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Abstract Understanding the relation between genotype and phenotype remains a major

challenge. The difficulty of predicting individual mutation effects, and particularly the interactions

between them, has prevented the development of a comprehensive theory that links genotypic

changes to their phenotypic effects. We show that a general thermodynamic framework for gene

regulation, based on a biophysical understanding of protein-DNA binding, accurately predicts the

sign of epistasis in a canonical cis-regulatory element consisting of overlapping RNA polymerase

and repressor binding sites. Sign and magnitude of individual mutation effects are sufficient to

predict the sign of epistasis and its environmental dependence. Thus, the thermodynamic model

offers the correct null prediction for epistasis between mutations across DNA-binding sites. Our

results indicate that a predictive theory for the effects of cis-regulatory mutations is possible from

first principles, as long as the essential molecular mechanisms and the constraints these impose on

a biological system are accounted for.

DOI: 10.7554/eLife.25192.001

Introduction
The interaction between individual mutations – epistasis – determines how a genotype maps onto a

phenotype (Wolf et al., 2000; Phillips, 2008; Breen et al., 2012). As such, it determines the struc-

ture of the fitness landscape (de Visser and Krug, 2014) and plays a crucial role in defining adaptive

pathways and evolutionary outcomes of complex genetic systems (Sackton and Hartl, 2016). For

example, epistasis influences the repeatability of evolution (Weinreich et al., 2006; Woods et al.,

2011; Szendro et al., 2013), the benefits of sexual reproduction (Kondrashov, 1988), and species

divergence (Orr and Turelli, 2001; Dettman et al., 2007). Studies of epistasis have been limited to

empirical statistical descriptions, and mostly focused on interactions between individual mutations in

structural proteins and enzymes (Phillips, 2008; Starr and Thornton, 2016). While identifying a

wide range of possible interactions (Figure 1), these studies have not led to a consensus on whether

there is a systematic bias on the sign of epistasis (Lalić and Elena, 2013; Kussell, 2013;

Velenich and Gore, 2013; Kondrashov and Kondrashov, 2015), a critical feature determining the

ruggedness of the fitness landscape (Poelwijk et al., 2011). Specifically, it is only when mutations

are in sign epistasis that the fitness landscape can have multiple fitness peaks - a feature that deter-

mines the number of evolutionary paths that are accessible to Darwinian adaptation (de Visser and

Krug, 2014). Furthermore, even a pattern of positive or negative epistasis has consequences for

important evolutionary questions such as the maintenance of genetic diversity (Charlesworth et al.,

1995) and the evolution of sex (Kondrashov, 1988; Otto and Lenormand, 2002). While the

absence of such a bias does not reduce the effect of epistasis on the response to selection, it does

demonstrate that predicting epistasis remains elusive.

Scarcity of predictive models of epistasis comes as no surprise, given that most experimental

studies focused on proteins. The inability to predict structure from sequence, due to the
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prohibitively large sequence space that would need to be experimentally explored in order to under-

stand even just the effects of point mutations (Maerkl and Quake, 2009; Shultzaberger et al.,

2012), let alone the interactions between them, prevents the development of a predictive theory of

epistasis (Lehner, 2013; de Visser and Krug, 2014). In fact, the only predictive models of epistasis

focus on tractable systems where it is possible to connect the effects of mutations to the underlying

biophysical and molecular mechanisms of the molecular machinery (Dean and Thornton, 2007; Leh-

ner, 2011); namely, RNA sequence-to-shape models (Schuster, 2006), and models of metabolic net-

works (Szathmáry, 1993). Even though these studies have provided accurate predictions of

interactions between mutations, applying their findings to address broader evolutionary questions

remains challenging. For RNA sequence-to-shape models, the function of a novel phenotype (new

folding structure) is impossible to determine without experiments. In addition, this approach cannot

account for the dependence of epistatic interactions on even simple variations in cellular environ-

ments, which are known to affect epistasis (Flynn et al., 2013; Caudle et al., 2014). On the other

hand, metabolic network models are limited to examining the effects of large effect mutations, like

deletions and knockouts, and lack an explicit reference to genotype.

In order to overcome the limitations of existing theoretical approaches to predicting epistasis, we

focused on bacterial regulation of gene expression as one of the simplest model systems in which

the molecular biology and biophysics of the interacting components are well understood. We ana-

lyze the effects of mutations in a prokaryotic cis-regulatory element (CRE) – the region upstream of a

gene containing DNA-binding sites for RNA polymerase (RNAP) and transcription factors (TFs). As

such, we study a molecular system where an interaction between multiple components, rather than a

single protein, determines the phenotype. Promoters that are regulated by competitive exclusion of

RNAP by a repressor are particularly good candidates for developing a systematic approach to

understanding epistasis as, in contrast to coding regions as well as more complex CREs and activat-

able promoters (Garcia et al., 2012), the phenotypic effects of mutations in binding sites of RNAP

and repressor are tractable due to their short length and the well-understood biophysical properties

of protein-DNA interactions (Bintu et al., 2005b; Saiz and Vilar, 2008; Vilar, 2010). Understanding

eLife digest Mutations are changes to DNA that provide the raw material upon which evolution

can act. Therefore, to understand evolution, we need to know the effects of mutations, and how

those mutations interact with each other (a phenomenon referred to as epistasis). So far, few

mathematical models allow scientists to predict the effects of mutations, and even fewer are able to

predict epistasis.

