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Genomic imprinting, an inherently epigenetic phenome-
non defined by parent of origin-dependent gene expres-
sion, is observed in mammals and flowering plants.
Genome-scale surveys of imprinted expression and the
underlying differential epigenetic marks have led to the
discovery of hundreds of imprinted plant genes and con-
firmed DNA and histone methylation as key regulators
of plant imprinting. However, the biological roles of the
vast majority of imprinted plant genes are unknown,
and the evolutionary forces shaping plant imprinting re-
main rather opaque. Here, we review the mechanisms of
plant genomic imprinting and discuss theories of imprint-
ing evolution and biological significance in light of recent
findings.

Genomic imprinting is defined by biased expression of a
gene from one allele over the other based on the sex of
the parent that contributed the allele. As such, biased ex-
pression can occur even when both alleles have identical
DNA sequences. A gene that is predominantly expressed
from the maternally inherited allele is referred to as a ma-
ternally expressed imprinted gene, whereas a gene that is
expressed from the paternally inherited allele is referred to
as a paternally expressed imprinted gene. The implication
for both types of imprinted genes is that maternally and
paternally inherited alleles are differentiated post-fertili-
zation by a pre-existingmark that is epigenetic or, in other
words, not directly encoded by the DNA sequence. This
epigenetic mark is referred to as the “imprint” for the im-
printed gene (Fig. 1).
Although evidence of genomic imprintingwas observed

by mule breeders long before the development of modern
genetics, the phenomenon was not formally described in
plants and mammals until relatively recently (Morison
andReeve 1998). The present concept of genomic imprint-
ing began to take shape as a result of genetic experiments
in maize, which demonstrated that the R pigmentation
gene is preferentially expressed when inherited from
the mother (Kermicle 1970). Subsequent experiments in

plants and mammals demonstrated that the paternal
and maternal genomes are epigenetically distinct (Barto-
lomei and Ferguson-Smith 2011; Pires and Grossniklaus
2014) and led to the identification of the first mamma-
lian imprinted genes (Barlow et al. 1991; Bartolomei
et al. 1991; DeChiara et al. 1991). Further studies elucidat-
ed themechanisms of imprinting and the functions of sev-
eral imprinted genes (Huh et al. 2008; Ferguson-Smith
2011).
For a mammalian locus to be imprinted, epigenetic

marks set up before the formation of the zygote (Lucifero
et al. 2004; Kato et al. 2007; Kobayashi et al. 2013), referred
to as primary imprints (Fig. 1; Barlow 1994), must escape
chromatin reshaping mechanisms in the embryo (Mayer
et al. 2000; Oswald et al. 2000; Proudhon et al. 2012). Par-
ent of origin-dependent epigenetic differences may also
appear in the zygote or later stages once maternally and
paternally inherited chromosomes are in the same nucle-
us (Tomizawa et al. 2011). Such secondary or somatic im-
prints rely on the presence of a primary imprint (Fig. 1;
Ferguson-Smith 2011).
The logic of genomic imprinting in flowering plants is

similar but has to be adjusted for the unique mechanism
of plant reproduction. The haploid products of plant mei-
osis do not directly differentiate into gametes but instead
divide mitotically several times to form multicellular ga-
metophytes (Fig. 2). The male gametophyte, pollen, con-
tains two sperm cells and a vegetative cell, which forms
a pollen tube that delivers the sperm cells to the female
gametophyte (Fig. 2). In flowering plants, one of these
fuses with the egg to form the zygote, and the other fuses
with the central cell, which is usually homodiploid, to
form the triploid endosperm (Fig. 2), a transient seed tis-
sue with nutritive and supportive functions analogous to
the mammalian placenta. Although the two sperm cells
are morphologically distinct in some plants, they appear
to be at least somewhat functionally interchangeable
(Russell 1991; Faure et al. 2003), suggesting that differen-
tial imprinting between the sperm cells is unlikely.
Flowering plants therefore have three cell types (sperm,
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egg, and central cells) in which primary imprints can be
established, with maternal imprints potentially quite dif-
ferent between the central and egg cells. Studies of indi-
vidual plant imprinted genes (Chaudhuri and Messing
1994; Grossniklaus et al. 1998; Kinoshita et al. 1999,
2004; Luo et al. 2000; Danilevskaya et al. 2003; Gutier-

rez-Marcos et al. 2004, 2006; Kohler et al. 2005; Baroux
et al. 2006; Gehring et al. 2006; Jullien et al. 2006a;
Haun et al. 2007; Hermon et al. 2007; Makarevich
et al. 2008; Tiwari et al. 2008; Fitz Gerald et al. 2009)
and subsequent genome-scale investigations that identi-
fied hundreds of imprinted genes in Arabidopsis thali-
ana, castor bean, rice, and maize (Gehring et al. 2011;
Hsieh et al. 2011; Luo et al. 2011; Waters et al. 2011,
2013; Wolff et al. 2011; Zhang et al. 2011, 2014; Pignatta
et al. 2014; Xu et al. 2014) have indeed demonstrated
that the bulk of plant imprinted expression occurs in
the endosperm, whereas imprinting in the embryo is
rare and transient (Jahnke and Scholten 2009; Autran
et al. 2011; Hsieh et al. 2011; Luo et al. 2011; Nodine
and Bartel 2012; Raissig et al. 2013; Pignatta et al.
2014). These studies also established DNA methylation
as the most prevalent primary imprint (Fig. 3). Trimethy-
lation of Lys27 of histone H3 appears to be a common
secondary imprint, particularly at paternally expressed
genes, but may also serve as the primary imprint at
some genes (Fig. 3).

