
Eur. Phys. J. E           (2021) 44:59 
https://doi.org/10.1140/epje/s10189-021-00065-2

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Living Systems

Regimes of motion of magnetocapillary swimmers
Alexander Sukhov1,a , Maxime Hubert2 , Galien Grosjean3,4 , Oleg Trosman2, Sebastian Ziegler2,
Ylona Collard3, Nicolas Vandewalle3 , Ana-Sunčana Smith2,5 , and Jens Harting1,6
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Abstract The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmann
method. We extend on our previous work, which deals with the self-assembly and a specific type of the
swimmer motion characterized by the swimmer’s maximum velocity centred around the particle’s inverse
viscous time. Here, we identify additional regimes of motion. First, modifying the ratio of surface tension
and magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequencies
mainly defined by the strength of the magnetocapillary potential. Second, introducing a constant magnetic
contribution in each of the particles in addition to their magnetic moment induced by external fields leads
to another regime characterized by strong in-plane swimmer reorientations that resemble experimental
observations.

1 Introduction

Understanding the mechanisms of swimming motion of
microorganisms and cells at low Reynolds number is the
key to new technologies in biological and medical appli-
cations [1–3]. Simultaneously with the study of motion
of biological objects like bacteria and sperm cells [4],
a new class of microscale devices appeared—artificial
or human-made microswimmers. Many of them are
designed in a rather simple way, consisting of a num-
ber of interacting microscopic particles powered by
external excitations, for instance following the frame-
work of the three-beads swimmer [5,6]. Other exam-
ples of artificial microswimmers include magnetically
active particles [7], Janus particles [8], particles endur-
ing chemo- [9], visco- [10], gravi- [11] or thermo-taxis
[12] or even swarms of microscopic particles mimicking
the behaviour of biological organisms [13].

A particular example of an artificial microswimmer
capable of self-propelling at a gas/liquid interface is
a magnetocapillary microswimmer. Here, several mag-
netic particles are placed onto an air/water interface.
Their assembly is achieved via balancing attractive cap-
illary and repulsive magnetic interactions when a static
magnetic field is applied perpendicularly to the fluid
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interface. The motion is induced by applying period-
ically altered magnetic fields along the interface, and
it can self-propel in a linear [14] or a triangular con-
figuration [15] or perform fully controlled rotations at
the interface [16] offering a number of potential appli-
cations. These include the transport of cargo particles
or interfacial mixing [17].

Although a number of theoretical studies are known
for the triangular swimmer configuration [18–20], many
of them disregard the presence of the interface or con-
sider external forces only effectively. Here, we study
numerically the rich dynamics of magnetocapillary
swimmers by taking all relevant effects into account.
In Ref. [21], we thoroughly investigated the assembly
and the motion of the magnetocapillary swimmer in
the regime where the peak velocities of motion are cen-
tred at frequencies around the inverse viscous time of
a single particle. This regime appears quite different
from what is observed in the experiments [15]: (1) we
do not observe sizable in-plane rotations of the beads
and of the swimmer, (2) the translational amplitudes of
the bead motion are significantly smaller, (3) the simu-
lated average velocity of the swimmer is lower than in
the experiment. Additionally, the particles detach from
the interface and sink at low excitation frequencies, lim-
iting our study to high-frequency regimes.
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The current paper aims at a thorough understanding
of the parameters that determine the collective motion
of the swimmer beads and the propagation efficiency
of the full magnetocapillary swimmer. We demonstrate
and explain the various modes of motion magnetocap-
illary swimmers can undergo depending on the precise
set-up and choice of parameters. Finally, we demon-
strate that our simulations are also able to qualitatively
reproduce the strong reorientations of the swimmer as
observed in the experiments.

To do so, we reconsider some of the assumptions
made in the previous numerical model. For example,
in order to prevent sinking, the ratio of the surface ten-
sion and the magnetic forces needs to be strongly mod-
ified. Furthermore, the assumption of a single magnetic
moment is not sufficient to describe the regime observed
in the experiments. An additional constant magnetic
contribution in each of the particles leads to the exper-
imentally observed in-plane rotations of the particles.

In contrast to simpler and generally computation-
ally less demanding models based, e.g., on analytical
solutions of the Stokes equation in combination with a
bead-spring dynamics to describe the particle dynam-
ics and their interactions, our approach also allows
to investigate the impact of the interface dynamics
and the corresponding time-dependent capillary inter-
actions between particles. Additionally, since the lattice
Boltzmann method provides a hydrodynamic descrip-
tion at the Navier–Stokes level, inertial effects and
the full set of hydrodynamic interactions among par-
ticles are naturally taken into account. Furthermore,
the treatment of swimmers in geometrical confinement
or multiple swimmers is straightforward but beyond the
scope of this paper.

The remainder of this article is organized as follows:
Sect. 2 deals with the details of the numerical method,
and in Sec. 3, different regimes of motion are presented
and analysed in depth. Main conclusions on the present
and our previous numerical simulations are summarized
in the final section.

2 Simulation method

The simulation method is thoroughly described in Ref.
[21], and we only summarize the main ingredients here.
We use a lattice Boltzmann (LB) method for the simu-
lation of fluids [22]. It is based on a discretized version
of the Boltzmann equation

f c
i (x + ciΔt, t + Δt) = fc

i (x, t) + Ωc
i (x, t). (1)

The latter describes the time evolution of a single-
particle distribution function fc

i (x, t) at time t and
position x and ci denotes the discrete velocity vector in
the ith direction for fluid component c = {1, 2}. Here,
we use a so-called D3Q19 lattice with i = 1, . . . , 19 [23].
The left-hand side of Eq. (1) describes the free stream-
ing of fluid particles, while their collisions are modelled
by a Bhatnagar–Gross–Krook (BGK) collision operator

on the right-hand side as [24]:

Ωc
i (x, t) = −fc

i (x, t) − f eq
i (ρc(x, t),uc(x, t))
τ c/Δt

. (2)

In Eq. (2), f eq
i (ρc(x, t),uc(x, t)) is a third-order equi-

librium distribution function, and macroscopic densities
and velocities are given by ρc(x, t) = ρ0

∑
i fc

i (x, t) as
well as uc(x, t) =

∑
i fc

i (x, t)ci/ρc(x, t), respectively
(ρ0 is a reference density). τ c is the relaxation rate
of component c, which determines the relaxation of
fc

i (x, t) towards the equilibrium. Space is discretized
on a three-dimensional lattice with lattice constant Δx,
and the time t is discretized with Δt-steps. The speed
of sound cs = 1/

√
3Δx/Δt depends on the choice of the

lattice geometry and allows one to obtain the kinematic
νc = c2sΔt(τ c/Δt− 1/2) or the dynamic ηc = νcρc fluid
viscosities. For simplicity, we set Δx = Δt = ρ0 = τ c =
1 in the remainder of this paper and refer to the units
as lattice units (l.u.).