Biological systems are complex and consist of many proteins and other molecules. Genes are the

sections of DNA that provide the instructions needed to produce these molecules, and some genes

encode proteins that can bind to DNA to control whether other genes are switched on or off.

Lagator, Paixão et al. have now used mathematical models and experiments to understand how the

environment inside the cells of a bacterium known as E. coli, specifically the amount of particular

proteins, affects epistasis.

These mathematical models are able to predict interactions between mutations in the most

abundant class of DNA-binding sites in proteins. This approach found that the nature of the

interaction between mutations can be explained through biophysical laws, combined with the basic

knowledge of the logic of how genes regulate each other’s activities. Furthermore, the models allow

Lagator, Paixão et al. to predict interactions between mutations in several different environments,

such as the presence of a new food source or a toxin, defined by the amounts of relevant DNA-

binding proteins in cells.

By providing new ways of understanding how genes are regulated in bacteria, and how gene

regulation is affected by mutations, these findings contribute to our understanding of how

organisms evolve. In addition, this work may help us to build artificial networks of genes that

interact with each other to produce a desired response, such as more efficient production of fuel

from ethanol or the break down of hazardous chemicals.

DOI: 10.7554/eLife.25192.002
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the effects of point mutations in the cis-element

on the binding properties of RNAP and TFs

allows for the construction of a realistic model of

transcription initiation (Bintu et al., 2005a;

Kinney et al., 2010), while providing a measur-

able and relevant phenotype - gene expression

level - for the analysis of epistasis.

Results
Here we studied epistasis between point muta-

tions in the canonical lambda bacteriophage CRE

(Ptashne, 2011) (Figure 2). We employ a fluores-

cent reporter protein that is under the control of

the strong lambda promoter PR (Figure 2a),

which is fully repressed by an inducible TF, CI

(Figure 2b). RNAP and CI have overlapping bind-

ing sites in this CRE, and hence compete for

binding. We created a library of 141 random dou-

ble mutants in the CRE, with all their correspond-

ing single mutants (Supplementary file 1). This

design allows us to calculate epistasis between

the mutations in the cis-regulatory element in

two environments: in the absence of CI, when

only RNAP determines expression; and in the

presence of CI when the two proteins compete

for binding.

Figure 1. The different types of epistasis between two

point mutations. Two point mutations, A and B (grey),

individually increase the measured quantitative

phenotype (gene expression, for example) compared

to the wildtype. In this study, we use the multiplicative

expectation of how the phenotypic effects of two

mutations contribute to the double mutant phenotype,

according to which epistasis = fm12 / (fm1fm2), where

fm12 is the relative fluorescence of a double mutant

(m12), and fm1 and fm2 the relative fluorescence of the

two corresponding single mutants (m1 and m2),

respectively. An alternative to the multiplicative

assumption would be the additive one, in which the

effect of the double mutant in the absence of epistasis

Figure 1 continued on next page

Figure 2. Experimental system. The PR promoter system used in the empirical measurements consists of a strong

lambda phage PR promoter (RNAP-binding site) and two CI operator sites (transcription factor binding sites OR1

and OR2), which control the expression of a venus-yfp reporter gene. cI is encoded on the opposite strand,

separated by a terminator and 500 bp of random sequence, and under the control of an inducible promoter PTET.

Both venus-yfp and cI genes are followed by a terminator sequence. (a) In the absence of CI, the promoter is fully

expressed. (b) CI binds cooperatively to two operators in order to repress the promoter.

DOI: 10.7554/eLife.25192.004
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Most double mutants change the sign of epistasis between the two
environments
Throughout we assume a multiplicative model of epistasis, which defines epistasis as a deviation of

the observed double mutant expression level (relative to the wildtype) from the product of the rela-

tive single mutant expression levels (Phillips, 2008). It should be noted that there is no a priori

expectation for the sign of epistasis, even if most mutations are deleterious: epistasis denotes only

deviations from the expected phenotype of the double mutant, and can be either positive or nega-

tive (Figure 1). First, we measured expression levels in the absence of CI (Figure 3—figure supple-

ment 1a, Figure 3—figure supplement 2a). We observe that the majority of double mutants are in

negative epistasis (Figure 3a) — the observed double mutant expression level is lower than the mul-

tiplicative expectation based on single mutant expression levels (Pearson’s c21,112=43.82, p<0.0001).

Specifically, we observe negative epistasis in 83% of 113 mutants that display statistically significant

epistasis, while 28 double mutants do not display significant epistasis (Figure 3a, Figure 3—source

data 1).

