS(x), ∀x, y. This results in an elegant expression

PSS(G) = P0(G) exp(2NF (G)), (S22)

where P0 is the neutral distribution of reduced-genotypes and N is the population size.

To calculate the neutral distribution P0 of the reduced-genotypes, we begin by enumerating the
number of possible BS sequences j that have mismatch values (k1j ,k2j) with respect to two TFs that
match each other at M out of L consensus positions. This number equals:
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Nseq(k1, k2|M) =

jmax
0∑

j0=jmin
0

(
M

j0

)
3M−j0

(
L−M

L− j0 − k1

)(
j0 + k1 −M
L− j0 − k2

)
2k1+k2+2j0−L−M

jmin
0 = max(max(0,M −min(k1, k2)), dL+M − k1 − k2

2
e)

jmax
0 = min(M,L−max(k1, k2))

(S23)

where for brevity we write k1, k2 instead of k1j , k2j , and dxe is the ceiling function, which maps x
onto the nearest integer larger than or equal to x. Now, the neutral distribution is (up to propor-
tionality constant)

P0(x) ∼ Nseq(k11, k21|M)Nseq(k12, k22|M)

(
L

M

)
3L−M . (S24)

From Eq. (S22) we obtain the steady state distribution over the macrostate space. For every
macrostate z ∈ M the probability to be in this macrostate at steady state equals the sum of proba-
bilities of being in all reduced-genotypes x that are assigned to that macrostate

QSS(z) =
∑
x∈Sz

PSS(x). (S25)

Free fitness

In thermodynamics and statistical physics the free energy of a system defined as F = E − TS, is
a state variable which combines energy E and entropy S. At equilibrium, the free energy of a me-
chanically isolated system kept at equilibrium is minimal. Alternatively, one can use the statistical
definition of free energy [12]

F = − 1

β
log

(∑
r

gre
−βEr

)
(S26)

where Er is the energy of microstate r of the system, gr is its weight or multiplicity and summation
is over all microstates r the system can occupy. Previous work drew an analogy between statistical
physics and evolutionary dynamics, where the energy of a microstate Er was analogous to fitness
F of a particular genotype and β = 1/kBT to the population size 2N . One can follow a similar
rationale and define free fitness F̂ for each macrostate z [10]:

F̂ (z) =
1

2N
log
[ ∑
x∈Sz

P0(x)e2NF (x)
]
, (S27)

where summation is over all genotypes x that belong to this macrostate x ∈ Sz and P0(x) is the neu-
tral probability of genotype x. The free fitness also equals the likelihood of being at that macrostate
at steady state:

F̂ (z) =
1

2N
logQSS(z), (S28)

where QSS(z) is analogous to the partition function in statistical physics.
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Dominant macrostate

We denote the most probable macrostate at steady state by

z∗SS := arg max
z∈M

QSS(z). (S29)

Evolutionary dynamics

We obtain the evolutionary dynamics of P (G, t) in units of generation time tg by numerically inte-
grating the Markov chain in time-steps corresponding to one generation:

P (G, t+ tg) = (I + Rtg)P (G, t). (S30)

We define A = I + Rtg as the transition probability matrix in this time-unit. From P (G, t), we
obtain the macrostate dynamics (Eq. (S21)) Q(M, t). For every z ∈M,

Q(z, t) =
∑
x∈Sz

P (x, t). (S31)

Dominant macrostate

To follow the macrostate dynamics in a more compact way, we refer to the most probable macrostate
at each time-point t

z∗(t) := arg max
z∈M

Q(z, t) (S32)

as the dominant macrostate at that time.

Time to reach a particular macrostate

We compute the mean first hitting time, TS←x, to any subset of reduced-genotypes, S, from any
other reduced-genotype x, by using the following recursive equation.

TS←x = tg +
∑
y

ayxTS←y, (S33)

where ayx are elements of the transition probability matrix A. We consider subsets Sz of geno-
types that belong to a particular macrostate z, and compute the mean first hitting times, TSz←x,
to this macrostate. In particular, we compute the mean first hitting times to Specialize Both,
which we refer to as the “time to specialization”, τ(x).
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Dwell times

For every macrostate z, we also compute the dwell time, tdwell(z), which is the mean time to “es-
cape” from that macrostate into any other macrostate z′. For every genotype x in Sz , the mean time
to escape from Sz is by definition TS′

z←x, the mean time taken to hit S′z = G−Sz , the complementary
set of Sz . We define the dwell time in macrostate z as

tdwell(z) := 〈TS′
z←x〉x∈Sz (S34)

Stochastic simulations

In addition to analytical solutions of the Markov chain formulation we also used stochastic simula-
tions of TF and BS evolution to validate our analytical solution and also to test additional cases that
were not analytically solvable, such as the case where each TF post-duplication regulates multiple
genes.