For simulations of the interface and the associated
capillary interactions, we choose the pseudopotential
method of Shan and Chen and apply a mean-field force
between different fluid components as [25,26]:

F c
C(x, t) = −ψc(x, t)

∑

c′
gcc′

∑

x′
ψc′

(x′, t)(x′ − x).

(3)

Here, c and c′ refer to different fluid components,
x′ denotes the nearest neighbours of the lattice site
x, and gcc′ describes a coupling constant determining
the surface tension. ψc(x, t) has the form ψc(x, t) ≡
ψc(ρc(x, t)) = 1 − e−ρc(x,t). The force (3) is applied to
the fluid component c by adding a shift Δuc(x, t) =
τ cF c

C(x, t)/ρc(x, t) to the velocity uc(x, t) in the equi-
librium distribution. The method is a diffuse interface
method, with an interface width of typically 5 lattice
sites depending weakly on the coupling strength [27]. In
the binary fluid system, we refer to the fluids as “red”
(r) and “blue” (b) [28]. In addition, we initialize the
system with two equally sized volumes of red and blue
fluid, separated by a flat fluid interface.

Three rigid magnetic particles are simulated by solv-
ing Newton’s equations of motion for translational and
rotational degrees of freedom by means of a leap-frog
algorithm. The particles are discretized on the lattice.
They are coupled to both fluid species by means of a
modified bounce-back boundary condition for both fluid
components [28–31].

A static magnetic field By is applied along the posi-
tive y-direction (see Fig. 1) perpendicular to the inter-
face and induces repulsive magnetic dipolar forces. The
repulsion is balanced by an attractive capillary force
which is due to the interface deformation caused by the
gravity-induced immersion of the particles. This com-
bination of forces allows the assembly of stable par-
ticle arrangements at the interface. In analogy with
the experiments on magnetocapillary swimmers [15],
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we choose the amplitude of the time-dependent mag-
netic field to be approximately three times lower than
that of the static field to treat it as a modulation. The
field B(t) = B0x cos ωtex causes a deformation of the
particle arrangement, which due to collective hydrody-
namic interactions leads to the motion of the swimmer
under a force free protocol. To properly describe mag-
netic properties of the particles, a homogeneous exter-
nal magnetic field B acts on each particle i with the
magnetic moment µi, whose orientation coincides with
the material orientation of the particle. The resulting
magnetic dipole–dipole interaction between a pair of
particles is

Uij = − μ0

4πr3ij

[
3(µi · eij)(µj · eij) − (µi · µj)

]
. (4)

In Eq. (4), rij ≡ ||rij || ≡ ||ri − rj || is the distance
between the centres of two spheres i, j located at ri

and rj , respectively, and eij = (ri − rj)/ ||ri − rj ||.
The effective magnetic field generated by the magnetic
moment µj at the location of another particle i is

Bi = −∂Uij

∂µi

=
μ0

4πr3ij

[
3eji(µj · eji) − µj

]
. (5)

The resulting magnetic force acting on the ith particle
is then F i = −∇ (−µi · (Bi + B)), or more explicitly

F i =
3μ0

4πr4ij

(
µi

(
µj · eji

)
+ µj (µi · eji)

−5eji

(
µj · eji

)
(µi · eji) + eji(µi · µj)

)
. (6)

We note that the external magnetic field B is homo-
geneous (∇(µi · B) = 0)); hence, the magnetic forces
(Eq. (6)) appear solely as a result of the magnetic dipo-
lar interaction. Analogously, the magnetic torque acting
on the particle i is T i = [µi × (Bi + B)], or explicitly

T i=
μ0

4πr3ij
· (

3
(
µj · eji

) [
µj ×eji

]

− [
µi×µj

])
+ [µi×B] . (7)

In the case of three particles, the total force and the
total torque for each particle include a summation of
expressions (6) and (7) over index j. The method with
implemented magnetic interactions has already been
benchmarked and successfully applied for simulations of
magnetocapillary phenomena [32] and swimmers [21].

The following numerical parameters are used through-
out the paper: the simulation box consists of 1283
cubic cells containing two equally sized fluid lamellae.
Rigid walls with midgrid bounce back boundary condi-
tions are placed parallel to the fluid interface, while in
any other directions periodic boundary conditions are
assumed. All beads have equal radius R = 5Δx and
density ρp = 2ρ0. The coupling constant gcc′ = 0.1
between the two fluids with densities ρr = ρb = 0.7ρ0

(a) (b)

Fig. 1 a The simulated system including the directions of
external magnetic fields (B and B(t)) and particle orienta-
tion vectors ni, coinciding with the directions of magnetic
moments of beads µi. b Top view of the fluid interface show-
ing angles αi of the isosceles triangle formed by particles and
the orientation of the triangle within the interface θ

implies a numerical surface tension γ = 0.04 in lat-
tice units. The magnetic moment is chosen in the range
μ = [1; 3] × 105 in lattice units.

3 Results

The equilibrium properties of one, two and three par-
ticles at the fluid–fluid interface are thoroughly stud-
ied in Ref. [21]. Therefore, here we start directly with
three rigid magnetic particles placed at the interface.
The particles are in their equilibrium position at a fixed
ratio of gravitational and surface tension forces, termed
as Bond number, i.e. Bo=0.16 (Fig. 1a).