Next, we estimated epistasis at high CI concentration, when gene expression depends on the

competitive binding between RNAP and CI (Figure 3b, Figure 3—figure supplement 1b, Figure 3—

figure supplement 2b, Figure 3—source data 1). In a repressible promoter, the effects of muta-

tions on the binding of the two proteins have opposite effects on gene expression — a reduction in

RNAP binding leads to a decrease in gene expression, while a reduction in CI binding leads to

higher expression levels. By comparing epistasis between two environments – absence of CI and

high CI concentration – we find that the 141 tested random double mutants show a strong depen-

dence on the environment (ANOVA testing for a GxGxE interaction: F1,280 = 21.77; p<0.0001), in

line with previous observations in another bacterial regulatory system (Lagator et al., 2016). Inter-

estingly, 58% of double mutants display a change in the sign of epistasis between the two environ-

ments (Figure 4). Especially prevalent is a switch from negative epistasis in the absence of CI, to

positive epistasis in its presence (Figure 4). Strikingly, the proportion of double mutants exhibiting

reciprocal sign epistasis (when the sign of the effect of each mutation changes in the presence of the

other mutation) is greater in the presence (66%) than in the absence (8%) of CI (Supplementary file

2). This difference likely arises from the molecular architecture of a repressible strong promoter.

Mutations affect the binding of both DNA-binding proteins, but in the presence of CI the effect on

the binding of RNAP is only unmasked when CI does not fully bind, a scenario that is more likely in

the presence of two mutations.

Generic model of a simple CRE
In order to understand these observations, we created a model of gene regulation that relies on sta-

tistical thermodynamical assumptions to model the initiation of transcription, originally developed to

describe gene regulation by the lambda bacteriophage repressor CI (Ackers et al., 1982). Impor-

tantly, our model is generic, as it does not consider the details of any specific transcription factors

involved in regulation. Instead, we model competitive binding between two generic transcription

factors that share a single binding site (Figure 5a). The binding of one of these TFs leads to an

increase in the gene expression level, in a manner similar to the function of a typical RNAP or an acti-

vator. The other is a repressor molecule, the binding of which has a negative effect on gene expres-

sion level, achieved by blocking access of the activator to its cognate binding site. In order to draw a

parallel to our experimental system, we refer to these two TFs in the generic model as ‘RNAP’ and

‘repressor’, without actually relying on any specific properties of the two molecules, such as CI

dimerization, or cooperative binding of CI dimers to multiple operator sites.

In the thermodynamic model of transcription, each DNA-binding protein is assigned a binding

energy (Ei) to an arbitrary stretch of DNA. In our formulation, we assume that each position along

the single DNA-binding site under consideration contributes additively to the global free binding

energy – an assumption found to be accurate at least for a few mutations away from a reference

sequence (Vilar, 2010). These energy contributions can be determined experimentally

(Kinney et al., 2010) and are typically represented in the form of an energy matrix. Given a set of

DNA-binding proteins (specifically, their energy matrices) and a promoter sequence, a Boltzmann

weight can be assigned to any configuration of these proteins on the promoter. The Boltzmann

weight is proportional to the probability of finding the system in each of the possible configurations.
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By assigning a Boltzmann weight to all configurations, one can calculate the probability of finding

the system in a particular state (a set of configurations sharing a common property). Specifically, one

can calculate the probability of finding the system in a configuration that leads to the initiation of

transcription (Figure 5a).

Figure 3. Epistasis in the absence and in the presence of CI. Points show log10 of expected versus log10 of

observed double mutant effects (each relative to wildtype fluorescence) for all 141 double mutants, in the (a)

absence; and (b) presence of the CI repressor. The solid line represents no epistasis (expected equal to the

observed double mutant expression). Six replicates of each mutant were measured. Bar charts show total number

of double mutants exhibiting positive (orange) and negative (blue) epistasis, while the darker areas represent the

number that are significantly different from the null expectation of the model (no epistasis). The data presented in

this figure can be found in Figure 3—figure supplement 1, Figure 3—figure supplement 2, and Figure 3—

source data 1.

DOI: 10.7554/eLife.25192.005

The following source data and figure supplements are available for figure 3:

Source data 1. Fluorescence measurements of single and double mutants, and the calculated values for epistasis

for the random mutant library.

DOI: 10.7554/eLife.25192.006

Figure supplement 1. Relative fluorescence of single mutants.

DOI: 10.7554/eLife.25192.007

Figure supplement 2. Relative fluorescence of double mutants.

DOI: 10.7554/eLife.25192.008
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In our generic model, we consider only a single binding site to which ‘repressor’ and ‘RNAP’ com-

pete for binding. Note that the model does not make any assumptions about the identity of the TFs

that are binding DNA and hence does not utilize any specific energy matrix. The model is, therefore,

general in nature, relying only on the physical and mechanistic properties of protein-DNA binding. In

such a system, three basic configurations are possible: no proteins bound to DNA, only ‘RNAP’

bound, or only ‘repressor’ bound (Figure 5a). Each of these states is assigned a Boltzmann weight

(Z) based on its free binding energy Ei: 1; P½ �e�bEP ; and ½R�e�bER , respectively, where b is 1/kBT; sub-

script P refers to ‘RNAP’, subscript R to the ‘repressor’; [P] and [R] to the exponential of the chemical

potential for the ‘RNAP’ and the ‘repressor’ which for simplicity we equate to the concentrations of

the two molecules; and Ei corresponds to the change in Gibbs free energy of the reaction of the

binding between protein and DNA. Assuming that the system is in thermodynamic equilibrium, we

can calculate the probability of finding the system in a configuration leading to transcription (pON) –

when RNAP is bound:

pON ¼
P½ �e�bEP

1þ P½ �e�bEP þ R½ �e�bER

The phenotype of a mutant is obtained by calculating pON for a free energy E0
i ¼ EiþD, where D