Although hundreds of plant imprinted genes have been
identified and much progress has been made in eluci-
dating the epigenetic mechanisms that regulate them,
the biological significance of plant imprinting remains
mysterious, and the evolutionary forces that led to the
emergence of imprinting have been extensively debated.
In this review, we summarize the current knowledge
about the mechanisms of plant imprinting and discuss
the evolutionary theories and potential functional conse-
quences of this epigenetic process.
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Figure 1. Imprinted gene expression. Maternally and paternally
inherited alleles are epigenetically distinguished (or imprinted),
causing differential expression in the fertilization product. Prima-
ry imprints are established before fertilization, whereas second-
ary imprints are guided by primary imprints after fertilization.
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Figure 2. Sexual reproduction in the flow-
ering plant A. thaliana. The gametes are
contained within multicellular haploid
structures called gametophytes that are de-
rived by mitosis from meiotic spores. The
fusion of two haploid polar nuclei forms a
diploid central cell in the female gameto-
phyte. At the time of fertilization, the dip-
loid female central cell and a haploid male
sperm cell fuse to give rise to the endo-
sperm, while the haploid female egg cell
and haploid male sperm cell fuse to give
rise to the embryo. The resulting seed is
formed of the endosperm, the embryo, and
a maternally derived seed coat.
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Epigenetic mechanisms of genomic imprinting

Imprinting mechanisms have been extensively reviewed
in mammals (Barlow 2011; Bartolomei and Ferguson-
Smith 2011; Ferguson-Smith 2011; Adalsteinsson and Fer-
guson-Smith 2014; MacDonald and Mann 2014) and
plants (Bauer and Fischer 2011; Raissig et al. 2011; Kohler
et al. 2012; Gehring 2013; Zhang et al. 2013). We therefore
keep the discussion of imprintingmechanisms fairly brief.

DNA methylation

DNAmethylation is a classicmechanismof epigenetic in-
heritance. The most prominent type of eukaryotic DNA
methylation is catalyzed by enzymes of the Dnmt1 fami-
ly, calledMET1 in plants (Feng et al. 2010; Law and Jacob-
sen 2010; Zemach et al. 2010b). These enzymes catalyze
methylation of cytosines within symmetric CG dinu-
cleotides when a cytosine on one of the DNA strands is
already methylated, thereby perpetuating methylation
patterns following DNA replication. DNA methylation

is classically associated with the silencing of genes and
transposable elements but can also promote gene activity
(Makarevich et al. 2008; Shibuya et al. 2009; Jones 2012;
Rigal et al. 2012; Deng andChua 2015; Lei et al. 2015;Wil-
liams et al. 2015). Consequently, differential methylation
of maternal and paternal alleles can cause imprinted ex-
pression (Fig. 3).
DNA methylation was the first imprint discovered in

mammals (Bartolomei et al. 1993; Ferguson-Smith et al.
1993; Stoger et al. 1993) and in plants (Kinoshita et al.
2004) and is still the only differential mark known to be
established as a primary imprint (Dickinson and Scholten
2013;MacDonald andMann 2014). All identified parent of
origin-specific DNA methylation differences in the endo-
sperm of Arabidopsis, rice, and maize are due to site-
specific hypomethylation of maternally inherited DNA
(Waters et al. 2011; Zhang et al. 2011, 2014; Ibarra et al.
2012; Rodrigues et al. 2013). InArabidopsis, this hypome-
thylation is catalyzed by the DEMETER (DME) DNA gly-
cosylase, which can excise methylated cytosine from
DNA (Gehring et al. 2006; Ibarra et al. 2012). DME is pre-
sumed to act in the female central cell prior to fusionwith
the sperm (Fig. 2; Choi et al. 2002).
DNA demethylation by DME has been associated with

both maternal-specific gene activation (Kinoshita et al.
2004; Gehring et al. 2006; Hsieh et al. 2011; Ibarra et al.
2012) and maternal-specific gene repression (Makarevich
et al. 2008; Hsieh et al. 2011; Ibarra et al. 2012). In maize
and rice, maternal-specific DNA hypomethylation remi-
niscent of DME activity likewise occurs at maternally
and paternally expressed imprinted genes (Gutierrez-Mar-
cos et al. 2006; Haun et al. 2007; Hermon et al. 2007; Wa-
ters et al. 2011; Zhang et al. 2011, 2014; Rodrigues et al.
2013). Furthermore, maternally and paternally expressed
genes show distinct patterns of demethylation that are
similar between Arabidopsis, maize, and rice (Ibarra
et al. 2012; Rodrigues et al. 2013; Zhang et al. 2014), sug-
gesting that the locations of regulatory regions that govern
activation and repression have been generally conserved
across 150 million years of evolution (Chaw et al. 2004).
The regulatory importance of DNA methylation is sup-
ported by evidence that perturbations of methylation pat-
terns at individual genes abolish imprinting (Adams et al.
2000; Xiao et al. 2003; Kinoshita et al. 2004; Jullien et al.
2006b; Makarevich et al. 2008; Hsieh et al. 2011; Vu
et al. 2013; Du et al. 2014). However, not all imprinted
genes are clearly associated with endosperm-specific ma-
ternal DNA hypomethylation (Hsieh et al. 2011; Waters
et al. 2011; Wolff et al. 2011; Zhang et al. 2011, 2014; Xu
et al. 2014), suggesting either that the initial imprint is
due to a yet to be discoveredmechanismor that epigenetic
states of parental alleles for these loci in the endosperm
are poor representatives of the primary imprints present
in gametes (Raissig et al. 2011).
In addition to its activity in the central cell, DME is also

