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A Large Deviation Principle in Many-Body
Quantum Dynamics

Kay Kirkpatrick, Simone Rademacher and Benjamin Schlein

Abstract. We consider the many-body quantum evolution of a factorized
initial data, in the mean-field regime. We show that fluctuations around
the limiting Hartree dynamics satisfy large deviation estimates that are
consistent with central limit theorems that have been established in the
last years.

1. Introduction

A system of N bosons in the mean-field regime can be described by the Hamil-
ton operator

HN =
N∑

j=1

−Δxj
+

1
N

N∑

i<j

v(xi − xj)

acting on the Hilbert space L2
s(R

3N ), the subspace of L2(R3N ) consisting of
functions that are symmetric with respect to any permutation of the N parti-
cles.

The time evolution of the N particles is governed by the many-body
Schrödinger equation

i∂tψN,t = HNψN,t . (1.1)

If the N particles are trapped into a finite region by a confining exter-
nal potential vext, the system exhibits, at zero temperature, complete Bose–
Einstein condensation in the minimizer of the Hartree energy functional

EHartree(ϕ) =
∫ [|∇ϕ|2 + vext|ϕ|2]dx +

1
2

∫
v(x − y)|ϕ(x)|2|ϕ(y)|2dxdy

taken over ϕ ∈ L2(R3) with ‖ϕ‖ = 1. For this reason, from the point of view
of physics, it is interesting to study the solution of (1.1) for an initial sequence
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ψN ∈ L2
s(R

3N ) exhibiting complete Bose–Einstein condensation, in the sense
that the one-particle reduced density γN = tr2,...,N |ψN 〉〈ψN | associated with
ψN satisfies γN → |ϕ〉〈ϕ| for a normalized one-particle orbital ϕ ∈ L2(R3), in
the limit N → ∞.

To keep our analysis as simple as possible, we consider solutions of (1.1)
for factorized initial data ψN,0 = ϕ⊗N (which obviously exhibits condensation,
since γN = |ϕ〉〈ϕ|). Notice, however, that our approach could be extended to
physically more interesting initial data exhibiting condensation.

Under quite general assumptions on the interaction potential v, one can
show that (in contrast with factorization) the property of Bose–Einstein con-
densation is preserved by the many-body evolution (1.1) and that, for every
fixed t ∈ R, the reduced one-particle density γN,t = tr2,...,N |ψN,t〉〈ψN,t| is
such that γN,t → |ϕt〉〈ϕt|, as N → ∞. Here, ϕt is the solution of the nonlinear
Hartree equation

i∂tϕt = −Δϕt + (v ∗ |ϕt|2)ϕt (1.2)

with the initial data ϕt=0 = ϕ. See for example [1,2,4,10–15,18,24,25].
The convergence γN,t → |ϕt〉〈ϕt| of the reduced one-particle density

associated with the solution of the Schrödinger equation (1.1) can be inter-
preted as a law of large numbers. For a self-adjoint operator O on L2(R3), let
O(j) = 1⊗· · ·⊗O⊗· · ·⊗1 denote the operator on L2(R3N ) acting as O on the
j-th particle and as the identity on the other (N −1) particles. The probability
that, in the state described by the wave function ψ ∈ L2

s(R
3N ), the observable

O(j) takes values in a set A ⊂ R is determined by

Pψ(O(j) ∈ A) =
〈
ψ, χA(O(j))ψ

〉
.

For factorized wave functions ψN = ϕ⊗N , the operators O(j), j = 1, . . . , N ,
define independent and identically distributed random variables with average
〈ϕ,Oϕ〉. The standard law of large numbers implies that

lim
N→∞

Pϕ⊗N

⎛

⎝

∣∣∣∣∣∣
1
N

N∑

j=1

O(j) − 〈ϕ,Oϕ〉
∣∣∣∣∣∣
> δ

⎞

⎠ = 0

for all δ > 0. The solution ψN,t of the Schrödinger equation (1.1), with factor-
ized initial data ψN,0 = ϕ⊗N , is not factorized. Nevertheless, the convergence
of the reduced density γN,t → |ϕt〉〈ϕt| implies that the law of large numbers
still holds true, i.e., that

lim
N→∞

PψN,t

⎛

⎝

∣∣∣∣∣∣
1
N

N∑

j=1

O(j) − 〈ϕt, Oϕt〉
∣∣∣∣∣∣
> δ

⎞

⎠ = 0 (1.3)

for all δ > 0; see, for example, [3].
To go beyond (1.3) and study fluctuations around the limiting Hartree

dynamics, it is useful to factor out the condensate.
To reach this goal, we define the bosonic Fock space F =

⊕N
j=0 L2

⊥ϕt
(R3)⊗sj .

On F , for any f ∈ L2(R3), we introduce the usual creation and annihilation
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operators a∗(f), a(f), satisfying canonical commutation relations. It will also
be convenient to use operator-valued distributions a∗

x, ax, for x ∈ R
3, so that

a∗(f) =
∫

f(x) a∗
x dx, a(f) =

∫
f̄(x) ax dx

In terms of a∗
x, ax, we can express the number of particles operator, defined by

(NΨ)(n) = nΨ(n), as

N =
∫

dx a∗
xax

More generally, for an operator A on the one-particle space L2(R3), its second
quantization dΓ(A), defined on F so that (dΓ(A)Ψ)(n) =

∑n
j=1 AjΨ(n), with

Aj = 1 ⊗ · · · ⊗ A ⊗ · · · ⊗ 1 acting non-trivially on the j-th particle only, can
be written as

dΓ(A) =
∫

dxdy A(x; y) a∗
xay

where A(x; y) is the integral kernel of A (with this notation N = dΓ(1)). More
details on the formalism of second quantization applied to the dynamics of
mean-field systems can be found in [5].

In order to factor out the condensate, described at time t ∈ R, by the
solution ϕt of (1.2), we observe now that every ψ ∈ L2

s(R
3N ) can be uniquely

written as

ψ = η0ϕ
⊗N
t + η1 ⊗s ϕ

⊗(N−1)
t + · · · + ηN

with ηj ∈ L2
⊥ϕt

(R3)⊗sj , where L2
⊥ϕt

(R3) denotes the orthogonal complement
in L2(R3) of the condensate wave function ϕt. This remark allows us to define,
for every t ∈ R, a unitary operator

Ut : L2
s(R

3N ) → F≤N
⊥ϕt

=
N⊕

j=0

L2
⊥ϕt

(R3)⊗sj

by setting Utψ = {η0, η1, . . . , ηN}. The unitary map Ut, first introduced in [20],
removes the condensate wave function ϕt and allows us to focus on its orthogo-
nal excitations. It maps the N -particle space L2

s(R
3N ) into the truncated Fock

space F≤N
⊥ϕt

, constructed over the orthogonal complement of ϕt.
The map Ut can be used to define the fluctuation dynamics (mapping

the orthogonal excitations of the condensate at time t1 into the orthogonal
excitations of the condensate at time t2):

WN (t2; t1) = Ut2e
−iHN (t2−t1)U∗

t1 : F≤N
⊥ϕt1

→ F≤N
⊥ϕt2

. (1.4)

The fluctuation dynamics satisfies the equation

i∂t2WN (t2; t1) = LN (t2)WN (t2; t1)
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with WN (t1; t1) = 1 for all t1 ∈ R and with the generator LN (t) = [i∂tUt] U∗
t +

UtHNU∗
t . To compute the generator LN (t), we use the rules

Uta
∗(ϕt)a(ϕt)U∗

t = N − N+(t),

Uta
∗(f)a(ϕt)U∗

t = a∗(f)
√

N − N+(t),

Uta
∗(ϕt)a(f)U∗

t =
√

N − N+(t) a(f),
Uta

∗(f)a(g)U∗
t = a∗(f)a(g) (1.5)

for any f, g ∈ L2
⊥ϕt

(R3). We obtain, similarly to [19], the matrix elements

〈ξ1,LN (t)ξ2〉 = 〈ξ1,dΓ(hH(t) + K1,t)ξ2〉 + Re
∫

dxdy K2,t(x; y) 〈ξ1, b
∗
xb∗

yξ2〉

− 1
2N

〈ξ1,dΓ(v ∗ |ϕt|2 + K1,t − μt)(N+(t) − 1)ξ2〉

+
2√
N

Re 〈ξ1,N+b((v ∗ |ϕt|2)ϕt)ξ2〉

+
2√
N

∫
dxdy v(x − y)Re ϕt(x)〈ξ1, a

∗
yax′by′ξ2〉

+
1

2N

∫
dxdy v(x − y)〈ξ1, a

∗
xa∗

yaxayξ2〉 .