represents the effect of the mutation on the binding of the protein to the sequence. The energies of

single mutants and double mutants are E
m1

P ¼ EPþ p1 and E
m1

R ¼ ER þ p1; and E
m2

P ¼ EP þ p2 and

E
m2

R ¼ ERþ p2; and E
m12

P ¼ EPþ p1þ p2 and E
m12

R ¼ ERþ p1 þ p2, respectively, where pi stands for the

effect of mutation i on the binding of ‘RNAP’ and ri for the effect on ‘repressor’ binding. From these

measures of the mutational effects, we calculated epistasis against a multiplicative model, in the

same manner as done for the experimental measurements:

p
m12

ON ¼ �pWT
ON

p
m1

ON

pWT
ON

p
m2

ON

pWT
ON

With the generic model, we ask only about the sign of epistasis and say that it is positive when

e >1 and negative when e <1. The generic model cannot predict the magnitude of epistasis in any

Figure 4. Sign of epistasis changes with the environment for most double mutants. Points show the log10 value of

epistasis in the absence of repressor, and the difference in the log10 value of epistasis in the presence and the

absence of repressor: log10 (eCI) – log10 (enoCI), for all 141 double mutants. Points above the solid diagonal line

exhibit positive, while points below exhibit negative epistasis in the presence of the CI repressor. Most mutants

have a different sign of epistasis between the two environments (gray area). Bar chart shows total number of

double mutants that are always in positive (orange) or in negative (blue) epistasis, and the total number that

changes sign between the two environments (gray). The darker areas in the bars represent the number that are

significantly different from the null expectation of the model (no epistasis) in both environments. Six replicates of

each mutant were measured. The data presented in this figure is calculated from Figure 3—source data 1.

DOI: 10.7554/eLife.25192.009
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Figure 5. Overview of the generic model. The theoretical approach used in this study, originally developed to describe gene regulation by the lambda

bacteriophage repressor CI (Ackers et al., 1982), relies on statistical thermodynamics assumptions to model initiation of transcription. (a) In this

framework, each DNA-binding protein is assigned a binding energy (Ei) to an arbitrary stretch of DNA. Given a set of DNA-binding proteins (a generic

RNAP-like and a generic repressor-like TF, in this case) and a promoter sequence, a Boltzmann weight can be assigned to any configuration of these

TFs on the promoter. By assigning a Boltzmann weight to all configurations, one can calculate the probability of finding the system in a configuration

that leads to the initiation of transcription. (b) When considering only the binding of a single protein to DNA (for example ‘RNAP’ only), if mutations

Figure 5 continued on next page
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particular biological system without accounting for the underlying energy matrices and intracellular

concentrations of relevant TFs. As the model does not account for the details of any specific regula-

tory system, it considers only the direct, primary effects of a mutation on binding affinity

(Bintu et al., 2005a), and does not consider any potential interactions arising from secondary

effects, namely the effects of a mutation on the structure of DNA (Rajkumar et al., 2013), accessibil-

ity to the binding sites (Levo and Segal, 2014), protein cooperativity (Todeschini et al., 2014), loop-

ing (Levine et al., 2014), or any other potential regulatory structures.

The sign of epistasis can be predicted from first principles
Using the generic model, we first studied the effects of mutations only on ‘RNAP’ binding (in the

absence of ‘repressor’), and found that epistasis depends only on the sign of individual mutation

effects (Figure 5). Our model predicts that if mutations have the same sign, they are always in nega-

tive epistasis. This prediction arises from the non-linear relationship between binding energy and

expression pon (Figure 5b). Namely, when repressor concentration goes to zero, epistasis is negative

only when e�p1 þ e�p2�p1 � p2 - a condition satisfied only when p1 and p2 have the same sign. Con-

versely, when the two mutations have a different sign, they will always be in positive epistasis. In

general, the physical properties of the relationship between binding and gene expression indicate

that the sign of epistasis for any given TF depends only on the sign of individual mutation effects (p1

and p2) upon binding (Figure 5c).

Experimental observations do not significantly differ from these predictions for the sign of epista-

sis (c21,112=3.64, p=0.056), as 96 of the 113 double mutants (85%) that are in significant epistasis in

the absence of CI conform to model predictions. Experimental deviations from the generic model

predictions (i.e. displaying positive epistasis when both mutations have the same sign) could be due

to the secondary effects of mutations, as they could affect the general context of RNAP binding

(Rajkumar et al., 2013), or the ability of CI to bind cooperatively (Stayrook et al., 2008).

The model also describes patterns of epistasis in the presence of a repressor. By assuming that

every point mutation affects the binding of both ‘RNAP’ and ‘repressor’, we find that the environ-

mentally dependent change in the sign of epistasis depends on the concentrations of ‘RNAP’ and

‘repressor’, as well as the sign and relative magnitude of individual mutation effects (Table 1—

source data 1). At high ‘repressor’ concentrations, effects of mutations on ‘repressor’ binding domi-

nate over their effects on ‘RNAP binding’. In these environments, the sign of epistasis depends only

on the sign of individual mutation effects on ‘repressor’ binding.

In general, assuming that ‘RNAP’ concentration stays relatively constant (Raser and O’Shea,

2005) allows us to derive how the sign of epistasis depends on repressor concentration (Table 1).