expressed in the pollen vegetative cell (Fig. 2; Schoft et al.
2011). DME demethylates a largely overlapping set of
thousands of transposable elements in the central and
vegetative cells, most of which are located far from genes
and do not appear to influence gene expression (Gehring
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Figure 3. Mechanisms of imprinting in the endospermof flower-
ing plants. (A) At the Arabidopsis FWA locus, DEMETER (DME)
activity at upstream repeats, presumed to occur in the central cell
but not the sperm cells, forms a primary imprint that results in
maternal-specific expression. (B) The primary imprint at theAra-
bidopsis PHERES1 gene is also formed by presumed central cell-
specific demethylation of repeats byDME. Loss of methylation at
these repeats results in histone 3 Lys27 trimethylation. This sec-
ondary imprint laid down by polycomb-repressive complex 2
(PRC2) causes silencing of thematernal loci and paternal-specific
expression. (C ) Arabidopsis VIM5 is an example of a gene that
does not appear to rely on DME-mediated DNA demethylation
for the formation of the primary imprint, as bothmaternal and pa-
ternal alleles are deficient in DNA methylation. Instead, histone
3 Lys27 trimethylation may form a primary imprint that results
in paternal-specific expression (Hsieh et al. 2011).
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et al. 2009; Hsieh et al. 2009; Calarco et al. 2012; Ibarra
et al. 2012). The vegetative cell is terminally differentiat-
ed and does not fusewith any female gametes, so the func-
tion of DME is clearly not confined to the generation
of primary imprints. Instead, DME-mediated demethyla-
tion of transposons in the central and vegetative cells is
proposed to generate mobile small RNA (sRNA) mole-
cules that direct methylation of cognate transposons in
the egg and sperm cells (Hsieh et al. 2009; Slotkin et al.
2009; Schoft et al. 2011; Calarco et al. 2012; Ibarra et al.
2012), thus reinforcing the silencing of transposons
in the gametes. Similar transposons are also extensively
hypomethylated in rice endosperm (Zemach et al. 2010a;
Rodrigues et al. 2013), suggesting that transposon deme-
thylation is a conserved feature of flowering plant sexual
development. The sites of demethylation that regulate
imprinted genes are commonly transposons or other re-
peats (Fig. 3A,B; Kinoshita et al. 2007; Gehring et al.
2009; Villar et al. 2009; Ibarra et al. 2012; Pignatta et al.
2014), indicating that imprint formation by DNA deme-
thylation evolved from a transposon-directed silencing
mechanism (Kim and Zilberman 2014). However, at least
in rice endosperm, maternal-specific DNA hypomethyla-
tion of the transcribed regions of active genes is common
and is strongly associated with paternally biased expres-
sion (Rodrigues et al. 2013). This suggests that demethyla-
tion that primarily regulates gene activity may have
evolved in at least some plant lineages.

Histone variants

The core histones that form the protein component of the
nucleosome can be differentiated into subtypes or vari-
ants with distinct structures and functions (Talbert and
Henikoff 2010). Histone variants have not yet been impli-
cated in plant imprinting, but the specific incorporation of
a particular histone H3 variant inArabidopsis sperm cells
(Ingouff et al. 2007) might distinguish the paternal allele
in the endosperm or zygote.

Histone modification

Trimethylation of Lys27 of histone H3 (H3K27me3), cata-
lyzed by polycomb-repressive complex 2 (PRC2), is the
only histone modification known to correlate with im-
printing in flowering plants (Kohler et al. 2005; Baroux
et al. 2006; Gehring et al. 2006; Jullien et al. 2006a;Makar-
evich et al. 2008; Du et al. 2014; Zhang et al. 2014). Muta-
tion of PRC2 disrupts the imprinting of many genes, most
of which are paternally expressed (Hsieh et al. 2011; Wolff
et al. 2011), with H3K27me3 of maternally inherited al-
leles correlating with DNA hypomethylation (Fig. 3B;
Makarevich et al. 2008; Weinhofer et al. 2010). Perturba-
tions of DNA methylation at some of these genes result
in a loss of imprinting (Xiao et al. 2003; Makarevich
et al. 2008; Hsieh et al. 2011; Du et al. 2014), suggesting
that DNAmethylation is the primary imprint that causes
differential recognition by PRC2. Consistent with this,
PRC2 activity is generally anti-correlated with DNA
methylation, including in the Arabidopsis endosperm,

where PRC2 targets transposons associated with DME-
mediated demethylation (Weinhofer et al. 2010; Deleris
et al. 2012; Makarevitch et al. 2013; Jermann et al. 2014).

However, this mechanism cannot account for PRC2-
mediated regulation of the maternally expressed Arabi-
dopsis genes MEDEA and AtFH5 (Baroux et al. 2006;
Gehring et al. 2006; Jullien et al. 2006a; Fitz Gerald
et al. 2009), which involves silencing of the paternal allele.
Furthermore, some imprinted genes regulated by PRC2
are not marked by DNA methylation (Hsieh et al. 2011;
Wolff et al. 2011; Zhang et al. 2014). For example, imprint-
ing of aMEDEA transgene does not require DME or DNA
methylation (Wohrmann et al. 2012). It is currently un-
clear whether H3K27me3 serves as the primary imprint
at such genes, but PRC2-mediated silencing does have
the requisite features. There is strong evidence that
PRC2-catalyzed H3K27me3 is inherited after DNA repli-
cation and recruits PRC2, creating a self-reinforcing loop
(Hansen et al. 2008; Margueron et al. 2009; Xu et al.
2010). This enables PRC2-mediated silencing of one allele
while the other remains active in the same nucleus even
without differentiating DNA methylation (Berry et al.
2015). Recruitment of PRC2 in the central cell or sperm
—for example, by cell-specific transcription factors—
could thus plausibly establish an allele-specific silent
state that can be inherited by the endosperm. Unlike
DME-catalyzed DNA demethylation, this mechanism
could account for imprinted gene expression in the em-
bryo (Raissig et al. 2013).

