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A Large Deviation Principle in Many-Body
Quantum Dynamics

Kay Kirkpatrick, Simone Rademacher® and Benjamin Schlein

Abstract. We consider the many-body quantum evolution of a factorized
initial data, in the mean-field regime. We show that fluctuations around
the limiting Hartree dynamics satisfy large deviation estimates that are
consistent with central limit theorems that have been established in the
last years.

1. Introduction

A system of N bosons in the mean-field regime can be described by the Hamil-
ton operator

N 1N
Hy = Z—ij + sz(mz —xj)

j=1 i<j
acting on the Hilbert space L2(R3Y), the subspace of L?(R3") consisting of
functions that are symmetric with respect to any permutation of the N parti-
cles.

The time evolution of the N particles is governed by the many-body

Schrédinger equation

10N = HyYnyg - (1.1)

If the N particles are trapped into a finite region by a confining exter-
nal potential veyxt, the system exhibits, at zero temperature, complete Bose—
FEinstein condensation in the minimizer of the Hartree energy functional

1
Eitutea(?) = [ (V0 + vl d+ 5 [ v(a = plo(e)lo(w)Pdady

taken over o € L?(R3) with |¢|| = 1. For this reason, from the point of view
of physics, it is interesting to study the solution of (1.1) for an initial sequence
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Yy € L2(R3N) exhibiting complete Bose-Einstein condensation, in the sense
that the one-particle reduced density vy = tra. n|¥n){(¥n| associated with
W satisfies vy — |¢){¢p| for a normalized one-particle orbital ¢ € L?(R?), in
the limit N — oco.

To keep our analysis as simple as possible, we consider solutions of (1.1)
for factorized initial data ¥ o = ¢® (which obviously exhibits condensation,
since vy = |p){¢|). Notice, however, that our approach could be extended to
physically more interesting initial data exhibiting condensation.

Under quite general assumptions on the interaction potential v, one can
show that (in contrast with factorization) the property of Bose—Einstein con-
densation is preserved by the many-body evolution (1.1) and that, for every
fixed ¢ € R, the reduced one-particle density vy, = tra.. n|ne) (YN is
such that vn,; — |¢¢) (], as N — oco. Here, ¢, is the solution of the nonlinear
Hartree equation

iOpr = — Ay + (v i)y (1.2)

with the initial data ;=g = ¢. See for example [1,2,4,10-15,18,24,25].

The convergence Yy, — |¢i)(p:] of the reduced one-particle density
associated with the solution of the Schrodinger equation (1.1) can be inter-
preted as a law of large numbers. For a self-adjoint operator O on L?(R3), let
OVU) =1®---®0®---®1 denote the operator on L?(R3V) acting as O on the
j-th particle and as the identity on the other (N —1) particles. The probability
that, in the state described by the wave function ¢ € L2(R3Y), the observable
0Y) takes values in a set A C R is determined by

Py (OW) € A) = (1, xa (O )p).

For factorized wave functions ¥ = @®V, the operators O, j = 1,... N,
define independent and identically distributed random variables with average
(p, 0p). The standard law of large numbers implies that

N
1 ,
i - () _ _
Jim Puen | |+ ;o D —{p,00) >8] =0
=

for all § > 0. The solution ¥ ; of the Schrédinger equation (1.1), with factor-
ized initial data 1xno = ¢®V, is not factorized. Nevertheless, the convergence
of the reduced density vy, — |¢1) (| implies that the law of large numbers
still holds true, i.e., that

N
. 1 ;
Jim Py, || Z; 0D — (g1, 004)| > 5 | =0 (1.3)
J:
for all 6 > 0; see, for example, [3].
To go beyond (1.3) and study fluctuations around the limiting Hartree
dynamics, it is useful to factor out the condensate.

To reach this goal, we define the bosonic Fock space F = EB;-V:O Li% (R3)®=,

On F, for any f € L*(R3), we introduce the usual creation and annihilation
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operators a*(f),a(f), satisfying canonical commutation relations. It will also
be convenient to use operator-valued distributions a’, a,, for € R?, so that

n=[r@ade o) = [ f@)ads

In terms of a}, a;, we can express the number of particles operator, defined by

N = o) ag
N = /dxa;az

More generally, for an operator A on the one-particle space L?(R?), its second
quantization dI'(A), defined on F so that (dT(A)W)™ =377 | A; 0, with
Aj=1® - ®A®---®1 acting non-trivially on the j-th particle only, can
be written as

dI'(4) = /dxdy A(z;y) ajay

where A(x;y) is the integral kernel of A (with this notation A" = dI'(1)). More
details on the formalism of second quantization applied to the dynamics of
mean-field systems can be found in [5].