(1.6)

for any ξ1, ξ2 ∈ F≤N
⊥ϕt

. Here, hH(t) = −Δ + (v ∗ |ϕt|2), K1,t(x; y) = v(x −
y)ϕt(x)ϕt(y), K2,t(x; y) = v(x − y)ϕt(x)ϕt(y), 2μt =

∫
dxdy v(x − y)|ϕt(x)|2|

ϕt(y)|2. Moreover, we introduced the notation N+(t) for the number of parti-
cles operator on the space F≤N

⊥ϕt
(N+(t) = dΓ(qt), with qt = 1 − |ϕt〉〈ϕt|, if we

think of F≤N
⊥ϕt

as a subspace of F) and, for f ∈ L2
⊥ϕt

(R3), we defined (using
the notation introduced in [7])

b∗(f) = Ut a∗(f)
a(ϕt)√

N
U∗

t = a∗(f)

√
1 − N+(t)

N
,

b(f) = Ut
a∗(ϕt)√

N
a(f)U∗

t =

√
1 − N+(t)

N
a(f)

(1.7)

and the corresponding operator-valued distributions b∗
x, bx, for x ∈ R

3.
In the limit of large N , the fluctuation dynamics WN (t2; t1) can be ap-

proximated by a limiting dynamics W∞(t2; t1) : F⊥ϕt1
=

⊕∞
j=0 L2

⊥ϕt1
(R3)⊗sj

→ F⊥ϕt2
=

⊕∞
j=0 L2

⊥ϕt2
(R3)⊗sj satisfying the equation

i∂tW∞(t2; t1) = L∞(t2)W∞(t2; t1) (1.8)

with the generator L∞(t2), whose matrix elements are given by

〈ξ1,L∞(t2)ξ2〉 = 〈ξ1,dΓ(hH(t2) + K1,t2)ξ2〉
+ 1

2

∫ [
K2,t2(x; y)〈ξ1, a

∗
xa∗

yξ2〉
+ K2,t2(x; y)〈ξ1, axayξ2〉

]
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for all ξ1, ξ2 ∈ F⊥ϕt2
; see [19]. (This line of research started in [17] and was

further explored in [11,16,21]; recently, an expansion of the many-body dy-
namics in powers of N−1 was obtained in [6].) Notice that L∞(t2) acts on
(a dense subspace of) the Fock space F⊥ϕt2

, constructed on the orthogonal
complement of ϕt2 , with no restriction on the number of particles. We have
the inclusions F≤N

⊥ϕt2
⊂ F⊥ϕt2

⊂ F =
⊕∞

j=0 L2(R3)⊗sj . Observe also that
L∞(t2) is quadratic in creation and annihilation operators. It follows that the
limiting dynamics W∞(t2; t1) acts as a time-dependent family of Bogoliubov
transformations (in a slightly different setting, this was shown in [3]). In other
words, introducing the notation A(f ; g) = a(f)+a∗(g) for f ∈ L2

⊥ϕt2
(R3) and

g ∈ JL2
⊥ϕt2

(R3), with J the antilinear operator Jf = f , we find

W∗
∞(t2; t1)A(f ; g)W∞(t2; t1) = A(Θ(t2; t1)(f ; g)) (1.9)

for a two-parameter family of operators Θ(t2; t1) : L2
⊥ϕt1

(R3)⊕JL2
⊥ϕt1

(R3) →
L2

⊥ϕt2
(R3) ⊕ JL2

⊥ϕt2
(R3).

The convergence towards the limiting Bogoliubov dynamics (1.8) has
been used in [3,8] to prove that, beyond the law of large numbers (1.3), the
variables O(j) also satisfy the central limit theorem

lim
N→∞

PψN,t

⎛

⎝ 1√
N

N∑

j=1

(
O(j) − 〈ϕt, Oϕt〉

)
< x

⎞

⎠ =
1√

2π αt

∫ x

−∞
e−r2/(2α2

t )dr

(1.10)

with αt = ‖f0;t‖2. Here, fs;t ∈ L2
⊥ϕs

(R3) satisfies the equation (for all
0 ≤ s ≤ t)

i∂sfs;t = (hH(s) + K1,s + JK2,s)fs;t, (1.11)

with ft;t = qtOϕt = Oϕt −〈ϕt, Oϕt〉ϕt, hH(s) = −Δ+(v ∗ |ϕs|2), K1,s(x; y) =
v(x − y)ϕs(x)ϕs(y) and K2,s(x; y) = v(x − y)ϕs(x)ϕs(y). (The solution of
(1.11) is related with the family of Bogoliubov transformations Θ(t1; t2), since
Θ(0; t)(ft;t;Jft;t) = (f0;t;Jf0;t).)

For singular interaction potentials, scaling as N3βv(Nβx) for a 0 < β < 1
and converging therefore to a δ-function as N → ∞, the validity of a central
limit theorem of the form (1.10) was recently established in [22]; in this case,
the correlation structure produced by the interaction affects the variance of
the limiting Gaussian distribution. For β = 1 (the Gross–Pitaevskii regime),
the validity of a central limit theorem for the ground state was established
instead in [23].

In our main theorem, we show, for bounded interactions, a large deviation
principle for the fluctuations of the many-body quantum evolution around the
limiting Hartree dynamics.

Theorem 1.1. Let v ∈ L1(R3)∩L∞(R3). Let O be a bounded self-adjoint oper-
ator on L2(R3), with ‖ΔO(1 − Δ)−1‖op < ∞. Let ϕ ∈ H4(R3), with ‖ϕ‖ = 1.
For t ∈ R, let ψN,t denote the solution of the many-body Schrödinger equation
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(1.1), with initial data ψN,0 = ϕ⊗N . Then, there exists a constant C > 0 (de-
pending only on ‖ϕ‖H4) such that, denoting by O(j) = 1⊗· · ·⊗O ⊗· · ·⊗ 1 the
operator O acting only on the j-th particle,

1

N
logEψN,t

eλ[
∑N

j=1(O
(j)−〈ϕt,Oϕt〉)] ≤ λ2

2 α2
t

+Cλ3|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)|t|)
(1.12)

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t. Here, we defined

|||O||| = ‖ΔO(1 − Δ)−1‖op + (1 + ‖v‖∞ + ‖v‖1)‖O‖op (1.13)

and α2
t = ‖f0;t‖2

2, with f as defined in (1.11).

Remark. The result and its proof can be trivially extended to particles moving
in d dimensions, for any d ∈ N\{0}.