When one point mutation negatively affects only ‘RNAP’ binding, while the other only ‘repressor’

binding (Figure 5d), the system does not exhibit any epistasis when ‘repressor’ concentration is very

low, as only one of the mutations affects ‘RNAP’ binding (Figure 5e). As ‘repressor’ concentration

increases, the system is in positive epistasis. Finally, at very high ‘repressor’ concentrations, which

are probably not biologically relevant, epistasis approaches 0 as the ‘repressor’ binds too strongly.

When point mutations negatively affect both ‘RNAP’ and ‘repressor’ binding (Figure 5f), epistasis

changes the sign from negative to positive as ‘repressor’ concentration increases (Figure 5g).

To intuit this finding, consider two mutations that reduce binding of both ‘RNAP’ and ‘repressor’.

In the absence of ‘repressor’, when only ‘RNAP’ is present, epistasis will be negative because of the

Figure 5 continued

have a negative effect on protein-DNA binding, the model predicts negative epistasis between them in terms of expression. This prediction arises from

the non-linear relationship between binding energy and gene expression pon (dotted line). In this illustration, we show a relative change in binding

energy compared to the sequence with highest possible binding, in kT. (c) By generalizing the properties of the relationship between binding and gene

expression, we conclude that the sign of epistasis depends only on the sign of individual mutation effects (p1 and p2) upon binding. When both ‘RNAP’

and ‘repressor’ are present in the system, epistasis depends on the ‘repressor’ concentration and the magnitude of single mutation effects on ‘RNAP’

and ‘repressor’ binding (d,e,f,g). (d) One point mutation negatively affects only ‘RNAP’ binding, while the other only ‘repressor’ binding. (e) Under such

circumstances, the system shows no epistasis at low ‘repressor’ concentrations, but is in positive epistasis when ‘repressor’ concentration increases.

Finally, at very high repressor concentrations, epistasis approaches 0. (f) Point mutations negatively affect both ‘RNAP’ and ‘repressor’ binding. (g)

Under such conditions, epistasis changes the sign from negative to positive as repressor concentration increases.

DOI: 10.7554/eLife.25192.010
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negative curvature of the relationship between expression and binding energy (Figure 5b). But, in

the presence of ‘repressor’, it is the relative magnitude of individual mutation effects that will deter-

mine the sign of epistasis. This is because mutations that weaken ‘repressor’ binding increase

expression. If the mutation effects are larger on ‘RNAP’, then the negative epistasis on expression

arising from ‘RNAP’ will dominate. When the mutations have a greater effect on ‘repressor’ binding,

then negative epistasis on ‘repressor’ binding will dominate and lead to positive epistasis on expres-

sion, and hence to a dependence on the environment. At high ‘repressor’ concentration, only the

sign of the effects of mutations on ‘repressor’ binding will determine the sign of epistasis. As most

experimentally tested mutations reduce both RNAP and CI binding, our model explains the observa-

tion that most double mutants change the sign of epistasis between the two environments

(Figure 4).

Independent validation of the generic model predictions
The experimental data from the random mutant library (Figures 3 and 4) shows that the patterns of

epistasis between two environments follow the generic model predictions, specifically that epistasis

switches sign between environments in many mutants. However, our experimental design, where we

only measure gene expression levels, does not allow us to identify the effects of a mutation on CI

binding alone. For example, if a mutation decreases gene expression level in the presence of CI, we

cannot know if it decreases RNAP binding, increases CI binding, or both. This prevents a more thor-

ough verification of the generic model. In order to independently experimentally validate the generic

model predictions (Table 1), it is necessary to know the effects of CRE mutations on RNAP and CI.

To obtain this information, we used the experimentally determined energy matrices for RNAP

(Kinney et al., 2010) and CI (Sarai and Takeda, 1989), and utilized it to create five random double

mutants for each possible combination of single mutation effects shown in Table 1. Due to the high

specificity of binding of both RNAP and CI, we could not identify point mutations that simulta-

neously improved the binding of both (Supplementary file 3). Therefore, we validate the model by

measuring epistasis in 30 double mutants (five for each of the six possible combinations of single

mutant effects) in the two environments. We find no difference between the predicted and experi-

mental estimates of the sign of epistasis and its dependence on the two experimental environments

Table 1. Sign of epistasis in a simple CRE depends on the environment and the sign of individual

mutation effects. We consider two environments, one without repressor when mutations affect only

RNAP binding, and the other with high repressor concentration. In the first environment, sign of epis-

tasis is determined only by the sign of individual mutation effects on RNAP binding, while in the sec-

ond environment it is the sign of individual mutation effect on the repressor that matters. For each

mutation, the signs (‘+’ and ‘-‘) represent the sign of its effect on the binding of RNAP (p) and repres-

sor (r), respectively. ‘neg -> pos’ and ‘pos -> neg’ represent combinations that display transitions

from negative to positive, or positive to negative epistasis, respectively. Certain combinations of

mutations are always in negative or always in positive epistasis. The extended version of this table,

which does not assume a constant ‘RNAP’ concentration in the cell, is provided in Table 1—source

data 1.

p1r1

p2r2

�� +� �+ ++

++ posfineg
negfipos

negfipos posfineg negfipos

�+ posfineg always positive always negative

+� posfineg always negative

�� negfipos

DOI: 10.7554/eLife.25192.011

Source data 1. General conditions for the sign of epistasis in two environments.