Gillespie Simulation - main model

We use the Gillespie Stochastic Simulation Algorithm [13] to track the evolutionary trajectories of
the system. Since we employ the fixed-state assumption, the time to fixation of each mutation is
small compared to the waiting time between mutations and we neglect it in the calculations. At
each simulation run we obtain a temporal series, s0, s1, s2, . . . , of genotypes (DNA sequences of TF
consensus sequence and binding sites, along with signal sensing alleles), and a corresponding se-
quence of times, t0 = 0, t1, t2, . . . , at which substitutions between consecutive genotypes occurred.
Here, s0 is the initial DNA sequence with which we start the simulation. We construct s0 by sam-
pling a genotype from the steady state before duplication (with only 1 TF). For every i, from ti

to ti+1, the DNA sequence of the system is si, from which there is a substitution event to si+1 at
ti+1. We obtain si+1 by appropriately sampling substitutions available from si, which can occur
via TF consensus sequence mutations, or TF sensing domain mutations, or BS sequence mutations.
We also draw ti+1− ti (the waiting time) from the appropriate exponential distribution in the Gille-
spie framework. For each DNA sequence si, one can obtain the reduced-representation (M,kij , σi).
From this, we obtain, for each simulation run r, the time trajectories of reduced-genotypes, xr(t),
starting from xr(t = 0) = xr0. By running multiple times and computing the fractions of runs
with each reduced-genotype x at each t, we obtain the dynamical trajectory of the probability dis-
tribution of reduced-genotypes, P sim(G, t), and the steady state distribution, P simSS (G). Grouping
the reduced-genotypes into macrostates, we also obtain the dynamical trajectory of the probability
distribution of macrostates, Qsim(M, t) and steady state distribution of macrostates, QsimSS (M).

The simulations enable us to compute non-trivial path-dependent quantities relating to an ensem-
ble of trajectories {xr(t)}, as well as to provide full distributions of quantities of interest. One such
example is the mean hitting time to some macrostate z, conditioned on not hitting some other par-
ticular macrostate on the way. While it is possible in principle to compute such a path-dependent
quantity exactly, in practice this requires too much numerical effort and Gillespie simulation be-
comes the method of choice.
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Time to specialization, dependent on pathway

As explained in the main text, for a single trajectory (population), there are two main paths from
Initial to Specialize Both, each with a different dominant “transient state”. One pathway is
fast and predominantly goes via genotypes in Partial macrostate, and the other is slow and pre-
dominantly via genotypes in One TF Lost macrostate. In each simulation run r, we calculate the
time to specialization, and also record the dominant transient state. By running many simulations,
we have a set of times to specialization that go via the fast pathway of Partial {τfast}, and those
via the slow pathway of One TF Lost {τslow}. Using these, we obtain the empirical distributions
of τslow and τfast, their means (τ̄slow = 〈τslow〉 and τ̄fast = 〈τfast〉); we also record the fraction of
pathways proceeding via the slow and fast alternatives.

Alternative model - fixed signal sensing domain

In the second model variant, as mentioned in Supplementary Note 1, TFs are not equipped with
an evolvable signal sensing domain σi. The active concentrations of the TFs, Ci(m), in different
environments m, are explicitly defined separately. In the stochastic simulation of this model vari-
ant, we therefore considered mutations only in the TF consensus sequence and the BS sequences.
We also assumed a timescale separation, such that the TF consensus sequences evolve on a slower
timescale compared to the BS sequences. We implement this by performing alternating rounds
of one TF consensus sequence mutation and 50 BS sequence mutations, resulting in rTF = 0.02.
These two rounds together are considered a single time step of the simulation, which amounts to
counting the number of TF consensus sequence mutations that have arisen.

As in the Gillespie simulation, we choose the starting point by sampling from the steady state
before duplication with only 1 TF. The duplicate TF has the same binding preferences as the original
TF but has different expression pattern C2(m) than the first C1(m). In each round, we calculate the
fixation probability of the mutant using Eq. (S3), and compare a randomly drawn number between
0 and 1 to either fix them or not.

In Suppl. Fig. 39 we compare between this stochastic simulation and the analytical solution
for the steady state distributions of various mismatches the steady state distribution of the match
between the two TFs.
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Supplementary Figure 39: Comparison between stochastic simulation and exact results. Blue
bars represent the statistics over 400 independent runs of the stochastic simulation. Red curve
represents the analytical solution for the steady state distribution. We illustrate distributions of k11

mismatch between first TF and first gene (a) where selection for the regulation of this gene incurs
low mismatch; mismatch between second gene and TF k21 where selection here results in high
mismatch, such that this gene is NOT regulated by this TF. (c) illustrates the match distribution
M between the two TFs in the absence of selection, so that the Bernoulli distribution is obtained.
Parameters: L = 8, ε = 3, C0 = 3.269× 105.
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