It follows from (1.12) that

PψN,t

(
N−1

N∑

j=1

(O(j) − 〈ϕt, Oϕt〉) > x
)

= PψN,t

(
e−λNx eλ[∑N

j=1(O(j)−〈ϕt,Oϕt〉)] > 1
)

≤ e−λNx
EψN,t

eλ[∑N
j=1(O

(j)−〈ϕt,Oϕt〉)]

for all 0 ≤ λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t. Thus,

PψN,t

(
N−1

N∑

j=1

(O(j) − 〈ϕt, Oϕt〉) > x
)

≤ eNγ(x) (1.14)

with rate function

γ(x) = inf
λ

[
−λx +

λ2

2
α2

t + Cλ3|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)
]

where the infimum is taken over all 0 ≤ λ ≤ |||O|||−1 exp(−C(‖v‖∞ + ‖v‖1)t).
For any fixed t > 0, the infimum is attained at

λx =
2x

α2
t +

√
α4

t + 12Cx|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)

if x > 0 is small enough (so that λx ≤ |||O|||−1 exp(−C(‖v‖∞ + ‖v‖1)t)). This
leads (again for x > 0 so small that λx ≤ |||O|||−1 exp(−C(‖v‖∞ + ‖v‖1)t)) to

γ(x) = −
2x2

√
α4

t + 12Cx|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)
[
α2

t +
√

α4
t + 12Cx|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)

]2

+
8Cx3|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)

[
α2

t +
√

α4
t + 12Cx|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)

]3 .
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Notice that, in the regime x = y/
√

N , Nγ(x) � −x2/(2α2
t ), which is

consistent with the central limit theorem (1.10), obtained in [3,8]. This shows,
in particular, that the quadratic term on the r.h.s. of (1.12) is optimal.

To prove Theorem 1.1, we first write the expectation on the l.h.s. of (1.12)
as

EψN,t eλ[
∑N

j=1(O(j)−〈ϕt,Oϕt〉)] =
〈
ψN,t, e

λ[
∑N

j=1(O(j)−〈ϕt,Oϕt〉)]ψN,t

〉

=
〈
Ω, W∗

N (t; 0)eλdΓ(qtÕtqt)+λ
√

Nφ+(qtOϕt)WN (t; 0)Ω
〉

.

(1.15)

in terms of the fluctuation dynamics introduced in (1.4). Here, we used the
choice of the initial data to write

ψN,t = e−iHN tϕ⊗N = e−iHN tU∗
0 Ω = U∗

t WN (t; 0)Ω .

Then, we applied (1.5) to conjugate exp(λ[
∑N

j=1(O
(j) − 〈ϕt, Oϕt〉]) with Ut.

We introduced the notation Õt = O − 〈ϕt, Oϕt〉.
In the next step, motivated by the bound ±dΓ(qtÕtqt) ≤ c ‖O‖N+(t), we

control the r.h.s. of (1.15), by the product
〈
Ω,W∗

N (t; 0)eλ
√

Nφ+(qtOϕt)/2ecλ‖O‖N+(t)eλ
√

Nφ+(qtOϕt)/2WN (t; 0)Ω
〉

,

up to the exponential of a cubic expression in λ, contributing only to the last
term on the r.h.s. of (1.12); this is the content of Lemma 3.1. In the next
step, Lemma 3.2, we replace the fluctuation dynamics WN (t; 0) by its limit
W∞(t; 0), as defined in (1.8); as in the first step, also this replacement only
produces an error cubic in λ in (1.12). Describing the action of W∞ through
the solution of (1.11), we arrive at the product

〈
Ω, eλ

√
Nφ+(f0;t)/2eλκtN+(0)eλ

√
Nφ+(f0;t)/2Ω

〉
(1.16)

In the final step, Lemma 3.3, we estimate (1.16), concluding the proof of
(1.12). This step makes use of the choice of product initial data (which implies
that the expectation is taken in the vacuum); at the expenses of a longer proof,
we could have proven Theorem 1.1 to a larger and physically more interesting
class of initial data.

2. Preliminaries

To begin with, we introduce some notation and we recall some basic facts.
For a given normalized ϕ ∈ L2(R3), we consider the Hilbert space F≤N

⊥ϕ =
⊕N

j=0 L2
⊥ϕ(R3)⊗sj , with the number of particles operator N+ = dΓ(1−|ϕ〉〈ϕ|).

On F≤N
⊥ϕ , we define the operators b(f), b∗(f) as in (1.7). We also define

φ+(f) = b(f) + b∗(f), φ−(f) = −i(b(f) − b∗(f)) .

For g1, g2, g, h ∈ L2
⊥ϕ(R3), we find the commutation relations
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[b(g), b(h)] = [b∗(g), b∗(h)] = 0, [b(g), b∗(h)] = 〈g, h〉
(

1 − N+

N

)
− 1

N
a∗(h)a(g),

(2.1)

[φ+(h), iφ−(g)] = −2Re 〈h, g〉
(

1 − N+

N

)
+

1

N
a∗(g)a(h) +

1

N
a∗(h)a(g),

(2.2)
[b(h), a∗(g1)a(g2)] = 〈h, g1〉b(g2), [b∗(h), a∗(g1)a(g2)] = −〈g2, h〉b∗(g1),

(2.3)
[φ+(h), N+] = iφ−(h), [iφ−(h), N+] = φ+(h). (2.4)

More generally,

[φ+(h),dΓ(H)] = iφ−(Hh), [iφ−(h),dΓ(H)] = φ+(Hh) (2.5)

for any self-adjoint operators H.
We also recall the bounds

‖b(h)ξ‖ ≤ ‖h‖2‖N 1/2
+ ξ‖, ‖b∗(h)ξ‖ ≤ ‖h‖2‖(N+ + 1)1/2ξ‖, (2.6)

valid for any h ∈ L2
⊥ϕ(R3) and the estimate

± dΓ(H) ≤ ‖H‖op N+ (2.7)

for every bounded operator H on L2
⊥ϕ(R3). For more details, we refer to [7,

Section 2].
Furthermore, we introduce the notation ad(n)

B (A) defined for two opera-
tors A,B recursively by

ad(0)
B (A) = A, ad(n)

B (A) =
[
A, ad(n−1)

B (A)
]
.

Lemma 2.1. Let h, g ∈ L2
⊥ϕ

(
R

3
)
. Then

ad(2n+1)√
Nφ+(h)

(b(g)) = −22n
√

N‖h‖2n
2 〈g, h〉

(
1 − N+

N

)

+ (22n − 1)
1√
N

‖h‖2n−2
2 〈g, h〉a∗(h)a(h)

+
1√
N

‖h‖2n
2 a∗(h)a(g)

(2.8)

for all n ≥ 0 and

ad(2n)√
Nφ+(h)

(b(g)) =
(
22n−1 − 1

) ‖h‖2n−2
2 〈g, h〉 iφ−(h)

+‖h‖2n
2 b(g) − ‖h‖2n−2

2 〈g, h〉 b∗(h) (2.9)

for all n ≥ 1.

Proof. We prove the Lemma by induction. From (2.1), we find

ad√
Nφ+(h) (b(g)) =[

√
Nφ+(h), b(g)] =

√
N [b∗(h), b(g)]

= −
√

N〈g, h〉
(

1 − N+

N

)
+

1√
N

a∗(h)a(g),
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in agreement with (2.8) (for n = 0). Now, we assume that, for a given n ∈ N,
(2.8) holds true, and we prove (2.9), with n replaced by (n + 1). To this end,
we compute (using (2.8))

ad(2n+2)√
Nφ+(h)

(b(g)) = [
√

Nφ+(h), ad(2n+1)√
Nφ+(h)

(b(g))]

= 22n‖h‖2n
2 〈g, h〉[φ+(h),N+]

+(22n − 1)‖h‖2n−2
2 〈g, h〉[φ+(h), a∗(h)a(h)]

+‖h‖2n
2 [φ+(h), a∗(h)a(g)].