Long noncoding RNA

Imprinted long noncoding RNAs have been observed in
rice and maize (Luo et al. 2011; Zhang et al. 2011). Al-
though these molecules have not been shown to be neces-
sary for imprinted expression of protein-coding genes,
they are of potential interest because PRC2-mediated his-
tonemethylation can be targeted by long noncoding RNA
in plants and animals (Heo and Sung 2011; Brockdorff
2013; Csorba et al. 2014).

sRNA

Asmentioned above, sRNAmolecules, particularly those
that are 24 nucleotides (nt) long, target DNAmethylation
in plants (Matzke and Mosher 2014). DNA methylation
directed by sRNA is required for imprint creation at
some loci that are demethylated in the central cell (Vu
et al. 2013). More generally, the role of sRNAs in imprint
formation and silencing of imprinted regions is currently
poorly understood. Large populations ofmaternally biased
24-nt sRNAs were reported in young Arabidopsis seed
(Mosher et al. 2009), and some of these were implicated
in regulating transription factor dosage in endosperm
(Lu et al. 2012). However,many of these apparentlymater-
nally biased sRNAs might originate in the maternally de-
rived seed coat, which lies in close proximity to the
Arabidopsis endosperm (Pignatta et al. 2014), possibly ex-
plaining why their maternal bias is unaffected by muta-
tions in DNA- and histone-modifying enzymes that are
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known to regulate imprinted gene expression (Mosher
et al. 2011). A strong overabundance of maternally biased
endosperm sRNAs has also been reported in maize (Xin
et al. 2014) but not in rice, wherematernally and paternal-
ly expressed sRNAs are equally common (Rodrigues et al.
2013). Some of these sRNAs are associated with the si-
lenced alleles of imprinted genes, as is the case for pater-
nally biased Arabidopsis sRNAs (Pignatta et al. 2014).
Rice imprinted sRNAs are enriched for maternal DNA
hypomethylation (Rodrigues et al. 2013), suggesting that
their imprinting shares regulatory mechanisms with pro-
tein-coding genes.
The intriguing correlations between sRNAs and im-

printed genes notwithstanding, it is unclear whether
gene-associated imprinted sRNAs are a cause or result of
imprinted gene expression, and most imprinted genes are
not associated with imprinted sRNAs (Rodrigues et al.
2013; Pignatta et al. 2014; Xin et al. 2014). It is also unclear
how parent of origin-specific differences in gene expres-
sion persist despite the production of trans-acting sRNAs
that can, in theory, silencebothalleles.Apossible explana-
tion is that low expression of DNA methyltransferases
(Jullien et al. 2012) or other RNA-directed DNAmethyla-
tion pathway genes (Belmonte et al. 2013) in the young en-
dosperm of Arabidopsis renders sRNAs less effective at
inducing silencing. The low levels of sRNA-mediated
DNA methylation observed in rice endosperm (Zemach
et al. 2010a) are consistent with this idea. Because
sRNA-directed methylation is a self-reinforcing process
(Kim and Zilberman 2014), it is expected to work less effi-
ciently in trans, so that activity in the central cell and early
endospermmay be predominantly in cis. It is also possible
that imprinted sRNAs and gene transcripts are present in
distinct compartments of the endosperm.

Mechanisms underlying the evolution
of plant imprinted genes

As discussed above, the establishment of primary im-
prints in plants is closely linked to transposable element
silencing, with transposons and other repeats serving as
the sites of DNA demethylation in Arabidopsis, rice,
and maize (Kinoshita et al. 2007; Gehring et al. 2009;
Hsieh et al. 2009; Villar et al. 2009; Zemach et al. 2010a;
Ibarra et al. 2012; Pignatta et al. 2014; Wang et al. 2015).
The movement of transposable elements has therefore
been widely proposed to generate new imprinted genes
(McDonald et al. 2005; Wolff et al. 2011; Jiang and Kohler
2012; Gehring 2013; Vu et al. 2013). For example, DNA
methylation of a transposable element that inserts near
the transcriptional start site of a gene can lead to gene si-
lencing, which can in turn be relieved by DME-catalyzed
demethylation in the central cell to produce maternal-
specific expression in the endosperm (Fig. 4A). This is ap-
parently what happened to the Arabidopsis maternally
expressed imprinted gene FWA (Fig. 3A) and many other
imprinted genes (Kinoshita et al. 2007; Fujimoto et al.
2008; Gehring et al. 2009; Wolff et al. 2011). Although
the creation of an imprinted gene from one that is bialleli-

cally expressed by a transposon insertion has yet to be ex-
plicitly demonstrated, deletions of repetitive regions have
been shown to result in a loss of imprinting (Walker 1998;
Villar et al. 2009). Transposon insertions can also destroy
imprinting, converting an imprinted gene into a bialleli-
cally expressed one, as has been demonstrated in maize
(Haun et al. 2009).
The relative simplicity, at least in theory, of creating

imprinted genes by transposon insertions argues that on-
going transposition events provide a substantial pool of
new imprinted genes for natural selection (Waters et al.
2013). This hypothesis is supported by the observation
that, although many rice genes affected by LTR retro-
transposons appear to evolve into pseudogenes, some
genes remain functional and show evidence of selection
consistent with neofunctionalization (Jiang and Rama-
chandran 2013). The high activity of transposons that is
characteristic of plant genomes (Huang et al. 2012) may
help explain why plant imprinted genes are poorly con-
served (Luo et al. 2011; Waters et al. 2011, 2013).
Although transposon insertion is a straightforward