In order to factor out the condensate, described at time ¢t € R, by the
solution ¢y of (1.2), we observe now that every ¢ € L2(R3*") can be uniquely
written as

Q(N— 1)

P =m0 +m ®s 0y coe N

with n; € Li% (R?)®:J, where Li% (R?) denotes the orthogonal complement
in L?(R3) of the condensate wave function ¢;. This remark allows us to define,
for every t € R, a unitary operator

Uy : L(RN) - 51 = @LL%

by setting Upy) = {no, M1, ..., nn}. The unitary map Uy, first introduced in [20],
removes the condensate wave function ¢; and allows us to focus on its orthogo-
nal excitations. It maps the N-particle space L2(R3") into the truncated Fock

space ffé\i , constructed over the orthogonal complement of ;.

The map U; can be used to define the fluctuation dynamics (mapping
the orthogonal excitations of the condensate at time ¢; into the orthogonal
excitations of the condensate at time ¢s):

Wi (ta;tr) = Upye” X101 }—il;v; - }—ijp\; ~ (1.4)

The fluctuation dynamics satisfies the equation

10, Wi (t2;t1) = L (t2)Wh (t2; 1)
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with Wy (t1;t1) = 1 for all £; € R and with the generator Ly (t) = [10,U] U} +
U HnU; . To compute the generator Ly (t), we use the rules

Ura™ (pr)a(p)Uf = N — Ny (t),

Upa™ (fale); = a*(f) VN — Ny (1),
Ua™ (r)a( U = /N — Ni(t)a(f),
Ura™(fa(g)Uy = a*(f)a(g) (1.5)

for any f,g € L7, (R?). We obtain, similarly to [19], the matrix elements
(61, Lx(t)62) = (60,40 (1) + Kr)6a) + Re [ dady Kas(asw) (61,8:0,62)
1
— g tendl(v= loe* + K1e — 1) N4 (t) — 1)2)

+ %Re (&1, Npb((v * [0 *) i) €2) (1.6)

+ % /dxdy v(z — y)Re () (&1, azaszy/@)

+ W da:dyv(x - y) <51, a;a’;axay§2> :

for any &1,& € ffé\i. Here, hi(t) = —A + (v |pe]?), Ki(xsy) = v(x —
Y)ee(2)By(y), Kap(wiy) = v(@ — y)ee(@)ee(y), 20 = [ dedy v(a —y)|ed(2)]?]
©¢(y)|?. Moreover, we introduced the notation Ny (t) for the number of parti-
cles operator on the space fii\i (N (t) = dT(gt), with gz = 1 — |p1){p¢], if we
think of ]:ii\i as a subspace of F) and, for f € L7 (R?), we defined (using
the notation introduced in [7])

(0 =tha (e = (1= 250,

@) e N®)
bf) = U= al Uy =1 = =5 —alf)

and the corresponding operator-valued distributions b, b,., for = € R3.

In the limit of large N, the fluctuation dynamics Wy (t2;t1) can be ap-
proximated by a limiting dynamics Weo (t2;t1) : Fip,, = D Li%l (R3)®sd
— Fle, =D, Li% (R3)®=J satisfying the equation

z@tWoo (t2; tl) = [:oo (tz)Woo (tz; tl) (18)
with the generator L (t2), whose matrix elements are given by
(€1, Loo(t2)E2) = (§1,d0(hp (t2) + Ki,)62)
4} [ Kanein)(,oape)

Ko (@39) (61, 000,62)]
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for all &1,&s € Fiy,,; see [19]. (This line of research started in [17] and was
further explored in [11,16,21]; recently, an expansion of the many-body dy-
namics in powers of N~! was obtained in [6].) Notice that L. (t2) acts on
(a dense subspace of) the Fock space F |, , constructed on the orthogonal
complement of ¢;,, with no restriction on the number of particles. We have
the inclusions fii\; C Fig, CF = @j2, L*(R*)®. Observe also that
Lo (t2) is quadratic in creation and annihilation operators. It follows that the
limiting dynamics Wao(t2;t1) acts as a time-dependent family of Bogoliubov
transformations (in a slightly different setting, this was shown in [3]). In other
words, introducing the notation A(f;g) = a(f)+a*(g) for f € Li% (R3) and

g€ JLQLS% (R?), with J the antilinear operator Jf = f, we find

Wi (t2;t1) A(f: g)Weo (t23 t1) = A(O(t2: 1) (f3 9)) (1.9)
for a two-parameter family of operators ©(t2;t1) : Liwl R3) @ JLQLw1 (R3) —