With (2.3) and (2.4), we obtain (using the identity 22n+(22n−1) = 22n+1−1)

ad(2n+2)√
Nφ+(h)

(b(g)) = (22n+1 − 1)‖h‖2n
2 〈g, h〉iφ−(h)

+‖h‖2n+2
2 b(g) − ‖h‖2n

2 〈g, h〉b∗(h)

as claimed in (2.9) (with n replaced by n + 1). Finally, we assume (2.9) for a
given n ∈ N, and we show that (2.8) holds true, with the same n ∈ N. In fact,
using (2.9), we get

ad(2n+1)√
Nφ+(h)

(b(g)) = [
√

Nφ+(h), ad(2n)√
Nφ+(h)

(b(g))]

= (22n−1 − 1)‖h‖2n−2
2 〈g, h〉

√
N [φ+(h), iφ−(h)]

+‖h‖2n
2

√
N [φ+(h), b(g)]

−‖h‖2n−2
2 〈g, h〉

√
N [φ+(h), b∗(h)] .

With (2.1), (2.2), we find (using the identities −2(22n−1 − 1) − 2 = −22n and
2(22n−1 − 1) + 1 = 22n − 1),

ad(2n+1)√
Nφ+(h)

(b(g)) = −22n
√

N‖h‖2n
2 〈g, h〉

(
1 − N+

N

)

+(22n − 1)
1√
N

‖h‖2n−2
2 〈g, h〉a∗(h)a(h)

+
1√
N

‖h‖2n
2 a∗(h)a(g)

confirming (2.8). �

Proposition 2.2. Let g, h ∈ L2
⊥ϕ(R3). With the shorthand notation γs = cosh s

and σs = sinh s, we have

e
√

Nφ+(h)b(g)e−√
Nφ+(h)

= γ‖h‖b(g) + γ‖h‖
γ‖h‖−1

‖h‖2 〈g, h〉iφ−(h)

−γ‖h‖−1

‖h‖2 〈g, h〉b∗(h)

−√
N γ‖h‖

σ‖h‖
‖h‖ 〈g, h〉

(
1 − N+

N

)

+ 1√
N

σ‖h‖
‖h‖

γ‖h‖−1

‖h‖2 〈g, h〉a∗(h)a(h)

+ 1√
N

σ‖h‖
‖h‖ a∗(h)a(g) . (2.10)
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Remark. A formula similar to (2.10) for e
√

Nφ+(h)b∗(g)e−√
Nφ+(h) can be ob-

tained by Hermitian conjugation of (2.10) (and replacing h by −h).

Proof. The expressions (2.10) follow from the commutator expansion

eX Y e−X =
∞∑

j=0

1
j!

ad(j)
X (Y ) (2.11)

combined with the formulas in Lemma 2.1. Since the operators X =
√

Nφ+(h)
and Y = b(g) are bounded on the truncated Fock space F≤N

+ , it is easy to
show the validity of the expansion (2.11) for (2.10). (The difference between
eXY e−X and

∑n
j=0 ad(j)

X (Y )/j! converges to zero in norm, as n → ∞, for every
fixed N ∈ N.) �

In particular, it follows from (2.10) that, for x ∈ R
3,

e
√

Nφ+(h)bxe−√
Nφ+(h)

= γ‖h‖bx + γ‖h‖
γ‖h‖ − 1

‖h‖2
h(x)iφ−(h)

−γ‖h‖ − 1
‖h‖2

h(x)b∗(h)

−
√

N γ‖h‖
σ‖h‖
‖h‖ h(x)

(
1 − N+

N

)

+
1√
N

σ‖h‖
‖h‖

γ‖h‖ − 1
‖h‖2

h(x)a∗(h)a(h)

+
1√
N

σ‖h‖
‖h‖ a∗(h)ax . (2.12)

We will also need a formula for e
√

Nφ+(h)a∗
xaye−√

Nφ+(h). To derive such
an expression, we compute

d
ds

es
√

Nφ+(h)a∗
xaye−s

√
Nφ+(h)

=
√

Nes
√

Nφ+(h)[φ+(h), a∗
xay]e−s

√
Nφ+(h)

=
√

N h(x)es
√

Nφ+(h)bye−s
√

Nφ+(h)

−
√

Nh(y)es
√

Nφ+(h)b∗
xe−s

√
Nφ+(h) .

Using (2.12) (and its Hermitian conjugate) and then integrating over s ∈ [0; 1],
we arrive at
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es
√

Nφ+(h)a∗
xaye−s

√
Nφ+(h)

= a∗
xay +

√
N

σ‖h‖
‖h‖

(
h(x) by − h(y) b∗

x

)

− N
σ2

‖h‖
‖h‖2

h(x)h(y)

(
1 − N+

N

)
+

(γ‖h‖ − 1)

‖h‖2

(
h(x)a∗(h)ay + h(y)a∗

xa(h)
)

+
√

N
σ‖h‖
‖h‖

(γ‖h‖ − 1)

‖h‖2
h(x)h(y) iφ−(h) +

(
γ‖h‖ − 1

‖h‖2

)2

h(x)h(y) a∗(h)a(h) .

(2.13)

Integrating (2.13) against the integral kernel of a self-adjoint operator, we
can also get a formula for e

√
Nφ+(h)dΓ(H)e−√

Nφ+(h), for a self-adjoint operator
H.

Proposition 2.3. Let H : D(H) → L2
⊥ϕ(R3) be self-adjoint, with D(H) ⊂

L2
⊥ϕ(R3) denoting the domain of H. Let h ∈ D(H). Then

e
√

Nφ+(h)dΓ(H)e−√
Nφ+(h)

= dΓ(H) +
√

N
σ‖h‖
‖h‖ iφ−(Hh)

−N
σ2

‖h‖
‖h‖2

〈h,Hh〉
(

1 − N+

N

)

+
(γ‖h‖ − 1)

‖h‖2
(a∗(h)a(Hh) + a∗(Hh)a(h))

+
√

N
σ‖h‖
‖h‖

γ‖h‖ − 1
‖h‖2

〈h,Hh〉iφ−(h)

+
(

γ‖h‖ − 1
‖h‖2

)2

〈h,Hh〉a∗(h)a(h) . (2.14)

Proposition 2.4. Let h ∈ L2
⊥ϕ(R3) and denote by N+ the number of particles

operator on F≤N
⊥ϕ . Then, for every s ∈ R,

e−sN+b(h)esN+ = esb(h),

e−sN+b∗(h)esN+ = e−sb∗(h),

e−sN+φ+(h)esN+ = cosh(s)φ+(h) + sinh(s)iφ−(h),

e−sN+iφ−(h)esN+ = cosh(s)iφ−(h) + sinh(s)φ+(h) .

(2.15)

Proof. From [b(h),N+] = b(h) and [b∗(h),N+] = −b∗(h), we easily find that

e−sN+b(h)esN+ = esb(h),

e−sN+b∗(h)esN+ = e−sb∗(h) .