mechanism for bringing a gene under the regulatory

A   Genetic mechanism of imprinting evolution

Transposon insertion

B   Epigenetic mechanism of imprinting evolution
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Figure 4. Evolution of imprinted gene expression through genet-
ic mechanism via transposon insertion (A) and epigenetic mech-
anism via heritable loss of DNA methylation (B).
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sway of DNA methylation, methylation patterns can
diverge between individuals without an accompanying
change of DNA sequence (Becker andWeigel 2012;Weigel
and Colot 2012). This phenomenon is referred to as epige-
neticmutation, and the alleles that bear differentialmeth-
ylation patterns are termed epigenetic alleles or epialleles.
Plant DNAmethylation patterns can diverge rather rapid-
ly (Becker et al. 2011; Schmitz et al. 2011, 2013; Becker
and Weigel 2012; Chodavarapu et al. 2012; Hagmann
et al. 2015), and epialleles with major phenotypic conse-
quences have been identified in a number of plant species
(Weigel and Colot 2012; Zhang et al. 2012; Silveira et al.
2013). For example, stable unmethylated epialleles of
FWA cause a strong delay of flowering (Soppe et al. 2000;
Kankel et al. 2003). HeritableDNAmethylation epialleles
can therefore potentially account for some of the dif-
ferences in imprinted gene expression observed within
plant populations (Fig. 4B). Consistent with this possibil-
ity, differential DNA methylation has been correlated
with imprinting divergence among Arabidopsis ecotypes
(Pignatta et al. 2014). However, extensive intraspecies
DNAmethylation differences (Becker et al. 2011; Schmitz
et al. 2011, 2013; Becker and Weigel 2012; Chodavarapu
et al. 2012; Pignatta et al. 2014; Hagmann et al. 2015)
and lack of characterization of the regulatory regions of
the vast majority of plant imprinted genes complicate
the assignment of any particular methylation polymor-
phism as the cause of an observed difference in imprinted
expression. Thus, although epigenetic evolution of plant
imprinted genes remains to be unambiguously demon-
strated, this process quite likely contributes to imprinting
divergence, at least on a relatively short time scale.

Evolutionary drivers and consequences
of genomic imprinting

Monoallelic gene expression is generally disadvantageous
in diploid organisms because deleterious mutations can-
not be complemented by a functional homologous locus
present in the same nucleus (Wilkins and Haig 2003).
For example, mutations in the maternally expressed ME-
DEA gene result in aborted seeds even in the presence of
a functional paternally inherited copy (Grossniklaus
et al. 1998; Kinoshita et al. 1999; Luo et al. 2000). The
prevalence of genomic imprinting therefore suggests
that imprinting is associated with fitness benefits that
outweigh the costs—benefits that are likely linked to
the reproductive strategies of the lineages within which
imprinting occurs (Jiang and Kohler 2012; Patten et al.
2014; Pires and Grossniklaus 2014; Wolf et al. 2014).

Known instances of classical genomic imprinting are
confined to therian (marsupial and eutherian) mammals
and flowering plants, with imprinting likely evolving at
the same time as the transient extraembryonic nutritive
tissues (placenta and endosperm) characteristic of each
clade (Renfree et al. 2013; Pires and Grossniklaus 2014).
In mammals, the origins of both imprinting and placental
development are linked to regulatory novelties resulting
from LTR retrotransposon activity (Renfree et al. 2013),

while plant imprinting is mostly confined to the endo-
sperm and is absent or short-lived in embryos, seedlings,
and adult vegetative tissues (Jahnke and Scholten 2009;
Zhang and Borevitz 2009; He et al. 2010; Autran et al.
2011; Hsieh et al. 2011; Luo et al. 2011; Chodavarapu
et al. 2012; Nodine and Bartel 2012; Raissig et al. 2013;
Del Toro-De Leon et al. 2014; Pignatta et al. 2014). Given
that both the placenta and endosperm serve as the inter-
face between the maternal parent and its dependent off-
spring, imprinting is inextricably shaped by processes
and forces governing sexual reproduction. Numerous hy-
potheses attempt to explain how imprinting might be as-
sociated with increased fitness. These hypotheses are not
necessarily mutually exclusive; imprinting of different
genes may be shaped by different selective forces, a com-
bination of selective forces may influence the imprinting
of a particular gene, and the relative impact of selective
forces may vary over the evolutionary history of a lineage.

Kinship or parental conflict hypothesis

The currently predominant theory of genomic imprinting
is the kinship or parental conflict hypothesis (Haig and
Westoby 1989). It predicts that, in situations where the fe-
male parent contributes resources to offspring develop-
ment after fertilization and can bear the offspring of
multiple males, the overall fitness of males is increased
if their offspring thrive at the cost of other offspring borne
by the female parent, whereas the fitness of females is in-
creased if the female is able to have asmany successful off-
spring as possible. This drives paternal expression of genes
that promote nutrient acquisition in the offspring andma-
ternal expression of genes that restrict nutrient allocation
to any one offspring. The conflict unfolds between mater-
nally and paternally expressed genes within the offspring
(Haig 2014).

In addition to the “placental habit” forming an environ-
ment in which parental conflict is theorized to occur
(Crespi and Semeniuk 2004), this hypothesis receives
wide support from in-depth investigations of the functions
ofmammalian imprintedgenes (FrostandMoore2010;Fer-
guson-Smith 2011) and some support from studies in
plants (Huh et al. 2008; Kohler and Weinhofer-Molisch
2010;Pires andGrossniklaus2014).Manymammalian im-
printedgenesaffect resourceacquisition fromthematernal
parent either by direct regulation of nutrient transfer from
the placenta and embryo growth or through influence on
maternal–offspring interactions (Bartolomei and Fergu-
son-Smith 2011). Crosses between Arabidopsis plants of
different ploidy that increase paternal gene dosage result
in larger seeds, whereas those that increase maternal
gene dosage result in smaller seeds (Scott et al. 1998).
The balance between maternal and paternal alleles in
interploidy crosses also influences resource allocation in
maize endosperm (Li and Dickinson 2010). Perturbations
toArabidopsisgameteDNAmethylation likewisehaveef-
fects on seed size that vary depending on which parental
gamete was affected and are consistent with parental con-
flict theory (Adams et al. 2000; Xiao et al. 2006). Addition-
ally, imprinted genes in maize, rice, and Arabidopsis are
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enriched for regulatory roles (Luo et al. 2011; Waters et al.
2013; Pignatta et al. 2014), with strong effects on endo-
sperm growth resulting from loss-of-function mutations
in specific genes, particularly those encoding PRC2 com-
ponents (Grossniklaus et al. 1998; Kinoshita et al. 1999;
Luo et al. 2000; Hermon et al. 2007). Imprinted genes also
tend to showmolecular signatures of the conflict between
male and female fitness (Pires and Grossniklaus 2014).
However, parental conflict theory is not obviously con-