The assembly of the three particles is driven by a
time-dependent magnetic field and the main observ-
able of interest is the average velocity of the swimmer,
defined as:

〈v〉 =
1
3

∑

i

(ri(te) − ri(tb))
(te − tb)

, (8)

where tb, te stand for the beginning and end times of the
external magnetic field action, i numbers the particles,
and ri denotes the corresponding coordinates.

In general, the velocities and times can be expressed
in relative units related to characteristic processes of
the particles at the interface. Since each spherical par-
ticle in a fluid experiences a drag force upon transla-
tion, its characteristic time to reach the equilibrium can
be measured via the coasting or viscous time, defined
as τcs = m/(6πηR) or τcs = 2ρpR

2/(9η) ≈ 95 Δt,
where ρp is the particle density, R is its radius and η
is the total fluid viscosity. Following the total magnetic
field, the particles partly rotate in the fluid, requiring
another relevant time scale associated with their rota-
tion. This rotational time can be defined as a ratio of
the moment of inertia and the mechanical torque, i.e.
τrt = 2/5mR2/(8πηR3) or τrt = ρpR

2/(15η) ≈ 29 Δt.
One can estimate the time describing the relaxation of
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Fig. 2 High-frequency time propagation of the inner
angles αi within the triangular swimmer and the orientation
angle θ of the swimmer as defined in Fig. 1b. The lower panel
depicts the corresponding reduced time-dependent magnetic
field B(t)/B0x. LB-parameters: Bo = 0.16, L = 2.3 × (2R),
B0x/B = 0.36, T = 125 Δt

the interface as τin = ηR/γ ≈ 44 Δt, where γ describes
the surface tension. Finally, since the particles are in
the magnetocapillary potential, the time related to its
strength or effective spring k can be approximated using
τsp = 2π

√
m/k ≈ 65, 000 Δt. It is mostly convenient

to use one of the shortest time scales associated with
the particle for the normalization and the time having
fewest variable parameters. Therefore, we express time
in units of the coasting time of a single particle τ cs and
the swimmer velocities in diameters per coasting time
(2R)/τcs.

Following the definition of the coasting time τ cs, we
denote high frequencies to be in the range of ω/(2π) ≈
1/τ cs, while the range of low frequencies corresponds to
ω/(2π) � 1/τ cs.

3.1 Motion at high frequencies

In Ref. [21], we report on the static and some dynamic
properties of the magnetocapillary swimmer. It is
shown there that the swimmer demonstrates a stable
controlled motion for a broad range of swimmer sizes
at frequencies in the vicinity of the inverse coasting time
τcs.

We introduce the angles αi(t) between the corre-
sponding arms of the swimmer as shown in Fig. 1b as
well as the orientation of the swimmer in the plane of
the interface θ defined as the angle between the perpen-
dicular to the line connecting particles 1 and 2 through
particle 3 and the z-axis (Fig. 1b), where θ(t = 0) ≈ 0.
Starting with an equilateral triangle (αi(tb) = 60◦,
Fig. 2, upper panel), it transforms into an isosceles one
for B(t) �= 0, while the triangle as a whole only slightly
(< 10◦) rotates after a number of field periods (Fig. 2,
middle panel). Wishing to demonstrate the short period
of the external magnetic field (Fig. 2, lower panel), we

note that on a longer time scale the rotation illustrated
by the angle θ(t) is not transient and remains of the
order of several degrees.

Approaching lower frequencies in this regime often
leads to a sinking of one or two particles, thus destroy-
ing the swimmer. This effect is very pronounced at
moderate and large swimmer sizes (L > 3 × 2R), hin-
dering the study of its motion at low frequencies. In
experiments on magnetocapillary swimmers (Ref. [15]),
sinking of particles was never observed, raising the
question of proper parameters in the LB-simulations.
When magnetic forces are applied upon the swimmer
motion, the Bo-number carefully chosen in our previ-
ous study [21] is not the only parameter defining the
particles’ vertical position. Indeed, one can consider
the ratio of surface tension and magnetic dipolar forces
Fst/Fmg = 2πγR/(μ0μ

2/(4πr4pp)), where μ0 is the mag-
netic permeability of vacuum, μ is the total bead mag-
netic moment, and rpp is the distance between the par-
ticle centres. Aiming at the maximum of the magnetic
force, thus taking rpp = 2R, we find the ratio in the

experimental situation to be Fst/Fmg

∣
∣
∣
ex

≈ 104 and

in LB-simulations of the order of Fst/Fmg

∣
∣
∣
LB

≈ 1. It
is obvious from this estimate that in the experiments
the surface tension dominates over magnetic interac-
tions, while in the simulations, the forces are of the
same order. In addition to its strength, the magnetic
force is strongly dependent on the mutual orientation
of interacting magnetic moments (Eq. (6)). In particu-
lar, if the particles are in one plane and their magnetic
moments are aligned strictly perpendicular to the inter-
face (Fig. 3a, b), the out-of-plane magnetic force is zero.
If, however, the magnetic moments become tilted by the
external time-dependent magnetic field (Fig. 3c), the
out-of-plane components of the magnetic forces beat
the surface tension forces detaching the particles from
the interface (Fig. 3d). Interestingly, only the particles
along the B(t)-field vector (particles 1 and 2) sink, since
by symmetry particle 3 does not experience any out-of-
plane magnetic force in this configuration.

3.2 Motion at low frequencies

In order to get closer to the experimental regime and
to avoid the sinking of particles, the ratio of the
forces Fst/Fmg needs to be increased. A natural way
to increase this ratio is by decreasing the magnetic
moment. This does not work, however, since it reduces
the magnetic repulsion and leads solely to the aggrega-
tion of particles. Alternatively, the surface tension could
be increased, but the computational effort required to
increase the surface tension by several orders of mag-
nitude is prohibitive. We did perform simulations with
a twice as high resolution of the particle corresponding
to a similar scaling of the surface tension, but did not
find any qualitative difference in the swimmer move-
ment. Further solutions like reducing the strength of
the time-dependent field amplitude would significantly
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(a) (b) (c) (d)

Fig. 3 Demonstration of the irreversible sinking of parti-
cles during the swimmer motion. a shows the swimmer dur-
ing its relaxation (B(t) is not applied), b illustrates the state
directly after the driving B(t)-field is switched on, c shows
the swimmer just before the sinking of the base particles

and d demonstrates the state of the degraded swimmer, i.e.
when two particles are detached from the interface. Param-
eters of simulations: the Bond number Bo = 0.16, the ratio
of magnetic fields B0x/B ≈ 0.57, the period of the external
field is T = 105 Δt

Fig. 4 Trajectories of each bead during the swimmer
motion in the regime of low frequencies. The inset shows the
initial and final positions of the swimmer on the interface.
LB-parameters: Bo = 0.16, L = 1.8 × (2R), B0x/B = 0.36,
T = 20,000 Δt

reduce the swimmer velocity and increase the compu-
tational effort enormously.