Thus
e−sN+φ+(h)esN+ = esb(h) + e−sb∗(h),

e−sN+iφ−(h)esN+ = esb(h) − e−sb∗(h) .
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Writing b(h) = (φ+(h)+ iφ−(h))/2 and b∗(h) = (φ+(h)− iφ−(h))/2, we arrive
at (2.15). �

Proposition 2.5. Let t �→ ϕt with ‖ϕt‖2 = 1, independently of t. Let t �→ ht be
a differentiable map, with values in L2

⊥ϕt
(R3). For ξ1, ξ2 ∈ F≤N

⊥ϕt
we find

〈
ξ1,

[
∂te

√
Nφ+(ht)

]
e−√

Nφ+(ht)ξ2

〉

=
√

N
σ‖ht‖
‖ht‖ 〈ξ1, φ+(∂tht)ξ2〉

−
√

N
σ‖ht‖
‖ht‖

γ‖ht‖ − 1
‖ht‖2

Im〈∂tht, ht〉〈ξ1, φ−(ht)ξ2〉

−
√

N
σ‖ht‖ − ‖ht‖

‖ht‖3
Re〈∂tht, ht〉〈ξ1, φ+(ht)ξ2〉

−iN
σ2

‖ht‖
‖ht‖2

Im〈∂tht, ht〉〈ξ1, (1 − N+/N)ξ2〉

+i

(
γ‖ht‖ − 1

‖ht‖2

)2

Im〈∂tht, ht〉〈ξ1, a
∗(ht)a(ht)ξ2〉

+
γ‖ht‖ − 1

‖ht‖2

〈
ξ1, [a∗(ht)a(∂tht) − a∗(∂tht)a(ht)] ξ2

〉
. (2.16)

Proof. For any two bounded operators A,B we can write

eA − eB =
[
eAe−B − 1

]
eB =

[∫ 1

0
dτ

d

dτ
eτAe−τB

]
eB =

∫ 1

0
dτ eτA(A − B)e(1−τ)B .

Hence, if t → At is an operator-valued functions, differentiable in t, we find

eAt+h − eAt =
∫ 1

0

dτ eτAt+h(At+h − At)e(1−τ)At

Dividing by h and letting h → 0, we find

∂teAt =
∫ 1

0

dτ eτAt∂tAte(1−τ)At .

In particular,

[
∂te

√
Nφ+(ht)

]
e−√

Nφ+(ht) =
√

N

∫ 1

0

dτ eτ
√

Nφ+(ht)φ+(∂tht)e−τ
√

Nφ+(ht) .
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With Prop. 2.2, we find
[
∂te

√
Nφ+(ht)

]
e−√

Nφ+(ht)

=
√

N

∫ 1

0

dτ

[
γτ‖ht‖φ+(∂tht) − 2γτ‖ht‖

γτ‖ht‖ − 1
‖ht‖2

Im〈∂tht, ht〉φ−(ht)

−γτ‖ht‖ − 1
‖ht‖2

Re〈∂tht, ht〉φ+(ht) − γτ‖ht‖ − 1
‖ht‖2

Im〈∂tht, ht〉φ−(ht)

−2i
√

Nγτ‖ht‖
στ‖ht‖
‖ht‖ Im〈∂tht, ht〉(1 − N+/N)

+
2i√
N

στ‖ht‖
‖ht‖

γτ‖ht‖ − 1
‖ht‖2

Im 〈∂tht, ht〉a∗(ht)a(ht)

+
1√
N

στ‖ht‖
‖ht‖ [a∗(ht)a(∂tht) − a∗(∂tht)a(ht)]

]
.

Integrating over τ , we arrive at (2.16). �

3. Proof of main theorem

To prove Theorem 1.1, we start from (1.15), writing

EψN,t
eλ[∑N

j=1(O
(j)−〈ϕt,Oϕt〉)]

=
〈
Ω,W∗

N (t; 0)eλdΓ(qtÕtqt)+λ
√

Nφ+(qtOϕt)WN (t; 0)Ω
〉

.

Lemma 3.1. There exist constants C, c > 0 such that
〈
Ω,W∗

N (t; 0)eλdΓ(qtÕtqt)+λ
√

Nφ+(qtOϕt)WN (t; 0)Ω
〉

≤ eCN‖O‖3λ3

×
〈
Ω,W∗

N (t; 0)eλ
√

Nφ+(qtOϕt)/2ecλ‖O‖N+(t)eλ
√

Nφ+(qtOϕt)/2WN (t; 0)Ω
〉

(3.1)

for all λ ≤ ‖O‖−1.

Proof. For s ∈ [0; 1] and a fixed κ > 0, we define

ξs = e(1−s)λκN+(t)/2e(1−s)λ
√

Nφ+(qtOϕt)/2esλ[dΓ(qtÕtqt)+
√

Nφ+(qtOϕt)]/2WN (t; 0)Ω .

Note that ξs ∈ F≤N
⊥ϕt

for all s ∈ [0; 1]. Then, we have

‖ξ0‖2 =
〈
Ω,W∗

N (t; 0)eλ
√

Nφ+(qtOϕt)/2eλκN+(t)eλ
√

Nφ+(qtOϕt)/2WN (t; 0)Ω
〉

and

‖ξ1‖2 =
〈
Ω,W∗

N (t; 0)eλ[dΓ(qtÕtqt)+
√

Nφ+(qtOϕt)]WN (t; 0)Ω
〉

.

To compare ‖ξ1‖2 with ‖ξ0‖2, we compute the derivative

∂s‖ξs‖2 = 2Re 〈ξs; ∂sξs〉 .
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We have ∂sξs = Msξs, with

Ms =
λ

2
e(1−s)λκN+(t)/2e(1−s)λ

√
Nφ+(qtOϕt)/2dΓ

(qtÕtqt)e−(1−s)λ
√

Nφ+(qtOϕt)/2e−(1−s)λκN+/2 − λκ

2
N+(t) .

With Proposition 2.3 we find, defining ht = (1 − s)λqtOϕt,

e(1−s)λ
√

Nφ+(qtOϕt)dΓ(qtÕtqt)e−(1−s)λ
√

Nφ+(qtOϕt)

= dΓ(qtÕtqt) − N
σ2

‖ht‖
‖ht‖2

〈ht, Õtht〉
(

1 − N+(t)
N

)

+
(

γ‖ht‖ − 1
‖ht‖2

)2

〈ht, Õtht〉a∗(ht)a(ht)

+
γ‖ht‖ − 1

‖ht‖2
(a∗(ht)a(qtÕtht) + a∗(qtÕtht)a(ht))

+
√

N
σ‖ht‖
‖ht‖

γ‖ht‖ − 1
‖ht‖2

〈ht, Õtht〉iφ−(ht) +
√

N
σ‖ht‖
‖ht‖ iφ−(qtÕtht) .

With Proposition 2.4, we obtain

2

λ
Ms = dΓ(qtÕtqt) − N

σ2
‖ht‖

‖ht‖2
〈ht, Õtht〉

(
1 − N+(t)

N

)

+

(
γ‖ht‖ − 1

‖ht‖2

)2

〈ht, Õtht〉a∗(ht)a(ht)

+
γ‖ht‖ − 1

‖ht‖2
(a∗(ht)a(qtÕtht) + a∗(qtÕtht)a(ht))

+
√

N
σ‖ht‖
‖ht‖

γ‖ht‖ − 1

‖ht‖2
〈ht, Õtht〉

[cosh((1 − s)λκ/2)iφ−(ht)

+ sinh((1 − s)λκ/2)φ+(ht)]

+
√

N
σ‖ht‖
‖ht‖

[
cosh((1 − s)λκ/2)iφ−(qtÕtht) + sinh((1 − s)λκ/2)φ+(qtÕtht)

]

−κN+(t) .