sistentwith all features of imprinting, especially in plants.
First, if nutrient acquisition by the developing offspring is
themain driver of imprinted expression, onemight expect
to observe imprinting in the growing plant embryo in ad-
dition to extraembryonic nutritive tissues, as is seen in
mammals (Frost and Moore 2010; Renfree et al. 2013). In-
stead, imprinting in the embryo is rare and transient
(Jahnke and Scholten 2009; Autran et al. 2011; Hsieh
et al. 2011; Luo et al. 2011; Nodine and Bartel 2012; Rais-
sig et al. 2013; Del Toro-De Leon et al. 2014; Pignatta et al.
2014). It is possible that this difference between plants and
mammals reflects restrictions imposed by underlying bio-
logical differences, such as two fertilization events versus
one, the extent to which extraembryonic tissues regulate
embryo growth, the generally much shorter developmen-
tal period that separates plant male and female gametes,
and available mechanisms to differentially mark plant
egg and sperm cells. Nonetheless, the preponderance of
imprinting in the endosperm suggests a more intimate
link with this tissue than one would predict based on pa-
rental conflict considerations.
Another incongruence is that parental conflict is pre-

dicted to drive imprinting to the complete silencing of
one allele in most cases (Wilkins and Haig 2003), but
many plant imprinted genes display only moderate biases
(Luo et al. 2011;Waters et al. 2013). It is possible to explain
this by interpreting the apparently rapid rate of imprinting
evolution in plants (Luo et al. 2011; Waters et al. 2013) as
an indication that many currently imprinted genes have
acquired imprinting recently and/or have not yet experi-
enced strong selection (Waters et al. 2013). Furthermore,
reactivation of paternally inherited alleles that results
in incomplete maternal bias may be favored under some
circumstances (Wilkins and Haig 2002). The presence of
imprinted expression in self-fertilizing plants, such as
Arabidopsis and domesticated rice cultivars (Bechsgaard
et al. 2004; Li et al. 2006; Londo et al. 2006), is also some-
what at oddswith parental conflict theory, as the resulting
monogamy would not place the related maternal and pa-
ternal genomes in conflict (Jiang and Kohler 2012). How-
ever, imprinting is plausibly inherited from recent out-
crossing ancestors, and the complex webs of compensat-
ing maternally and paternally biased expression would
likely take a long time to unravel (Wilkins andHaig 2003).
An additional potential challenge to the parental con-

flict theory arises from the recent characterization of the
paternally expressed Arabidopsis gene ADMETOS (Kra-
dolfer et al. 2013). ADMETOS is overexpressed in triploid
Arabidopsis seeds created through fertilization with
diploid sperm. Such seeds exhibit overexpression of other
imprinted genes, includingmaternally biased ones. Muta-

tion of ADMETOS reduces the expression of several ma-
ternally expressed genes, suggesting that ADMETOS is a
positive regulator of these genes—a function that a pater-
nally expressed genewould not be predicted to have by pa-
rental conflict theory. However, this effect of ADMETOS
appears to be restricted to seeds with unbalanced ploidy,
in which key regulatory pathways such as PRC2 do not
function properly (Kradolfer et al. 2013), so that ADME-
TOSmay not promote the expression ofmaternally biased
genes in normal diploid seeds. Furthermore, the admetos
mutationmay affect the expression of imprinted genes in-
directly, and ADMETOS appears to promote endosperm
growth by delaying cellularization (Kradolfer et al. 2013),
a function consistent with parental conflict.
Perhaps the most difficult to explain in terms of

parental conflict theory is the imprinted expression of
the maize gene Meg1. Meg1 promotes the establishment
and differentiation of the endosperm nutrient transfer
cells and consequently positively regulates the uptake of
maternal nutrition by the developing seed (Costa et al.
2012). Increased Meg1 dosage leads to larger embryos
and endosperm. Thus, Meg1 is precisely the type of gene
predicted to be imprinted but, contrary to expectation, is
maternally expressed. Similarly, overexpression of the
maternally biased Arabidopsis imprinted gene AtFH5
may cause overgrowth of the chalazal endosperm com-
partment implicated in the transfer of maternal resources
(Fitz Gerald et al. 2009). Although this “wrong way” im-
printing is not entirely incompatible with parental con-
flict (Iwasa et al. 1999; Pires and Grossniklaus 2014),
maternal expression of genes that promote the transfer
of maternal resources requires serious consideration of al-
ternate hypotheses for the evolution of genomic imprint-
ing in plants, especially since plant genomic imprinting
has yet to be widely associated with nutrient regulation
(Gutierrez-Marcos et al. 2012).

Coadaptation hypothesis

The coadaptation hypothesis for the evolution of genomic
imprinting (Wolf and Hager 2006) was inspired by adap-
tive correlations between the traits of mothers and off-
spring in several lineages (Kolliker et al. 2000; Agrawal
et al. 2001; Hager and Johnstone 2003; Lock et al. 2004)
and the observation that increased investment of ma-
ternal resources does not necessarily increase fitness
(Thomas et al. 2004; Dunger et al. 2007). For example,
human babies with intermediate birth weight have the
highest fitness (Ulizzi et al. 1981), whichmay favor coevo-
lution of maternal and offspring traits that lead to birth
weight optimization (Wolf and Brodie 1998). Theoretical
work supporting the coadaptation hypothesis shows that
selective pressure for closer integration between coadapt-
ed maternal and offspring traits can drive the evolution of
maternally biased gene expression (Wolf and Hager 2006).
The coadaptation hypothesis has several limitations. It

assumes that similarity between the alleles expressed in
mothers and offspring will be favored and therefore can
only explain the evolution of maternally expressed im-
printed genes, at least in the context of plant reproduction.
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Because the coadaptation hypothesis relies on allele
similarity rather than dosage sensitivity, substantial
heterozygosity within a population is required for the se-
lection of imprinted expression; maternally biased expres-
sion offers no benefit if the maternal and paternal alleles
are identical (Haig 2014). Furthermore, no imprinted
gene has yet been shown to function along the lines pre-
dicted by the coadaptation hypothesis (Haig 2014). De-
spite these limitations, the coadaptation hypothesis may
explain the imprinting of some genes through the benefits
of closer cooperation betweenmothers and offspring rath-
er than conflict between maternally and paternally inher-
ited genes within the offspring.