We therefore numerically set the out-of-plane com-
ponent of magnetic forces to zero, and thus effectively
increase the ratio of surface tension to magnetic force.
This solution is physically sound since all magnetic
dipolar forces are pair forces and the total force remains
zero.

As shown in Fig. 4, the swimmer in this regime prop-
agates in the direction perpendicular to the oscillation
of the magnetic field. This aspect is similar to the pre-
viously observed motion [21]. The way it propagates is,
however, different. The amplitudes of particle oscilla-
tions are significantly larger than before and reach val-
ues around 0.3 × 2R. Also, all three beads experience
pronounced oscillations and not only particles 1 and 2
as it is the case at high frequencies [21].

Figure 5 shows the trajectories of orientation unit
vectors ni stressing the fact that orientations of the par-
ticles follow the direction of the time-dependent exter-
nal magnetic field which is applied after a relaxation
time of tb = 30, 000 Δt. As mentioned in Ref. [21], the

Fig. 5 Trajectories of orientation vectors ni (Fig. 1a) for
each bead in the regime of low frequencies. LB-parameters:
Bo = 0.16, L = 1.8 × (2R), B0x/B = 0.36, T = 20, 000 Δt.
The B(t)-field is applied after tb =30,000 Δt

time tb is chosen after studying vertical relaxations of
single and multiple particles at the fluid–fluid interface.
It assures that for t > tb the vertical motion of both
the particles and the fluid is negligibly small. The max-
imum declination of the direction vector nmax

xi ≈ 0.36
is the consequence of the applied time-dependent and
static magnetic fields B0x/B ≈ 0.36. Since direction
vectors are unit vectors |ni| = 1 and the magnetic
fields are applied in the xy-plane, the nzi-component
remains nearly zero attaining the maximum declination
for Δnyi = 1 − √

1 − n2
xi ≈ 0.07 (see Fig. 5 for nyi).

The orientation of the swimmer θ in this case does
not show any regular pattern (Fig. 6), but it indicates
an overall slight rotation of the triangle with respect to
the initial orientation by less than 10◦. Since during the
motion of the swimmer θ reaches values exceeding 20◦,
we conclude that the swimmer in this regime tries to
synchronize its orientation with respect to the driving
B(t)-field. Figure 6 demonstrates significant differences
in the time dependence of angles αi compared to the
high-frequency mode. Here, angle α3 associated with
the third particle periodically decreases, while angles
α1 and α2 increase to the same amount. This is the
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Fig. 6 Time propagation of the inner angles αi within the
triangular swimmer and the orientation angle θ of the swim-
mer as defined in Fig. 1b. Low panel demonstrates the time
propagation of the time-dependent magnetic field B(t)/B0x.
LB-parameters: Bo = 0.16, L = 1.5 × (2R), B0x/B = 0.36,
T = 100,000 Δt

consequence of the reduced magnetic moments µ1 and
µ2 on the average of the field period, hence a reduced
magnetic repulsion between the particles. As a result,
the attractive capillary interaction pushes particles 1
and 2 closer to each other compared to the situation in
equilibrium (αi = 60◦).

The fact that the frequencies of angle oscillations are
two times higher than the ones related to the driv-
ing magnetic field reflects the magnetic pair-interaction
nature. Indeed, the induced magnetic moment can be
written as µ = χV0/μ0(B + B(t)) or simply μ ∼
const + cos ωt, where χ is the magnetic susceptibil-
ity and V0 is the volume of a particle. If the mag-
netic moments are oriented nearly perpendicular to
the interface, then the magnetic repulsion force scales
as F12 ∼ (µ · µ) = (const + C1 cos ωt + C2 cos 2ωt),
where C1,2 are some physical constants. In other words,
the second harmonics are inherent in magnetic interac-
tions and since each particle interacts with two others
at the same time, several first and second harmonics
are always present in their trajectories with different
weights.

Figure 7 summarizes the behaviour of the average
velocity of the swimmer as a function of the frequency
of the external field B(t) for different swimmer sizes L.
In general, swimmer velocities are sensitive variables.
Therefore, the swimming velocity results from aver-
aging in time and on different numerical trajectories,
namely: first, the swimmer velocity is calculated accord-
ing to the definition given by Eq. (8) which describes a
time average of the displacement of the swimmer’s cen-
tre of mass. Second, for every swimmer size L we aver-
age over two trajectories differing in the time when the
B(t) is applied, i.e. tb = 30000 Δt and tb = 100000 Δt,
meaning that initial positions of the swimmer in both
cases are slightly different. This averaging allows to
reduce the effect of the slightly changing particle dis-

Fig. 7 Velocity of the centre of mass of the swimmer aver-
aged over multiple periods versus frequency of the external
magnetic field in the regime of low frequencies. The swim-
mer propagates mainly along the z-axis, a drift along the
x-axis can be ignored. LB-parameters: Bo = 0.16, B0x/B =
0.36

cretization on the velocity measurement. Correspond-
ing error bars would be smaller than the symbols and
are thus omitted.

Compared to the similar dependence of the regime at
high frequencies (Fig. 9a in Ref. [21]), we clearly iden-
tify the swimmer operation in a much broader range of
frequencies for all swimmer sizes.