DOI: 10.7554/eLife.25192.012
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(Pearson’s c

2
2,30=0.68; p=0.72) (Figure 6). As such, the predictions about the sign of epistasis that

arise from the generic model (Table 1) hold true in our experimental system.

Furthermore, we tested if a simple thermodynamic model that incorporates the two energy matri-

ces (Sarai and Takeda, 1989; Kinney et al., 2010) can predict not only the sign, but also the magni-

tude of epistasis in the two environments. Because such a model depends on the concentrations of

RNAP and CI, we estimated the values for these parameters so as to maximize the correlation

between model predictions and empirical values of epistasis. When we excluded those double

mutants which did not empirically exhibit significant epistasis, we found a significant fit between

experimental measurements and model predictions of the magnitude of epistasis in the absence

(F1,15 = 9.86; p<0.01) and in the presence of CI (F1,15 = 4.59; p<0.05) (Figure 6—figure supplement

1). As such, the model predicts not only the general patterns of epistasis (sign), but is also reason-

ably accurate at predicting its magnitude, which is remarkable since the model does not consider

detailed molecular aspects of the experimental system, such as CI dimerization or cooperativity.

Figure 6. The thermodynamic model accurately predicts sign of epistasis and its environment-dependence. In

order to conduct an independent test of the assumptions of the generic model, we expanded the generic model

to include specific information about the two TFs relevant to the experimental system – namely, the energy

matrices for RNAP (Kinney et al., 2010) and CI (Sarai and Takeda, 1989). We could not use the 141 random

mutants to validate the model, as most of them contained mutations that were in the regions of the CRE that were

poorly characterized by the energy matrices. Therefore, using the energy matrices, we had to create a new library

consisting of five random double mutants for each category from Table 1. As we could not identify any single

point mutations that simultaneously improved the binding of both RNAP and repressor, we tested if empirical

measurements of epistasis conformed to model predictions in 30 mutants. The model predictions of the sign of

epistasis and its environment dependence were based only on the sign of individual mutation effects on RNAP

and repressor binding. The location of points corresponds to the experimental measurement of epistasis for each

mutant, while the color indicates the model prediction: (i) blue - double mutants predicted to be in negative

epistasis both in the absence and in the presence of the repressor CI; (ii) orange - double mutants that are always

in positive epistasis; (iii) grey - double mutants predicted to change the sign of epistasis in the two environments.

The color intensity indicates significance – lighter shades represent non-significant, darker shades represent

significant epistasis in both environments (see ‘Empirical verification of the thermodynamic model’ section in

Online Methods). Six replicates of each mutant were measured. The data underlying this figure is presented in

Figure 6—source data 1. The quantitative test of how well the thermodynamic model predicts the magnitude of

epistasis in this dataset is presented in Figure 6—figure supplement 1.

DOI: 10.7554/eLife.25192.013

The following source data and figure supplement are available for figure 6:

Source data 1. Fluorescence measurements of single and double mutants, and the calculated values for epistasis

for the validation mutant library.

DOI: 10.7554/eLife.25192.014

Figure supplement 1. The thermodynamic model predicts the magnitude of epistasis.

DOI: 10.7554/eLife.25192.015

Lagator et al. eLife 2017;6:e25192. DOI: 10.7554/eLife.25192 10 of 16

Research article Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.25192.013
http://dx.doi.org/10.7554/eLife.25192.014
http://dx.doi.org/10.7554/eLife.25192.015
http://dx.doi.org/10.7554/eLife.25192


Discussion
The theory we present here, which is based on mechanistic properties of protein-DNA binding with-

out accounting for any details of the molecular system studied, provides an accurate prediction of

the sign of epistasis and its environmental dependence for a repressible promoter system - the most

common form of gene regulation in E. coli (~40% of all regulated genes [Salgado et al., 2013]). Fur-

thermore, the fact that we use a generic model with no reference to any particular empirical meas-

ures means that our results are derived from first principles. As such, the presented results should

hold as long as the effects of mutations on gene expression are mainly driven by their direct impact

on TF-DNA binding, as represented by the energy matrix for a given TF. Under such conditions, the

thermodynamic model, rather than the multiplicative (or additive) expectation, provides a meaning-

ful null model for the sign of epistasis in CREs.

The sign of the deviations from a multiplicative expectation can have important evolutionary con-

sequences, such as for the evolution of sex (Otto and Lenormand, 2002) or the maintenance of

genetic variation (Charlesworth et al., 1995). A particularly important pattern of epistasis is sign

epistasis, where the sign of the effect of a particular substitution depends on the genetic back-

ground. Sign epistasis can lead to the existence of multiple optima (local peaks). In the system we

analyze here, sign epistasis cannot exist in the absence of a repressor, since there is an optimum

binding site sequence and the effects of mutations have a definite sign toward this optimal

sequence. In the presence of a repressor, however, sign epistasis is possible (Poelwijk et al., 2011).

Furthermore, we show that the sign of epistasis very often reverses between environments. This phe-

nomenon, previously observed in a different system (de Vos et al., 2013; Lagator et al., 2016),

could alleviate constraints coming from the existence of multiple peaks in a particular environment.