Coadaptation may have plausibly favored the evolution
of imprinting at genes thatencodecomponents of theplant
PRC2 complex. Two of the Arabidopsis genes encoding
PRC2 components are imprinted and maternally ex-
pressed (Grossniklaus et al. 1998; Kinoshita et al. 1999;
Luo et al. 2000; Jullien et al. 2006b), placing the complex
that silences the maternal alleles of most, if not all, pater-
nally expressed genes (Hsieh et al. 2011; Wolff et al. 2011;
Makarevitch et al. 2013; Zhang et al. 2014) undermaternal
control. PRC2 component genes are also maternally ex-
pressed in rice and maize endosperm, but these genes ei-
ther encode PRC2 components that are different from
the ones imprinted in Arabidopsis or evolved imprinting
independently (Danilevskaya et al. 2003; Spillane et al.
2007; Luo et al. 2009; Pires and Grossniklaus 2014). The
convergent evolution of PRC2 imprinting indicates that
maternal expression of PRC2 is generally favored in flow-
ering plants. PRC2 preferentially controls transcription
factors that are master regulators of development and has
thousands of targets in the endosperm (Weinhofer et al.
2010; Makarevitch et al. 2013; Zhang et al. 2014; Kohler
and Lafon-Placette 2015; Pu and Sung 2015). Imprinting
of such a multifaceted complex is perhaps more likely ex-
plained through the integration of female and offspring
traits than by restriction of nutrient allocation to the off-
spring, as would be predicted by parental conflict. Impor-
tantly, the imprinting of PRC2-regulated paternally
expressed genes is not expected to be driven by coadapta-
tion. Therefore, somewhat counterintuitively, imprinting
of PRC2 genes and the imprinted genes controlled by
PRC2 may be guided by distinct evolutionary forces.

Dosage hypothesis

As mentioned above, an implication of the parental con-
flict hypothesis is that the functions of imprinted genes
are dose-dependent; otherwise, monoallelic expression
would carry no benefit.With this inmind, the “dosage hy-
pothesis” (Dilkes and Comai 2004) was developed as a
more general explanation for the evolution of imprinted
expression. This hypothesis proposes that reduced expres-
sion fromoneallelewill be favoredbynatural selection if it
results in a more optimal abundance of the gene product.
The gene does not need to be involved in resource alloca-
tion or indeed any particular pathway, although genes
near the topof regulatoryhierarchiesandthose that encode
subunits of multiprotein complexes may be affectedmore

frequently (Birchler et al. 2001). Because optimal gene dos-
age isnotnecessarilyachievedby thecomplete silencingof
one allele, the dosage hypothesis allows for incomplete pa-
rental bias as a stable evolutionary state. These features of
thehypothesis fit theobserveddiversityof plant imprinted
genes, the prevalence of imprinted genes with regulatory
functions, and the tendency for partial rather than com-
plete parental bias (Gehring et al. 2011; Hsieh et al. 2011;
Luo et al. 2011; Waters et al. 2011, 2013; Wolff et al.
2011; Zhang et al. 2011; Pignatta et al. 2014). However,
the dosage hypothesis does not obviously account for the
concentration of imprinted expression in endosperm.

Imprinting under relaxed selection

So far, we have discussed several hypotheses under which
genomic imprinting is favored by natural selection. How-
ever, it is quite possible that the imprinted expression of
many plant genes arose under weak, if any, selection.
The imprinting status of plant genes appears to evolve
quite rapidly; there is substantial intraspecific imprinting
variation (Waters et al. 2013; Pignatta et al. 2014) and al-
most no overlap between the imprinted genes of Arabi-
dopsis, rice, and maize (Luo et al. 2011; Waters et al.
2011, 2013). Most of the examinedArabidopsis imprinted
genes were subjected to recent gene duplication events,
have increased rates of amino acid changes, and appear
to have acquired expression specificity to flowers or
seeds comparedwith theirmore broadly expressed nonim-
printed homologs (Wolff et al. 2011; Qiu et al. 2014). Inac-
tivating mutations of many imprinted genes have no
apparent influence on seed development (Berger et al.
2012; Wolff et al. 2015). This is consistent with imprinted
genes undergoing neofunctionalization following gene
duplication (Spillane et al. 2007; Bai and Settles 2014),
whereas the low intraspecies and interspecies rates of
conservation imply frequent loss of imprinting during
evolution. Imprinting may thus be a transient state that
facilitates neofunctionalization by reducing selection
against mutations of silent alleles while accelerating se-
lection of expressed alleles, in essence rendering imprint-
ing as a form of diversifying selection (Beaudet and Jiang
2002; Bai and Settles 2014).

One can envision how this might work by considering
the FWA gene. FWA is DNA methylated and silenced in
most tissues and is specifically activated in the central
cell by DME-mediated demethylation, resulting inmater-
nal-specific expression in the endosperm (Fig. 3A; Kinosh-
ita et al. 2004). Loss of FWA methylation leads to ectopic
expression and strongly delayed transition to reproductive
growth and flowering (Soppe et al. 2000; Kinoshita et al.
2004, 2007), whereas inactivating fwa mutations do not
have an obvious phenoype (Soppe et al. 2000). If FWA
were expressed throughout the plant and if delayed flower-
ing were deleterious under a given set of environmental
conditions, then mutations that inactivate FWA would
be favored. DNA methylation of FWA accomplishes the
same end while preserving gene expression in the seed
and providing an opportunity for evolution of a new func-
tion. In this view, the imprinting ofmost genes in the seed
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has no fitness benefit except perhaps via the silencing of
these genes in other tissues (Berger et al. 2012), with
imprinted genes generally either degenerating into pseu-
dogenes or acquiring new functions and biallelic expres-
sion. The lack of imprinted gene conservation implies
that long-term persistance of neofunctionalized plant im-
printed genes is rare.
Because the twomainmechanisms known to be respon-