Using the bounds (2.6), (2.7), and the fact that ‖ht‖ ≤ λ‖O‖ ≤ 1 (from the
assumption λ ≤ ‖O‖−1), we find

2
λ

Re 〈ξs, ∂sξs〉 =
2
λ

Re 〈ξs,Msξs〉
≤ [C‖O‖ − κ] ‖N 1/2

+ (t)ξs‖2 + Cλ2N‖O‖3eλκ‖ξs‖2 .

Choosing κ = c‖O‖ (which also implies that λκ ≤ c), we conclude that

∂s‖ξN,s‖2 ≤ CN‖O‖3λ3‖ξN,s‖2 .

By Gronwall, we obtain (3.1). �

Lemma 3.2. For a bounded self-adjoint operator O on L2(R3) with ‖ΔO(1 −
Δ)−1‖op < ∞, we recall the notation |||O||| from (1.13). Recall also that, for
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0 ≤ s ≤ t, fs;t denotes the solution of the equation (1.11). For given c > 0,
there exists a constant C > 0 such that, with the definition

κs = c‖O‖op eC(‖v‖1+‖v‖∞)s +
|||O|||

‖v‖1 + ‖v‖∞

(
eC(‖v‖1+‖v‖∞)s − 1

)
. (3.2)

we have

〈
Ω, WN (t; 0)eλ

√
Nφ+(qtOϕt)/2ec‖O‖N+(t)eλ

√
Nφ+(qtOϕt)/2WN (t; 0)Ω

〉

≤ eCNλ3|||O|||3 exp(C(1+‖v‖1+‖v‖∞)t)
〈
Ω, eλ

√
Nφ+(f0;t)/2eλκtN+(0)eλ

√
Nφ+(f0;t)/2Ω

〉

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t.

Proof. For s ∈ [0; t] and with κs as in (3.2), we define

ξt(s) = eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2WN (s; 0)Ω ∈ F≤N
⊥ϕs

With κ0 = c‖O‖, we observe that

‖ξt(0)‖2 = 〈Ω, eλ
√

Nφ+(f0;t)/2ecλ‖O‖N+(0)eλ
√

Nφ+(f0;t)/2Ω〉 .

and that

‖ξt(t)‖2 =
〈
Ω,WN (t; 0)∗eλ

√
Nφ+(qtOϕt)/2eλκtN+(t)eλ

√
Nφ+(qtOϕt)/2WN (t; 0)Ω

〉
.

To compare ‖ξt(0)‖2 with ‖ξt(t)‖2, we are going to compute the derivative with
respect to s. Since the two norms are taken on different spaces, it is convenient
to embed first the s-dependent space F≤N

⊥ϕs
into the full, s-independent, Fock

space F =
⊕

n≥0 L2(R3n)⊗sn. To this end, we observe that

‖ξt(s)‖2 =
〈
Ω,WN (s; 0)∗eλ

√
Nφ+(fs;t)/2eλκsN+(s)eλ

√
Nφ+(fs;t)/2WN (s; 0)Ω

〉

F

=
〈
Ω,WN (s; 0)∗eλ

√
Nφ+(fs;t)/2eλκsN eλ

√
Nφ+(fs;t)/2WN (s; 0)Ω

〉

F
where N denotes now the number of particles operator on F . Hence, we obtain

∂s‖ξt(s)‖2 = −i
〈
ξt(s);

[JN,t(s) − J ∗
N,t(s)

]
ξt(s)

〉
(3.3)

with the generator (this formula holds if we interpret JN,t(s) as a quadratic
form on F≤N

⊥ϕs
)

JN,t(s) =
iλ

2
κ̇s N+(s) + eλκs N+(s)/2

[
i∂seλ

√
Nφ+(fs;t)/2

]
e−λ

√
Nφ+(fs;t)/2e−λκs N+(s)/2

+eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2LN (s)e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2 . (3.4)

Remark that only the antisymmetric part of JN,t(s) contributes to the growth
of the norm.

Next, we compute JN,t(s), focusing in particular on its antisymmetric
component. We recall the definition (1.6) of the generator LN (s). We introduce
the notation hs;t = λfs;t/2 ∈ L2

⊥ϕs
(R3). From (2.14), we find, on vectors in

F≤N
⊥ϕs

(since we consider matrix elements on vectors in F≤N
⊥ϕs

, we can replace
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the operator hH(s) + K1,s, which does not leave L2
⊥ϕs

(R3) invariant, with its
restriction to L2

⊥ϕs
(R3); this is the reason why we can apply Prop. 2.3)

eλ
√

Nφ+(fs;t)/2dΓ(hH(s) + K1,s)e−λ
√

Nφ+(fs;t)/2

= dΓ(hH(s) + K1,s) +
√

N
σ‖hs;t‖
‖hs;t‖

iφ−((hH(s) + K1,s)hs;t)

−N
σ2

‖hs;t‖
‖hs;t‖2

〈hs;t, (hH(s) + K1,s)hs;t〉(1 − N+(s)/N)

+
γ‖hs;t‖ − 1

‖hs;t‖2
(a∗(hs;t)a((hH(s) + K1,s)hs;t) + a∗((hH(s) + K1,s)hs;t)a(hs;t))

+
√

N
σ‖hs;t‖
‖hs;t‖

γ‖hs;t‖ − 1

‖hs;t‖2
〈hs;t, (hH(s) + K1,s)hs;t〉iφ−(hs;t)

+

(
γ‖hs;t‖ − 1

‖hs;t‖2

)2

〈hs;t, (hH(s) + K1,s)hs;t〉a∗(hs;t)a(hs;t) .

With Prop. 2.4, we obtain, again in the sense of forms on F≤N
⊥ϕs

,

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2dΓ(hH(s) + K1,s)e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

= dΓ(hH(s) + K1,s)

+
√

N
σ‖hs;t‖
‖hs;t‖ [cosh(λκs/2)iφ−((hH(s) + K1,s)hs;t)

− sinh(λκs/2)φ+((hH(s) + K1,s)hs;t)]

−N
σ2

‖hs;t‖
‖hs;t‖2 〈hs;t, (hH(s) + K1,s)hs;t〉(1 − N+/N)

+
γ‖hs;t‖−1

‖hs;t‖2 (a∗(hs;t)a((hH(s) + K1,s)hs;t) + a∗((hH(s) + K1,s)hs;t)a(hs;t))

+
√

N
σ‖hs;t‖
‖hs;t‖

γ‖hs;t‖−1

‖hs;t‖2 〈hs;t, (hH(s) + K1,s)hs;t〉
× [cosh(λκs/2)iφ−(hs;t) − sinh(λκs/2)φ+(hs;t)]

+
(

γ‖hs;t‖−1

‖hs;t‖2

)2 〈hs;t, (hH(s) + K1,s)hs;t〉a∗(hs;t)a(hs;t) .