The thermodynamic model provides a mechanistic basis for this observation: RNAP and repressor

have opposite effects on gene expression and this, when combined with the specific shape of

response induced by the thermodynamic model, can lead to the environmental dependence of the

sign of epistasis.

Our results concern the combined effect of mutations (epistasis) on phenotype, as opposed to fit-

ness. Phenotypes logically precede fitness and even though it could be argued that fitness is ‘what

matters’ for evolution, since mutations spread in part based on their fitness effects, determining the

fitness effects of mutations depends on the environment which may or may not be representative of

‘natural’ conditions. Moreover, knowledge about one environment is hardly informative about the

fitness patterns in a novel environment. Our results allow for the prediction of patterns of phenotypic

epistasis across different environmental conditions, independent of the selection pressures applied

to this phenotype. The evolutionary consequences of these patterns of epistasis can then be inferred

from the knowledge (or assumptions) of how selection is acting on this phenotype, or in other words,

how the phenotype maps onto fitness.

In order to predict the sign of epistasis in a regulatory system, the thermodynamic model

accounts for the underlying physical mechanisms that impose constraints on the genotype-pheno-

type map under consideration. Incorporating details of physical and molecular mechanisms into

models of more complex regulatory elements, as well as coding sequences (Dean and Thornton,

2007; Li et al., 2016), can elucidate how epistasis impacts genotype-phenotype maps and their

dynamic properties across environments, helping us to understand the environmental dependence

of fitness landscapes.

Materials and methods

Gene regulation in the PR promoter system
We developed a system based on the right regulatory element of the lambda phage (PR), in which

we decoupled the cis- and trans-regulatory elements (Figure 2) (Johnson et al., 1981). A Venus-yfp

gene (Nagai et al., 2002) is placed under the control of the cis-regulatory region containing the PR

promoter with two lambda repressor CI-binding sites (OR1 and OR2). The transcription factor CI

represses the PR promoter by direct binding-site competition with RNAP. Separated by 500 random

base pairs and on the opposite DNA strand, we placed the cI repressor gene under the control of a

PTET promoter (Lutz and Bujard, 1997), followed by a TL17 terminator sequence. Thus, concentra-

tion of CI transcription factor in the cell was under external control, achieved by addition of the
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inducer anhydrotetracycline (aTc). The entire cassette was inserted into the low-copy number plas-

mid pZS* carrying kanamycin resistance gene (Lutz and Bujard, 1997).

Random mutant library
We created a library of random single and double mutants in the 43 bp cis-regulatory element (con-

sisting of the RNAP binding site and the two CI operator sites OR1 and OR2) using the GeneMorph

IITM random mutagenesis kit (Agilent Technologies, Santa Clara, US). PCR products of mutagenesis

reactions were ligated into the wildtype plasmid and inserted into a modified Escherichia coli K12

strain MG1655 chromosomally expressing tetR gene from a PN25 promoter. We sequenced ~500

colonies in order to create a library of 141 double mutants for which both corresponding single

mutants were also identified (Supplementary file 1). We identified, in total, 89 mutants carrying

only a single point mutation. Four single and four double mutants from the library were randomly

selected and the whole plasmid sequenced to confirm that during library construction no mutations

were found outside the target regulatory region.

We measured fluorescence for each single and double mutant, as well as the wildtype PR pro-

moter system, both in the presence and in the absence of the inducer aTc. Six replicates of each

mutant in the library were grown overnight in M9 media, supplemented with 0.1% casamino acids,

0.2% glucose, 30 mg/ml kanamycin, either without or with 15 ng/ml aTc. Presence or absence of aTc

determined the two experimental environments. Overnight cultures were diluted 1000X, grown to

OD600 of approximately 0.05, and their fluorescence measured in Bio-Tek Synergy H1 platereader.

The measured fluorescence was first corrected for the autofluorescence of the media, and then nor-

malized by the wildtype fluorescence. All replicate measurements were randomized across multiple

96-well plates. All replicates were biological, having been kept separate from each other from the

moment that the mutant was cloned and identified through sequencing. Six replicates of each

mutant were measured as prior experience with similar datasets in the lab has shown it sufficient to

detect meaningful differences between mutants.

Statistical analyses
By using a multiplicative model of epistasis, we calculated epistasis relative to the wildtype as

� ¼ fm12=ðfm1fm2Þ, where fm12 is the relative fluorescence of a double mutant ðm12Þ, and fm1 and fm2

the relative fluorescence of the two corresponding single mutants (m1 and m2), respectively. In order

to determine statistically which double mutants exhibit epistasis (i.e. e not equal 1), we conducted a

series of FDR-corrected t-tests. The errors were calculated based on six replicates, using error prop-

agation to account for the variance due to normalization by the wildtype. Variance is not significantly

different between measured mutants (Figure 3—figure supplement 1; Figure 3—figure supple-

ment 2). We performed a Pearson’s chi-squared test to determine if double mutants had a tendency

toward negative epistasis. We asked whether epistasis depended on the environment (defined as

presence or absence of the repressor) by testing for a genotype x genotype x environment (GxGxE)

interaction using ANOVA. We also tested if the experimental observations of the sign of epistasis in

the absence of CI repressor corresponded to model predictions. To do that, we used the experimen-

tal measurements of the sign of single mutation effects to predict the sign of epistasis (if both muta-

tions had the same sign then epistasis was predicted to be negative, if they differed in sign, it was

predicted as positive). Then we compared the predicted distribution of the sign of epistasis to the

experimental estimates using a chi-squared test, limiting the test to only those double mutants that

experimentally exhibited significant epistasis. For all tests, data met the assumptions, and variance

between groups was not significantly different.