13, (R)® I3, (RY).
The convergence towards the limiting Bogoliubov dynamics (1.8) has
been used in [3,8] to prove that, beyond the law of large numbers (1.3), the

variables OU) also satisfy the central limit theorem

N ;

1 . 1 x 2 2
lim P — E oY) — , O ) <z|= / e /o) gy
Neoo YNt N = ( <90t §0t> o o

(1.10)
with a; = | foi|l2- Here, fsu € Li%(ﬂ@) satisfies the equation (for all
0<s<1)

Zlasfs;t = (hH(s) + Kl,s + JKQ,s)fs;ta (1]—1)

with f.e = ;001 = Opr — (@1, Opr)or, hi(s) = —A+ (v |ps]?), K1,s(x;y) =
v(z — y)ps(2)P,(y) and Ko s(z;y) = v(z — y)ps(z)@s(y). (The solution of
(1.11) is related with the family of Bogoliubov transformations ©(t1;2), since
9(07 t)(ft;t; th;t) = (fO;t; JfO;t)~)

For singular interaction potentials, scaling as N*#v(N”z) fora0 < 3 < 1
and converging therefore to a d-function as N — oo, the validity of a central
limit theorem of the form (1.10) was recently established in [22]; in this case,
the correlation structure produced by the interaction affects the variance of
the limiting Gaussian distribution. For § = 1 (the Gross—Pitaevskii regime),
the validity of a central limit theorem for the ground state was established
instead in [23].

In our main theorem, we show, for bounded interactions, a large deviation
principle for the fluctuations of the many-body quantum evolution around the
limiting Hartree dynamics.

Theorem 1.1. Let v € L*(R?)NL>(R3). Let O be a bounded self-adjoint oper-
ator on L*(R3), with ||[AO(1 — A)~Y|,, < 0co. Let o € HY(R3), with ||¢| = 1.
Fort e R, let ¢ denote the solution of the many-body Schridinger equation
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(1.1), with initial data ¥y o = e®N. Then, there exists a constant C > 0 (de-
pending only on ||@|| ) such that, denoting by OV) =1®---@0®---®1 the
operator O acting only on the j-th particle,

A[Z;\’zl(Ou)*(@t’O@:))] < %2(1%

%longyte
+CN|O]]* exp(C (L + [[oll1 + [[vlloo ) ¢])
(1.12)
Jor all X < || O]~ e~ C Ul o)t Here, we defined
Ol = A0 = A)Hlop + (L + [[vllee + [[01)[Olop (1.13)
2, with f as defined in (1.11).

and o2 = || fou

Remark. The result and its proof can be trivially extended to particles moving
in d dimensions, for any d € N\{0}.
It follows from (1.12) that

N
Py, (N’l ;(0(” — (1, 0p1)) > x)

= IPd)N,t (efANm eA[Z;yzl(O(j)7<<PtvO<Pt>)] > 1)
< e_)‘Nl’ ET/)N,t e>‘[ j'vzl(o(j)*«%’t;o@t))]

for all 0 < X < [|O||~te=C Ul tlvlt Thuys,

N
Popw.e (N_l D (09 — (g1, 004)) > x) < M) (1.14)
j=1

with rate function
2

. A
7(z) = inf {—Aw + Tl CNJIOII° exp(C L+ [[o]l1 + vlloo)t)

where the infimum is taken over all 0 < A < [|O|| " exp(—C(||v]|s0 + ||v]]1)2).
For any fixed ¢ > 0, the infimum is attained at

2x
2 4 3
of + \/at +12Cz||O[" exp(C(1 + [lv[l1 + [[v]|)?)

if £ > 0 is small enough (so that A, < [[O]| ™" exp(=C([|v]|oc + |[v]l1)t)). This
leads (again for z > 0 so small that A\, < [|O]|™" exp(=C(||v]loe + [|[v]]1)t)) to

Ag =

222\ /o + 12C |0 exp(C(1 + o]}y + [[o]l0)2)

Y(x) = —

2
[a? +\Jad + 12C2]|OIF exp(C(1 + ol + ||v|oo>t>]

n 8CZ3| O exp(C(L + [0l + [[v]lo0)t)

|
[a? + /ot + 12C2]|OJ exp(C (1 + Jo]l: + ||v|oo>t>]
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Notice that, in the regime z = y/v/N, Ny(z) ~ —22/(2a?), which is
consistent with the central limit theorem (1.10), obtained in [3,8]. This shows,
in particular, that the quadratic term on the r.h.s. of (1.12) is optimal.