Figure 7 also represents the swimmer motion at
low and moderate frequencies of its driving. It cap-
tures the whole complexity of the motion in terms of
capillary and magnetic interactions (magnetocapillary
potential), hydrodynamic interactions, the behaviour
of the interface, triangular geometry of the swimmer
and the effects associated with the inertia of the parti-
cles. Although there is a number of studies dealing with
the physics of swimmer motion [5,6,18,20,33–35], it is
hardly possible to include all the aforementioned effects
in a single theoretical formalism. Studies relying on the
force-based approach suggest that the maximum swim-
mer velocity should be centred around the frequencies
associated with the harmonic potential controlling the
arm length, e.g. ωSt = k/(6πηR) [18,20].

The low-frequency behaviour originates from the res-
onance due to the particle mass and the magnetocap-
illary potential, such that we can estimate the associ-
ated frequencies using the expression for a harmonic
oscillator ωspring ∼ √

k/m. Appendix A provides a
simplified way of extracting the spring constants k12x

from the particle trajectories of the swimmer of mod-
erate sizes. The maximum velocities associated with
the magnetocapillary potential quantified by effective
spring constants k fall into the range ω(〈V 〉max) ≈
[0.0005; 0.009] 1/τcs. Figure 7 confirms these estimates
by showing broad velocity distributions at different
swimmer sizes between [0.001; 0.01] 1/τcs. A decay of
averaged velocities as a function of the swimmer size L
in this ω-range reflects decreasing hydrodynamic inter-
actions upon the swimmer growing, which is shown

123



Eur. Phys. J. E           (2021) 44:59 Page 7 of 12    59 

by expression (43) of Ref. [20] though in the Oseen-
tensor representation only (R/L < 1/6). If extended to
the sizes considered here (1/4 < R/L < 1/3, Rotne–
Prager tensor), it confirms the observed behaviour of
〈V max(L)〉 for ω ∈ [0.001; 0.01] 1/τcs.

At frequencies around the inversed coasting time, the
pronounced peaks are related to the relaxation of single
beads in the fluid. This feature was observed and stud-
ied in Ref. [21]. The origin of further peaks at moderate
frequencies is speculative. We expect them to stem from
higher harmonics induced by magnetic interactions.

3.3 Motion at low frequencies and finite internal
magnetic moment

The simulated triangular magnetocapillary swimmer
presented so far shows how its motion differs depending
on the applied field frequency ω, properties of the inter-
face or the swimmer size L. Compared to the exper-
imental situation in which high in-plane cyclic bead
rotations are observed (Fig. 6 in Ref. [15]), the sim-
ulated swimmer never shows such type of motion since
the propagation of θ in Fig. 6 is not periodic. Indeed, the
strong in-plane bead rotations observed in the experi-
ments point to more complex magnetic properties of
the beads.

For unraveling the magnetic properties of the beads,
a series of experiments was performed using a sin-
gle particle placed at the interface and driven by an
external magnetic field [16]. Therein, the magnetic
bead rotates under the application of a constant mag-
netic field in the plane of the interface when the field
rapidly changes its orientation by 180◦. Assuming that
the magnetic moment is of paramagnetic nature, i.e.
µ ∼ B, the associated magnetic torque on the particle
should be zero (T ∼ [µ×B] = 0) and cannot cause the
particle to rotate around its own axes. This fact leads to
the hypothesis of the existence of a permanent internal
magnetic moment that is randomly oriented when the
particle is placed at the interface. Upon switching the
field orientation from “+” to “−”, the permanent inter-
nal magnetic moment follows the field and mechanically
rotates the particle. Moreover, a correct linear scaling
was experimentally observed for the maximum rotation
frequency of the bead with respect to the magnetic field
amplitude (Fig. 8 in Ref. [16]).

The origin of the small constant internal magnetic
contribution in the particles is still under debate [16].
Taking into account their size (diameters of several hun-
dred micrometers) and almost perfect spherical form, it
can be shown by exact numerical micromagnetic sim-
ulations (Sec. 5 in Ref. [16]) that their net magnetic
moment should be zero in the absence of an external
field. The latter should also be true in much larger
systems, i.e. above diameters 1–3 μm for which the
micromagnetic simulations were performed. At large
particle sizes (> 1μm) long-ranged magnetic dipolar
interactions start favouring the formation of magnetic
domains that are randomly oriented in space and their
number grows upon reaching hundreds of micrometers.

Fig. 8 Trajectories of each bead during the swimmer
motion in the regime of low frequencies and finite inter-
nal magnetic moment. The inset shows the initial and final
positions of the swimmer on the interface. LB-parameters:
Bo = 0.16, L = 1.5 × (2R), B0x/B = 0.36, T = 100,000 Δt,
μintx = 0.1μ, μinty = 0, μintz = 0

Fig. 9 Trajectories of orientation vectors ni (Fig. 1a) for
each bead in the regime of low frequencies and finite internal
magnetic moment. LB-parameters: Bo = 0.16, L = 1.5 ×
(2R), B0x/B = 0.36, T = 100,000 Δt, μintx = 0.1μ, μinty =
0, μintz = 0. The B(t)-field is applied after tb =30,000 Δt

Considering that the particles are highly monodisperse
in density [16], only two effects can cause the presence
of a finite internal magnetic moment: (i) defects at the
boundaries of some magnetic domains (similar to the
Barkhausen effect) and/or (ii) the fabrication process
of the magnetic beads. In the latter case, steel wires
are originally cut into small cylinders, then pressed
into spherical dies and finally rounded [16]. We specu-
late that this process might induce additional magnetic
anisotropies in the particles.

Being equipped with the experimental proof for the
existence of the permanent internal magnetic moment,
we assume that the total magnetic moment in each par-
ticle has two magnetic contributions

µtoti = µi + µinti, (9)

where µi is the main magnetic contribution, while µinti

is a smaller magnetic contribution which is not parallel
to the external magnetic field B.
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Appendix B provides full details of how magnetic
forces and torques are modified if Eq. (9) holds. In
particular, magnetic forces gain three additional terms,
since internal magnetic moments interact with the
induced ones and with themselves in different par-
ticles. The same applies to the magnetic torques.
For the strength of the internal magnetic moment,
we rely on experimental observations [16], where the
strength was estimated to be approximately in the
range μint ∈ [0.1; 0.15]μmax of the maximum induced
magnetic moment.