Generic model of gene regulation with binding site competition
between RNAP and repressor
The model is based on previous thermodynamic approaches (Bintu et al., 2005a,

2005b; Hermsen et al., 2006). These models consider all possible promoter occupancy states and

assign a Boltzmann weight to each state. The probability of any microstate (promoter configurations)

is given by Boltzmann weights Wi ¼ e�b Ei�N�ð Þ; where Ei is the Gibbs free energy of the configura-

tion, N is the number of TF molecules, b is 1=KBT ; and � represents the chemical potential. Pon can
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then be calculated as the normalized sum of all configurations conducive to the initiation of

transcription:

pON ¼

P
i2�wi

P
iwi

where the first summation is over the all configurations conducive to transcription, whereas the sec-

ond is over all configurations.

In our model, we consider a scenario in which an activator (such as RNAP) competes with a

repressor for access to its binding site. We consider only three possible promoter configurations:

the one where neither of the two proteins is bound, the one in which a ‘repressor’ prevents ‘RNAP’

from accessing its binding site, and the one in which’ RNAP’ is bound to its binding site, thereby

able to initiate transcription. Under these assumptions, the probability of initiation of transcription is:

pON ¼
P½ �e�bEP

1þ P½ �e�bEP þ R½ �e�bER

where ½P� and ½R� represent the exponential of the chemical potential for the ‘RNAP’ and the ‘repres-

sor’, respectively; and subscripts P and R represent ‘RNAP’ and ‘repressor’, respectively. Through-

out, we measure free energies in natural units such that b = 1.

We assume that mutations simultaneously affect the binding of both ‘RNAP’ and ‘repressor’ to

the DNA binding site. We denote the free energies of both ‘RNAP’ and ‘repressor’ binding to DNA

by EP and ER, respectively. We model the effect of mutations by perturbing these energies by an

additive factor. The energies of single mutants and double mutants are then E
m1

P ¼ EP þ p1 and

E
m1

R ¼ ER þ p1; and E
m2

P ¼ EP þ p2 and E
m2

R ¼ ER þ p2; and E
m12

P ¼ EP þ p1 þ p2 and E
m12

R ¼ ER þ p1 þ p2,

respectively,

We calculate epistasis against a multiplicative model for the effect of mutations on pON:

p
m12

ON ¼ "pWT
ON

p
m1

ON

pWT
ON

p
m2

ON

pWT
ON

and so epistasis is measured by:

"¼
pWT
ON

p
m1

ON

p
m12

ON

p
m2

ON

¼
1þAe�r1 þBe�p1ð Þ 1þAe�r2 þBe�p2ð Þ

1þAþBð Þ 1þAe�r1�r2 þBe�p1�p2ð Þ

where A¼ R½ �e�ER and A¼ P½ �e�EP . We say that epistasis is positive when e >1 and negative when

" <1. We then find the conditions for which epistasis is positive in the presence (A > 0) or absence

(A = 0) of repressor.

Empirical verification of the generic model
In order to empirically test the predictions of the generic model on the relationship between sign of

individual mutations and the sign of epistasis in two environments, we aimed to select five random

double mutants from each category from Table 1. Effects of mutations on RNAP and on CI were

obtained from the experimentally determined energy matrices of RNAP (Kinney et al., 2010) and CI

(Sarai and Takeda, 1989) binding. We could not validate the model from the random mutant library,

as the majority of mutants fell in regions that are poorly described by the energy matrices. For this

reason, we aimed to create this new library. As the PR promoter is very strong, finding double

mutants where both mutations improved expression was not possible. Hence, we selected five dou-

ble mutants from six categories (Supplementary file 3), and synthesized them, as well as their corre-

sponding single mutants, using annealed oligonucleotide overlap cloning. We measured

fluorescence of these mutants and calculated epistasis in the same manner as described for the ran-

dom mutant library, and we asked if the epistasis for each double mutant was different from the

null-expectation in the manner described in section ‘Statistical analyses’. We used Pearson’s chi-

square test to determine if the environmental-dependence of the sign of epistasis in the experimen-

tal measurements differs from model predictions.

In order to test whether the thermodynamic model can also predict the magnitude of epistasis,

we incorporated the energy matrices for RNAP (Kinney et al., 2010) and CI (Sarai and Takeda,
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1989) into the generic model. As the energy matrix for RNAP contained one additional position in

the spacer region between �10 and �35 sites compared to the experimental PR system, we elimi-

nated one position in that region that had lowest impact on overall RNAP binding. In the manner

described above, we modeled epistasis in those mutants from the 30-mutant validation library that

exhibited significant epistasis. As the thermodynamic model depends on the concentrations of

RNAP and CI, we estimated the values for these parameters so as to maximize the correlation

between model predictions and empirical values of epistasis. In order to estimate how well the

model predicted the magnitude of epistasis, we fitted a linear regression between experimental

measurements of epistasis and the model predictions, both in the absence and in the presence of

CI.
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