To prove Theorem 1.1, we first write the expectation on the Lh.s. of (1.12)
as

Ey, AMEFL1 (09 —(or,000)] _ <¢Nt ex[zle<o(”—<w,0w>>]wt>
,t i 3

<Q7 Wi O)EAdF(qtétqt)+A\/ﬁ¢+(qt0%)WN(t; 0)Q> .
(1.15)

in terms of the fluctuation dynamics introduced in (1.4). Here, we used the
choice of the initial data to write

Yy = e NN — om0 — LW (8002

Then, we applied (1.5) to conjugate exp()\[z;-v:l(o(j) — {pt, Opy)]) with Us.
We introduced the notation O; = O — (¢, Og;).

In the next step, motivated by the bound +dI'(¢;0:q;) < ¢||O||Ni(t), we
control the r.h.s. of (1.15), by the product

<Q7 W (t; 0)eMV N9+ (@:090) /26X IOINL (D AVN G+ (0:090) 12y (1. 0)Q> 7

up to the exponential of a cubic expression in A, contributing only to the last
term on the r.h.s. of (1.12); this is the content of Lemma 3.1. In the next
step, Lemma 3.2, we replace the fluctuation dynamics Wy (¢;0) by its limit
Weo(t;0), as defined in (1.8); as in the first step, also this replacement only
produces an error cubic in A in (1.12). Describing the action of W, through
the solution of (1.11), we arrive at the product

<Q7 eWﬁm<fo;t>/2emN+<o>eAﬁ¢+(fo:t>/2Q> (1.16)

In the final step, Lemma 3.3, we estimate (1.16), concluding the proof of
(1.12). This step makes use of the choice of product initial data (which implies
that the expectation is taken in the vacuum); at the expenses of a longer proof,
we could have proven Theorem 1.1 to a larger and physically more interesting
class of initial data.

2. Preliminaries

To begin with, we introduce some notation and we recall some basic facts.
For a given normalized ¢ € L?(R?), we consider the Hilbert space ]—"fé,v =
EB;V:O L3 ,(R?)®, with the number of particles operator 'y = dT'(1—[¢){e]).
On ]—"iiv, we define the operators b(f),b*(f) as in (1.7). We also define

o1 (f) = b(f) +0°(f),  o-(f) = —i(b(f) = b"(f)) -

For ¢1,¢2,9,h € Liw (R?), we find the commutation relations



2602 K. Kirkpatrick et al. Ann. Henri Poincaré

b9), (] = 1" (0)6" (0] =0, bla),b* ] = (o) (1= 55 ) = o (alo)
(2.1)
(610086 (@) = ~2Re (hg) (1= T8 ) + La*(@alh) + a” (ato),
(2.2)
[b(h),a"(g1)a(g2)] = (h,g1)b(g2),  [b7(h),a"(g1)a(g2)] = —(g2, h)b" (91),
(2.3)
[P+ (R), Ny ] =idp—(h), [ip—(h),Ni]= ¢4 (h). (2.4)
More generally,
[¢+(h),dD(H)] = i¢_(Hh), [ig—(h),dI'(H)] = ¢+ (Hh) (2.5)
for any self-adjoint operators H.
We also recall the bounds
(el < [IRINF €l 16" (el < IRll2ll (N + 1) 2]l (2.6)
valid for any h € L7 ,(R?) and the estimate
= AT (H) < | H]lop Vs (2.7)

for every bounded operator H on L7 (R?). For more details, we refer to [7,
Section 2].

Furthermore, we introduce the notation adgb) (A) defined for two opera-
tors A, B recursively by

ad) (4) = A, ad} (4) = |4, ad§f ™ (4)].