Removing symmetric terms (which do not contribute to (3.3)) and focusing
on terms that are at most quadratic in λ (recall that hs;t = λfs;t/2), we arrive
at

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2dΓ(hH(s) + K1,s)e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

=
iλ

√
N

2
φ−((hH(s) + K1,s)fs;t) + S1 + T1 (3.5)

where S1 = S∗
1 does not contribute to the antisymmetric part of JN,t(s) and

‖T1‖op ≤ CN(|||O|||eCt + κs)3λ3.

for all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t]. Here, we used that

‖(hH(s) + K1,s)fs;t‖ ≤ C|||O|||eCt

for all s ∈ [0; t], t > 0. This follows from the estimate ‖ϕt‖H4 ≤ CeC|t|, for a
constant C > 0 depending on ‖ϕ‖H4 (propagation of high Sobolev norms for
the Hartree equation is standard; see [9]).
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To handle the quadratic off-diagonal term with kernel K2,s in (1.6), we
apply (2.12) (and its Hermitian conjugate, with h replaced by −h, for b∗

x, b∗
y)

and then Prop. 2.4. Removing the symmetric part and keeping track only of
contributions that are at most quadratic in λ, we find

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2
(∫ [

K2,s(x; y)bxby + K2,s(x; y)b∗
xb∗

y

]
dxdy

)

×e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

= −λκs

∫ [
K2,s(x; y)bxby − K2,s(x; y)b∗

xb∗
y

]
dxdy

−λ
√

N
[(

1 − N+(s)+1/2
N

)
b(K2;sfs;t)

−b∗(K2;sfs;t)
(
1 − N+(s)+1/2

N

)]

+ λ
2
√

N

[∫
dxdyK2,s(x; y)b∗(fs;t)axay − ∫

dxdyK2,s(x, y)a∗
ya∗

x b(fs;t)
]

+ λ
2
√

N

[∫
dxdy K2,s(x; y)a∗(fs;t)axby − ∫

dxdy K2,s(x; y)b∗
ya∗

x a(fs;t)
]

+S2 + T2

where S2 = S∗
2 and ‖T2‖op ≤ CN(|||O||| + κs)3λ3 for all s ∈ [0; t], if λ‖O‖ ≤ 1

and λκs ≤ 1 for all s ∈ [0; t]. Thus, we obtain

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2
(1
2

∫ [
K2,s(x; y)bxby + K2,s(x; y)b∗

xb∗
y

]
dxdy

)

×e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

= − iλ
√

N
2 φ−(K2;sfs;t) + S2 + T2 + iR2 (3.6)

where S2 = S∗
2 , ‖T2‖op ≤ CN(|||O||| + κs)3λ3 and

±R2 ≤ C(κs‖v‖∞ + |||O|||)λN+(s)

for all s ∈ [0; t] and all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t].
(Here we used that ‖K2,s‖op ≤ ‖K2,s‖HS ≤ ‖v‖∞ for all s ∈ [0; t].)

Setting ds = (v ∗ |ϕs|2) + K1,s and using Prop. 2.3 and then Prop. 2.4,
we obtain

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2dΓ(ds)(N+(s)/N)e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

=
1

2
√

N
[dΓ(ds)iφ−(hs;t) + iφ−(hs;t)dΓ(ds)]

+
1

2
√

N
[iφ−(dshs;t)N+ + N+iφ−(dshs;t)] + S3 + T3

with S∗
3 = S3 and ‖T3‖op ≤ CN(|||O||| + κs)3λ3. We conclude that

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2dΓ(ds)(N+(s)/N)e−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

= S3 + T3 + iR3 (3.7)

where S3 = S∗
3 , ‖T3‖op ≤ CN(|||O||| + κs)3λ3 and

±R3 ≤ C|||O|||λN+(s)

for all s ∈ [0; t] and all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t].
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We consider now

C =
1√
N

∫
dxdy v(x − y)

[
b∗
xa∗

yax + a∗
xaybx

]

Conjugating separately b∗
x and a∗

yax (or a∗
xay and bx in the second term), we

arrive, using (2.12) (and its Hermitian conjugate), (2.13) and then Prop. 2.4,
at

eλκsN+(s)/2e
√

Nφ+(hs;t)Ce−√
Nφ+(hs;t)e−λκsN+(s)/2

=
λκs

2
√

N

∫
dxdy v(x − y)

[
b∗
xa∗

yax − a∗
xaybx

]

−λ

2

∫
dxdy v(x − y)

[
fs;t(y)b∗

xbx − fs;t(y)b∗
xbx

]

−λ

2

∫
dxdy v(x − y)

[
fs;t(x)b∗

xb∗
y − fs;t(x)bybx

]

+
λ

2

∫
dxdy v(x − y)

[
fs;t(x)(1 − N+/N)a∗

yax − fs;t(x)a∗
xay(1 − N+/N)

]

−λ

2
1
N

∫
dxdy v(x − y)

[
a∗

xa(fs;t)a∗
yax − a∗

xaya∗(fs;t)ax

]
+ S4 + T4

where S∗
4 = S4 and ‖T4‖op ≤ CN(|||O|||+κs)3λ3, for all s ∈ [0; t] and all λ > 0

with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t]. We obtain that

eλκsN+(s)/2e
√

Nφ+(hs;t)Ce−√
Nφ+(hs;t)e−λκsN+(s)/2 = S4 + T4 + iR4 (3.8)

where S4 = S∗
4 , ‖T4‖op ≤ CN(|||O||| + κs)3λ3 and

±R4 ≤ C(|||O||| + (‖v‖1 + ‖v‖∞)κs)λN+(s) .

Finally, we consider the term

V =
1

2N

∫
dxdy v(x − y)a∗

xa∗
yayax =

1

2N

∫
dxdy v(x − y)a∗

xaxa∗
yay − v(0)

2N
N+(s) .

Conjugating separately a∗
xax and a∗

yay (and also the operator N+(s), using
Prop. 2.3), we obtain

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2Ve−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2

=
λ

2
√

N

∫
dxdy v(x − y)

[
a∗

xaxfs;t(y)by − b∗
yfs;t(y)a∗

xax

]
+ S5 + T5

where S5 = S∗
5 and ‖T5‖op ≤ CN(|||O||| + κs)3λ3. Thus

eλκsN+(s)/2eλ
√

Nφ+(fs;t)/2Ve−λ
√

Nφ+(fs;t)/2e−λκsN+(s)/2 = S5 + T5 + iR5(3.9)

with S5 = S∗
5 , ‖T5‖op ≤ CN(|||O||| + κs)3λ3 and

±R5 ≤ C|||O|||λN+(s)

for all s ∈ [0; t] and all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t].
Combining (3.5), (3.6), (3.7), (3.8) and (3.9), we conclude that

eλκsN+(s)/2e
√

Nφ+(hs;t)LN (s)e−√
Nφ+(hs;t)e−λκsN+(s)/2

=
iλ

√
N

2
φ−((hH(s) + K1,s + JK2,s)fs;t) + S + T + iR
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where S∗ = S, ‖T‖op ≤ CN(|||O|||eCt + κs)3λ3 and

±R ≤ Cλ(|||O||| + (‖v‖∞ + ‖v‖1)κs)N+(s)

for all s ∈ [0; t] and all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t].
Let us now focus on the second term on the r.h.s. of (3.4). With Prop. 2.5

we find, in the sense of forms on F≤N
⊥ϕs

and keeping track only of contributions
that are antisymmetric and at most quadratic in λ,

eλκsN+(s)/2
[
i∂seλ

√
Nφ+(fs;t)/2

]
e−λ

√
Nφ+(fs;t)/2e−λκsN+(s)/2

= − iλ
√

N

2
φ−(i∂sfs;t) + S̃ + T̃

where S̃ = S̃∗ and ‖T̃‖op ≤ CN(|||O||| + κs)3λ3.
From (1.11) and (3.4), we conclude that

±1
i

[JN,t(s) − J ∗
N,t(s)

] ≤ CN(|||O|||eCt + κs)3λ3

+λ [C(|||O||| + (‖v‖∞ + ‖v‖1)κs) − κ̇s] N+(s)

for all s ∈ [0; t] and all λ > 0 with λ‖O‖ ≤ 1 and λκs ≤ 1 for all s ∈ [0; t].
With the choice (3.2), we find

±1

i

[JN,t(s) − J ∗
N,t(s)

] ≤ CN(|||O|||eCt + κs)3λ3

+ λ [C(|||O||| + (‖v‖∞ + ‖v‖1)κs) − κ̇s] N+(s)

for all s ∈ [0; t] and all λ ≤ C|||O|||−1e−C(‖v‖1+‖v‖∞)t.
Inserting in (3.3), we obtain that

∣∣∂s‖ξt(t)‖2
∣∣ ≤ CNλ3|||O|||eC(1+‖v‖1+‖v‖∞)t ‖ξt(s)‖2 .