sible for plant imprinting—DME-catalyzed DNA deme-
thylation and PRC2-catalzyed histone methylation—
have functions unrelated to imprinting, selection on im-
printed genes is unnecessary to explain the maintenance
of imprinting mechanisms. In fact, the activity of DME
in the male vegetative cell (Fig. 2), where it demethylates
some of the same genes that are imprinted in the endo-
sperm (Schoft et al. 2011; Ibarra et al. 2012), may be a
hint about the evolutionary origins of imprinting in flow-
ering plants. Gymnosperms such as conifers have no en-
dosperm, the function of which is performed by the

haploid female gametophyte (Fig. 5; Baroux et al. 2002).
How the endosperm evolved in flowering plants remains
a mystery, but a leading hypothesis postulates that the fe-
male gametophyte became sexualized (Nowack et al.
2007). If DME-type activity in the female gametophyte
—for example, in the ventral canal cell that undergoes fer-
tilization is some gymnosperms (Friedman and Floyd
2001)—predates the evolution of the endosperm, imprint-
ing and the endosperm may have arisen simultaneously
upon the evolution of double fertilization in the ancestor
of flowering plants (Fig. 5). This would explain the pre-
dominance of imprinted expression in the endosperm
without recourse to the argument that imprinting in the
endosperm is especially favored by natural selection.

Imprinting as a post-zygotic barrier to hybridization

As discussed above, imprinting may have important con-
sequences for plant evolution by promoting genetic
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Figure 5. Model for the simultaneous evolution of imprinting and endosperm in the ancestor of angiosperms (flowering plants). Angio-
sperms emerged from a gymnosperm (nonflowering seed plant) lineage, evolving flowers, fruits, and endosperm. Endosperm potentially
evolved through the sexualization of a female gamete companion cell, such as the ventral canal cell (Friedman and Floyd 2001; Rudall
2006), via fusion with one of the two sperm cells of pollen. Activity of a DME-like enzyme in the sexualized female gamete companion
cell would give rise to an endosperm with DNA methylation-based imprints in the ancestor of modern angiosperms.
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neofunctionalization. Another proposed evolutionary
consequence of imprinting is the facilitation of speciation
following polyploidization (Schatlowski andKohler 2012).
Crosses between polyploid plants and their diploid rela-
tives alter the usual balance between maternal and pater-
nal chromosomes. If dosage-sensitive genes are expressed
differently from maternal and paternal alleles, either ma-
ternal or paternal excess can reduce offspring fitness.
Therefore, genomic imprinting may pose a reproductive
barrier between plants of different ploidy, leading to repro-
ductive isolation and speciation (Haig andWestoby 1991).
This hypothesis is supported by the long-standing obser-
vation that interploidy crosses tend to fail due to aberrant
endosperm development (Kohler and Kradolfer 2011;
Schatlowski and Kohler 2012; Birchler 2014). More direct
evidence was provided by the demonstration that muta-
tion of the paternally expressed Arabidopsis imprinted
gene ADMETOS rescues seed abortion caused by excess
paternal ploidy (Kradolfer et al. 2013). The finding that
the dosage of a single imprinted gene is crucial for the suc-
cess of triploid seedsmay indicate that themajority of im-
printed genes is not involved in interploidy interactions.
However, because mutation of ADMETOS normalizes
the expression of many imprinted genes in triploid endo-
sperm, it is quite possible thatADMETOS has such a pow-
erful effect through the regulation of imprinted genes in
general (Kradolfer et al. 2013). This conclusion is support-
ed by the recent finding that mutations in three other pa-
ternally expressed Arabidopsis genes rescue triploid
seeds, with one of these, suvh7, also normalzing the ex-
pression of other imprinted genes (Wolff et al. 2015).

Concluding remarks

Five years ago, about a dozen imprinted genes had been
identified in plants, with handfuls detected in anyone spe-
cies (Berger andChaudhury 2009).Maternal-specificDNA
demethylation and histone methylation by PRC2 were
known to control the differential activation and silencing
of maternal and paternal alleles of some of these genes,
but whether these regulatory paradigms were reflective
of the bulk of plant imprinting was unclear (Huh et al.
2008). Since then, hundreds of new imprinted genes have
been discovered, and the generality of the mechanisms of
imprinted gene regulation has been firmly established
(Gehring et al. 2011; Hsieh et al. 2011; Luo et al. 2011;Wa-
ters et al. 2011, 2013; Wolff et al. 2011; Zhang et al. 2011,
2014; Ibarra et al. 2012; Rodrigues et al. 2013; Du et al.
2014; Pignatta et al. 2014; Xu et al. 2014).Manymechanis-
tic mysteries remain, including the existence of primary
imprints other than DNA methylation, the plasticity of
epigenetic marks during early seed development, the bio-
genesis and functions of imprinted sRNAs in endosperm,
and the targeting specificity ofDME-like enzymes.Never-
theless, the currentunderstanding of the coremechanisms
responsible for plant imprinting appears to be fairly robust.
In contrast, our understanding of the evolution and biolog-
ical significance of plant imprinting is in its infancy. Very
few plant imprinted genes have known functions, which

is perhaps to be expected given the recent order of magni-
tude expansion in the number of identified imprinted
genes. Furthermore, none of the proposed theories for the
natural selection of imprinted gene expression are fully
consistent with all of the evidence. Imprinting of some
genes, suchas thoseencodingPRC2components, is clearly
very important, yet we must consider the sobering possi-
bility that the imprinting of most plant genes is of little
or no fitness benefit. Given this state of affairs, elucidation
of the biological functions of plant imprinted genes should
be a priority.
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