Figure 8 represents the motion of the swimmer at low
frequencies and in the presence of finite internal mag-
netic moment μintx = 0.1μ (μinty = 0, μintz = 0) in each
bead. Each of the three particles has the same inter-
nal magnetic moment in strength and direction and
the induced magnetic moment is present as described
above. There is a notable difference in the way how
all particles move in this case with respect to previ-
ous modes (Fig. 4): both x- and z-components of the
particles along which the B(t)-magnetic field is applied
experience sizable oscillations, while the top particle
performs oscillations only along the x-direction. The net
swimmer displacement in this regime is approximately
the same as in the absence of the internal magnetic
moment (inset of Fig. 8).

The dynamics of rotation vectors ni (μintx = 0.1μ,
Fig. 9) does not essentially differ from that when the
internal magnetic moment is zero (Fig. 5). We only
witness a very tiny z-component of ni for all particles
which is attributed to a new in-plane magnetic equilib-
rium due to the presence of μintx.

The presence of the finite internal magnetic moment
leads to substantial in-plane dynamics of all the beads
within the swimmer. As shown in Fig. 10, the orien-
tation of the swimmer θ follows exactly the period of
the external magnetic field B(t) and on the large time
scale the swimmer keeps its in-plane orientation such
that

∫ t→∞
0

θ(t)dt ≈ 0. Additionally, we observe that the
strength of μint defines how strong the angle θ deviates
from the equilibrium θ = 0 meaning that one can judge
about the magnitude of μint based on 〈θmax〉. Along
with the pronounced θ(t)-dependence, we detect sev-
eral changes in the propagation of αi(t). In contrast to
the triangle deformations in the absence of μint (Fig. 6),
where all angles Δαmax

i < 5◦, we now notice larger tri-
angle deformations Δαmax

i ≈ 10◦ that again depend on
the magnitude of μint. Moreover, an asymmetric prop-
agation of the base angles α1 and α2 (Fig. 10, upper
panel) complies with the asymmetry introduced by the
direction of the internal magnetic moment μintx: the x-
components of the induced and the internal magnetic
moments are aligned anti or parallel depending on the
B(t)-direction.

Noteworthy is also the orientation of the internal
magnetic moment. The dynamics presented in Fig. 10 is
valid for the x- or in general an in-plane component of
μint. Once one introduces μinty or an out-of-plane com-
ponent solely, which is additive to the induced magnetic

Fig. 10 Time propagation of the inner angles αi within the
triangular swimmer and the orientation angle θ of the swim-
mer as defined in Fig. 1b. Low panel demonstrates the time
propagation of the time-dependent magnetic field B(t)/B0x.
LB-parameters: Bo = 0.16, L = 1.5 × (2R), B0x/B = 0.36,
T = 100,000 Δt, μintx = 0.1μ, μinty = 0, μintz = 0

moment, we do not observe periodic reorientations of θ
(not shown here).

Although quantitatively there might be differences
between our simulations and the experimental obser-
vations for angles αi and θ (e.g. Fig. 6 in Ref. [15]),
qualitatively we recover the main experimental findings:
when introducing a smaller in-plane component of the
internal magnetic moment μint ≈ 0.1μmax, the swim-
mer demonstrates remarkable reorientations defined by
the angle θ which follow the external B(t)-field by its
simultaneous swift propulsion at the interface.

Finally, the dependence of the averaged velocity
on the applied frequency (Fig. 11) does not change
significantly with respect to the situation with the
absent internal magnetic moment (Fig. 7), i.e. the
swimmer is most efficient for frequencies ω/(2π) ∼
[0.001; 0.01] 1/τcs . The average velocity does not acquire
any boost or decrease compared to the situation shown
in Fig. 7. The only difference concerns the range of high
frequencies around the inverse coasting time, where
no swimming is observed in the presence of the μintx

moment (Fig. 11).

4 Summary and discussion

4.1 Different regimes of motion

Using the lattice Boltzmann method with the Shan–
Chen model for the fluid–fluid interface, we demon-
strate three different regimes of stable swimmer motion:
the regime with magnetic particles at high (i) and low
(ii) frequencies and (iii) the regime of magnetic parti-
cles with a small internal ferromagnetic contribution at
low frequencies.
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Fig. 11 Velocity of the centre of mass of the swimmer aver-
aged over multiple periods versus frequency of the exter-
nal magnetic field in the regime of low frequencies and
finite internal magnetic moment. LB-parameters: Bo = 0.16,
L = 1.5 × (2R), B0x/B = 0.36

In regime (i) (Ref. [21]) the magnetic moments of
all particles follow a set of externally applied static
and oscillating magnetic fields. The swimmer propa-
gates having small particle displacements and shows
neither typical sizable in-plane rotations of the beads
as observed in the experiments [15] nor periodic reori-
entations of the swimmer (evolution of θ in Fig. 2). The
peaks of the averaged swimmer velocity (Fig. 11 in Ref.
[21]) are observed at high frequencies characteristic to
viscous or coasting times of the particles. Reduction of
the driving frequency required for a better temporal
resolution of the motion often led to sinking of one or
several particles (Fig. 2), thus destroying the swimmer.
We find that sinking is caused by sizable out-of-plane
components of magnetic forces exceeding the surface
tension force.

Regime (ii) is achieved through suppressing the ver-
tical component of the magnetic force of the swimmer
having otherwise the parameters of regime (i). As a
result, each bead attains amplitudes up to its radius
and the swimmer is capable to propagate at signifi-
cantly lower frequencies associated with the strength of
the magnetocapillary potential. A good temporal res-
olution of its motion is accomplished. The swimmer
in this regime shows sizable side deformations; how-
ever, no periodic reorientations are characterized by the
angle θ (Fig. 6).

Finally, regime (iii) is primarily characterized through
the existence of an additional small constant internal
magnetic contribution that is evidenced in the exper-
iments [16]. The swimmer demonstrates a motion at
low characteristic frequencies and possesses typical θ-
reorientations (Fig. 10) similar to those observed exper-
imentally [15]. It should be noted that only the in-plane
component of the internal magnetic moment causes the
typical swimmer motion seen experimentally, while the
out-of-plane magnetic contributions do not lead to any
sizable swimmer reorientations, since in this case it adds
to the vertical magnetic moment.