By Gronwall, we arrive at

‖ξt(t)‖2 ≤ eCNλ3|||O|||3 exp(C(1+‖v‖1+‖v‖∞)t) ‖ξt(0)‖2

for all s ∈ [0; t] and all λ ≤ |||O|||−1e−C(‖v‖1+‖v‖∞)t. �

Lemma 3.3. Let κt be defined as in (3.2). Then, there exists a constant C > 0
such that 〈

Ω, eλ
√

Nφ+(f0;t)/2eλκtN+(0)eλ
√

Nφ+(f0;t)/2Ω
〉

≤ eλ2N‖f0;t‖2/2eCNλ3|||O|||3 exp(C(‖v‖1+‖v‖∞)t) (3.10)

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t and all t > 0.

Remark. The lemma could be extended to bound the expectation on the l.h.s.
of (3.10) for a larger class of states, including quasi-free states, rather than
only in the vacuum. This would allow us to consider more general initial data
in Theorem 1.1. To keep the focus on the main novelty of our paper (the
possibility of proving a large deviation principle for many-body quantum dy-
namics), we restricted our attention on the simplest case of factorized initial
data (leading to the vacuum in (3.10).
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Proof. For s ∈ [0; 1] and setting ht = λf0;t/2 ∈ L2
⊥ϕ(R3), we define

ξs = eλκtN+(0)/2es
√

Nφ+(ht)e(1−s)
√

Nb∗(ht)e(1−s)
√

Nb(ht)e(1−s)2N‖ht‖2/2Ω .

Then

‖ξ1‖2 =
〈
Ω, eλ

√
Nφ+(f0;t)/2eλκtN+(0)eλ

√
Nφ+(f0;t)/2Ω

〉

is the quantity we want to estimate, while

‖ξ0‖2 = eN‖ht‖2〈e
√

Nb∗(ht)Ω, eλκtN+(0)e
√

Nb∗(ht)Ω〉 (3.11)

is going to give the bound on the r.h.s. of (3.10).
To compare ‖ξ1‖2 with ‖ξ0‖2, we compute the derivative

∂s‖ξs‖2 = 2Re 〈ξs,Gsξs〉 (3.12)

where

Gs = −(1 − s)N‖ht‖2

+
√

NeλκtN+(0)/2es
√

Nφ+(ht)

×
[
φ+(ht) − b∗(ht) − e(1−s)

√
Nb∗(ht)b(ht)e−(1−s)

√
Nb∗(ht)

]

×e−s
√

Nφ+(ht)e−λκtN+(0)/2

is defined so that ∂sξs = Gsξs. With the commutation relations (2.1)-(2.4), we
find the identity

e(1−s)
√

Nb∗(ht)b(ht)e−(1−s)
√

Nb∗(ht)

= b(ht) − √
N‖ht‖2(1 − s)

(
1 − N+(0)

N

)
− ‖ht‖2(1 − s)2b∗(ht)

+ (1−s)√
N

a∗(ht)a(ht) .

Thus

Gs = −eλκtN+(0)/2es
√

Nφ+(ht)

×
[
(1 − s)‖ht‖2N+(0) + (1 − s)a∗(ht)a(ht) − √

N‖ht‖2(1 − s)2b∗(ht)
]

×e−s
√

Nφ+(ht)e−λκtN+(0)/2 .

With Prop. 2.2 and Prop. 2.3, we obtain

Gs = −(1 − s)‖ht‖2N+(0) − (1 − s)a∗(ht)a(ht) + T

where (using the definition (3.2) of κt)

‖T‖ ≤ CNλ3|||O|||3eC(‖v‖1+‖v‖∞)t,

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t. (This guarantees that λκt ≤ 1 and λ‖O‖ ≤
1.) From (3.12), we obtain

∂s‖ξs‖2 ≤ CNλ3|||O|||3eC(‖v‖1+‖v‖∞)t‖ξs‖2

and thus that

‖ξ1‖2 ≤ eCNλ3|||O|||3 exp(C(‖v‖1+‖v‖∞)t)‖ξ0‖2
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for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t.
It remains to compute

‖ξ0‖2 = eN‖ht‖2〈e
√

Nb∗(ht)Ω, eλκtN+(0)e
√

Nb∗(ht)Ω〉

= eN‖ht‖2
N∑

n=0

Nn

(n!)2
eλκtn‖b∗(ht)nΩ‖2 .

Notice that

‖b∗(ht)
nΩ‖2 =

∥∥a∗(ht)(1 − N+(0)/N)1/2a∗(ht)(1 − N+(0)/N)1/2

. . . a∗(ht)(1 − N+(0)/N)1/2Ω
∥∥2

=
∥∥a∗(ht)n(1 − (N+(0) + n − 1)/N)1/2(1 − (N+(0) + n − 2)/N)1/2

. . . (1 − N+(0)/N)1/2Ω
∥∥2

= (N−(n−1))...(N−1)
N(n−1) ‖a∗(ht)nΩ‖2

= (N−1)!
N(n−1)(N−n)!n!‖ht‖2n .

Therefore, recalling that ht = λf0;t/2

‖ξ0‖2 = eN‖ht‖2
N∑

n=0

(
N

n

)
‖ht‖2neλκtn

= eN‖ht‖2 (
1 + ‖ht‖2eλκt

)N

≤ eN‖ht‖2(1+eλκt ) ≤ eNλ2‖f0;t‖2/2eCNλ3|||O|||3 exp(C(‖v‖∞+‖v‖1)t)

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t. We conclude that
〈
Ω, eλ

√
Nφ+(f0;t)/2eλκtN+(0)eλ

√
Nφ+(f0;t)/2Ω

〉

≤ eNλ2‖f0;t‖2/2eCNλ3|||O|||3 exp(C(‖v‖∞+‖v‖1)t)

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t. �

Proof of Theorem 1.1. Combining Lemma 3.1, Lemma 3.2 and Lemma 3.3, we
arrive at

〈
Ω,W∗

N (t; 0)eλdΓ(qtÕtqt)+λ
√

Nφ+(qtOϕt)WN (t; 0)Ω
〉

≤ eNλ2‖f0;t‖2/2 eCNλ3|||O|||3 exp(C(1+‖v‖1+‖v‖∞)t) .

Therefore,
1
N

logEψN,t
eλ[∑N

j=1(O
(j)−〈ϕt,Oϕt〉)]

=
1
N

log
〈
Ω,W∗

N (t; 0)eλdΓ(qtÕtqt)+λ
√

Nφ+(qtOϕt)WN (t; 0)Ω
〉

≤ λ2

2
‖f0;t‖2 + Cλ3|||O|||3 exp(C(1 + ‖v‖1 + ‖v‖∞)t)

for all λ ≤ |||O|||−1e−C(‖v‖∞+‖v‖1)t.
�
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