In regimes (ii) and (iii), we witness one remarkable
non-trivial effect associated with the frequency of the
driving field. Despite the external magnetic field B(t)
having only one frequency ω, the associated magnetic
force might have a second harmonic, since the magnetic
force between each pair of particles is calculated accord-
ing to Fij ∼ (µi ·µj) ∼ const+cos ωt+cos 2ωt for each
magnetic moment driven by the total field B + B(t).
This frequency doubling effect is clearly seen in Figs. 6
and 10, when comparing the inner angle- (upper panels)
and the driving field (low panels) propagations. This
feature should be kept in mind in case of magnetocap-
illary or, in general, any magnetically driven swimmer,
when applying theoretical e.g. bead-spring models: the
force will contain 2ω although the field is applied with
a single frequency ω.

4.2 Swimmer velocities

In experiments, for bead diameters 2R = 500 μm the
average swimmer velocity reaches values up to 〈V exp〉 ≈
0.3 (2R)/T [15] for the ratio of oscillating to static field
B0x/B ≈ 0.5 and about 〈V exp〉 ≈ 0.02 (2R)/T for mod-
erate B0x/B ≈ 0.1. Our LB-simulations yield for the
maximum average velocities 〈V LB〉 ≈ 0.0004 (2R)/T in
regime (i) [21] and approximately 〈V LB〉 ≈ 0.06 (2R)/T
in both regimes (ii) and (iii) (Sects. 3.2 and 3.3, respec-
tively). Although the simulated velocities in absolute
units are of the same order of magnitude in all the
described regimes (〈V LB〉 ≈ 10−5 l.u.), we reach a bet-
ter agreement with the experiment in units of (2R)/T
for regimes (ii) and (iii). It is also in line with the analyt-
ical predictions for the triangular swimmer velocity in
Ref. [20] (Eq. (43)) or for a dumbbell swimmer includ-
ing effects of inertia (Ref. [35], Eq. (2)): the lower the
potential constant is (estimates in Appendix A yield
k ≈ 10−5 l.u.), the lower are the frequencies of the peak
velocities leading to a better time resolution and the
higher are the maximum velocity amplitudes. Finally,
we note that since the swimmer velocity typically scales
quadratically 〈V 〉 ∼ A2 [18,20,35,36] with the external
driving amplitude A, this is also the way to tune up the
velocity. Note that A is the magnetic force amplitude
and not the magnetic AC-field amplitude, for which
our LB-simulations yield a biquadratic velocity-vs-field
dependence. With triangular magnetocapillary swim-
mers, it has, however, a limitation at increasing field
ratios, since at values B0x/B ≈ 0.4 a dynamic transi-
tion from a triangular to a linear swimmer configuration
occurs (Fig. 2 of Ref. [17]). We are able to reproduce
this transition in our LB-simulations and therefore fix
the ratio around B0x/B ≈ 0.36 to assure the triangular
form [21].

4.3 Simulation method and parameters

The presented simulations of magnetocapillary swim-
mers are a challenging task. On the one hand, we model
the fluid–fluid interface and its dynamics coupled with
the dynamics of the externally driven magnetic parti-

123



   59 Page 10 of 12 Eur. Phys. J. E           (2021) 44:59 

cles. On the other hand, the magnetic properties of the
swimmer are included in the simulation by taking into
account not simply effective external repulsive forces
but the different magnetic contributions to the total
magnetic moment of the beads leading to the particle
repulsion. As a consequence, such thorough modelling
of the problem allows for very detailed insights into the
static properties of magnetocapillary swimmers such as
horizontal and vertical positioning of the beads upon
swimmer self-assembling, the conditions for which the
particles may detach from the interface and a realis-
tic description of capillary phenomena for finite par-
ticle sizes and moderate inter-particle distances [21].
Moreover, the rich physics of the swimmer propagation
associated with the potential strength and the inter-
face dynamics is reflected in their velocity vs frequency
dependencies (Figs. 7, 11).

At the same time, the choice of the method and the
limitation in reaching realistic surface tensions with
acceptable computational effort are also responsible
for the sinking of particles upon the swimmer motion
(Fig. 3). It helps better understand the experimental
conditions such as a very high surface tension that prac-
tically pins the floating particles to the interface per-
mitting thus only in-plane particle dynamics. A possible
solution of the problem associated with the sinking of
beads in LB-simulations consists in modifying not the
interface, but rather in setting the vertical components
of magnetic forces to zero, thus suppressing the out-of-
plane swimmer dynamics.

Furthermore, a number of parameters have a strong
impact on the propagation of the magnetocapillary
swimmer. First, the particle radius R which should
be larger than the thickness of the diffuse interface
(≈ 5Δx) [28,37] and large enough to provide a spatial
resolution required to reproduce the correct surround-
ing flow field. At the same time, R has to be small
enough to assure a comparison with the experimental
situation, where the radius is small compared to the
system size. Particularly, we found that increasing the
particle radius to values larger than 5Δx has only a
minor influence on the swimmer velocity. Second, in
view of simulations of long-ranged capillary phenom-
ena, the total size of the simulated fluid or the size of the
simulation box is very crucial. Using periodic bound-
ary conditions in lateral directions of the box (Fig. 1a),
the box side length should be large to ensure satura-
tion of the interface from the point of contact with the
particles towards the edges. Although the LB-method
scales nicely to large processor counts, very large system
sizes require enormous computational times. Examina-
tion of the box size on the swimmer velocity showed less
than a factor two. The third parameter that should be
carefully chosen is the Bo-number, which can be tuned
either by the particle density or by its radius. For a bet-
ter interface resolution, a notably curved interface pro-
file is desired; hence, large Bo-numbers, while exceeding
Bocrit ≈ 0.21, lead to sinking of particles. Taking into
account the listed criteria and the available computa-
tional resources is the base for our choice of parameters
as given at the end of Sec. 2.

5 Conclusions and outlook

We demonstrated that our LB simulations are capa-
ble of reproducing the rich dynamics of magnetocapil-
lary microswimmers by taking into account all relevant
physical ingredients. We proved in particular that the
existence of small ferromagnetic contributions in the
particle properties (µint �= 0) captures the character-
istic swimmer reorientations observed experimentally
[15]. Moreover, we claim that when the magnetization
of the beads is only induced by an external magnetic
field (µ �= 0, µint = 0), the swimmer is also capable of
swimming and its motion is then characterized by the
maximum swimmer velocity to be centred around the
particle’s inverse coasting time in the range of higher
driving frequencies. For lower driving frequencies and
a high ratio of surface tension to magnetic forces, the
swimmer motion is determined by the strength of the
magnetocapillary particle interactions.

As an outlook, yet another regime of motion might be
numerically studied. In that case, an additional small
static magnetic field is applied along the z-axis (Fig. 1)
leading to sizable individual rotations of each bead in
the plane of the interface. In this setup, a swift swimmer
motion is reached experimentally presumably because
of strong hydrodynamic flows [17]. Furthermore, we
plan to investigate in detail the effect of the particle
and fluid inertia on the swimmer motion.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-021-00065-2.
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Appendix A: Calculation of spring constants

For the spring potential between e.g. particles 1 and 2
(Fig. 1) defined as

φ(r1 − r2) = φ12 =
1

2
k (|r1 − r2| − L)2 , (A.1)

with L being the equilibrium distance between the centres
of particles, we define the force acting on particle 1 via

F 1(t) = −∇1φ(r1 − r2). (A.2)

In general, spring constants have different components kx,
ky and kz, so that

F 1(t) = −
(

1 − L

|r1(t) − r2(t)|
)

×
⎛
⎝k1x 0 0

0 k1y 0
0 0 k1z

⎞
⎠

⎛
⎝x1(t) − x2(t)

y1(t) − y2(t)
z1(t) − z2(t)

⎞
⎠ .

(A.3)

The x-component is defined according to Eq. (A.2) as

k1x =
−F1x(t)(

1 − L
|r1(t)−r2(t)|

)
(x1(t) − x2(t))

. (A.4)

The time average is defined using

〈k1x〉 =
1

t∞ − t0

∫ t∞

t0

−F1x(t)dt(
1 − L

|r1(t)−r2(t)|

)
(x1(t) − x2(t))

.

(A.5)

Using expression (A.5), one can determine e.g. 〈k12x〉
between particles 1 and 2 from their trajectories upon the
swimmer motion. The unit for the k-constant in LB-simu-
lations is [ρ0

Δx3

3Δt2
].

Figure 12 demonstrates how the effective spring constant
k12x related to the interaction between particles 1 and 2 can
be calculated. For this the relative displacement between
particles 1 and 2, x2(t) − x1(t) is steadily measured, while
the swimmer moves (Fig. 12, upper panel). At the same
time, the total force acting on particle 1 is recorded (Fig. 12,
middle panel) and averaged over the period of the exter-
nal magnetic field 2π/ω. Inserting the obtained expressions
for the force and the mutual displacements into Eq. (A.5),
we obtain the values of k12x(L) as a function of the swim-
mer size. Since the capillary potential gets very distorted at

low swimmer sizes, the expressions of total averaged forces
〈Fx1(t)〉 are very noisy. For moderate and large swimmer
sizes (L ≈ 2 × (2R)) the picture is represented by Fig. 10
and yields values of the order k12x ≈ 10−5 l.u.

Appendix B: Implementation of magnetic
forces in case of a finite internal magnetic
moment

In the experiments on magnetocapillary swimmers [15],
there are indications of the existence of an additional per-
manent magnetic moment, such that the total magnetic
moment of each particle reads

µtot = µ + µint, (B.1)

whereby the magnetic moment µ is larger than the internal
magnetic moment μint � μ.

Thus, the force exerted by the moment µtotj on the mag-
netic moment µtoti is

Fmagn.tot
ji = −∇ (−(µi + µinti) · Btotj) , (B.2)

where

Btotj/

(
μ0

4π|r|3ij

)
=

[
3eij(µj · eij) − µj

]

+ [3eij(µintj · eij) − µintj ] .

(B.3)

Fig. 12 Extraction of spring constants characteristic for
the motion of particles 1 and 2 within the swimmer. Upper
panel: mutual displacement (x2(t)−x1(t))/(2R) of two par-
ticles normalized by the bead diameter. Middle panel: non-
averaged force Fx1(t). Low panel: Averaged force acting
on particle 1. LB-parameters: Bo = 0.16, L = 2.1 × (2R),
B0x/B = 0.36, T = 100,000 Δt
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The resulting force exerted by the moment µtotj on the
magnetic moment µtoti is

Fmagn.tot
ji /

(
3μ0

4π|rji|4
)

=

(
µi

(
µj · eji

)
+ µj (µi · eji)

− 5eji

(
µj · eji

)
(µi · eji) + eji(µi · µj)

)
+ (µi (µintj · eji) + µintj (µi · eji)

− 5eji (µintj · eji) (µi · eji)

+eji(µi · µintj))

+
(
µinti

(
µj · eji

)
+ µj (µinti · eji)

−5eji

(
µj · eji

)
(µinti · eji) + eji(µinti · µj)

)
+ (µinti (µintj · eji) + µintj (µinti · eji)

−5eji (µintj · eji) (µinti · eji) + eji(µinti · µintj)) .

(B.4)

Similarly, magnetic torques should read

Tmagn.tot
ji = [(µi + µinti) × (Bj + B intj + B)] . (B.5)

The resulting total magnetic torque is

Tmagn.tot
ji /

(
μ0

4π|rji|3
)

=

(
3

(
µj · eji

)
[µi × eji] − [

µi × µj

])
+

(3 (µintj · eji) [µi × eji] − [µi × µintj ])+(
3

(
µj · eji

)
[µinti × eji] − [

µinti × µj

])
+

(3 (µintj · eji) [µinti × eji] − [µinti × µintj ]) +

[(µi + µinti) × B] /

(
μ0

4π|rji|3
)

.

(B.6)
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