Lemma 2.1. Let h,g € L7, (R?). Then

B2 0l9) =~ VA ) (1)

VN¢4(h) N
(22 - 1>71N||h|\3"—2<g, a*(Wa(h)  (28)
+ \/—%nhnzna*(ma(g)

for allm >0 and
adg%)m(h) (b(g)) = (2°" = 1) [IhlI5" (g, k) ip—(h)
+RlI3"b(g) — 1Al (g, h) b*(h) (2.9)
for alln > 1.
Proof. We prove the Lemma by induction. From (2.1), we find
ad /574, ) (0(9)) =[VNG (), b(g)] = VN[b* (), b(9)]
Ny

L.
=—VN(g,h) (1 - N) s (h)a(g),
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in agreement with (2.8) (for n = 0). Now, we assume that, for a given n € N,
(2.8) holds true, and we prove (2.9), with n replaced by (n + 1). To this end,
we compute (using (2.8))

ad 75D (b(9)) = (VN4 (h),adT2ED (b(9))]
= 2°"|[nl3" (g, >[¢+( ) /\/ +]

+(22" = D[R]2" (g, )+ (h), a* (R)a(h)]

+HAIIE" [+ (h), a* (R)a(g)].
With (2.3) and (2.4), we obtain (using the identity 22" + (227 —1) = 22n+1 1)

ad 7t (b(g) = (22 = DRIE g, h)io—(h)
HIRIZ"?b(g) — [I]13" (g, kYo" (h)

as claimed in (2.9) (with n replaced by n + 1). Finally, we assume (2.9) for a
given n € N, and we show that (2.8) holds true, with the same n € N. In fact,
using (2.9), we get

(2n+1)
2 (b(g))

VNG (h),ad T2 (b(9))]
(227 = D)5 (g, )V N9 (), i (h)]
+HIR[I3" VN6 (), b(g)]

— [R5 (g, h)V N[+ (h), b (h)] -
With (2.1), (2.2), we find (using the identities —2(2?"~! — 1) — 2 = —22" and
2(220-1 — 1) 41 =220 1),

adD(3(g)) = 22 /N3 o, >(1—N+)

VN¢ (h) N

+(22" = 1) —=|lh[3""*(g, h)a* (R)a(h)

f

+Tlth2” a*(h)a(g)

confirming (2.8). O

Proposition 2.2. Let g, h € Liw(R3). With the shorthand notation s = cosh s
and os = sinh s, we have

eVNe+ (W) p(g)e=VNS+ ()
= Yinyb(g) + vy Uit (g, hYig— ()

L —1 *
— 2t g, B ()

VN3 T (g 1) (1 _ %)
4L C"|Hh”|| ’n‘\l;;lulpl (g, h)a* (h)a(h)
+7% Thire” (Malg) - (2.10)
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Remark. A formula similar to (2.10) for eVN9+p*(g)e=VNé+(h) can be ob-
tained by Hermitian conjugation of (2.10) (and replacing h by —h).

Proof. The expressions (2.10) follow from the commutator expansion

_ L
eXye X = Z il adg?)(Y) (2.11)
=0

combined with the formulas in Lemma 2.1. Since the operators X = v/N¢ (h)
and Y = b(g) are bounded on the truncated Fock space fEN, it is easy to
show the validity of the expansion (2.11) for (2.10). (The difference between

eXYe X and Z] 0 ad ( )/ 4! converges to zero in norm, as n — oo, for every
fixed N € N.) O
In particular, it follows from (2.10) that, for x € R3,

e\/ﬁdﬁr(h)bxe—m@r(h)

= e+ v bl ()
=
i 9
N
it (1- %)
L o Ming — 1 2 (Ba
TN Tl e (Walk)
B [ e
o T (ha (2.12)

We will also need a formula for eVNé+ (M g*q, e=VNo+(h) To derive such
an expression, we compute

d 9\/>¢+(h)a*a e—ﬁ/>¢+(h)
ds

= VNN Mg, (h), aja, eV N+
VN R(@)erV N (0 =V ()
_\/Nh(y)es\/ﬁdﬁr(h)b;efs\/ﬁdur(h) )

Using (2.12) (and its Hermitian conjugate) and then integrating over s € [0; 1],
we arrive at
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esx/ﬁd>+(h)a: —S\/ﬁ¢+(h)

= azay + VN Sl (RG@Tby — by b7)

_N ”hH h( )h(y) (1 _ %) + w (Wa*(h)ay —+ h(y)a;a(h))

IR RE
il el =1 . Ying —1\?—— .
VR O ) o= 00+ () Rk (hah)

(2.13)
Integrating (2.13) against the integral kernel of a self-adjoint operator, we
can also get a formula for e\/ﬁm(h)dl‘(H)e_‘/N‘M(h)7 for a self-adjoint operator
H.
Proposition 2.3. Let H : D(H) — L7 (R?) be self-adjoint, with D(H) C
LLJ(R?’) denoting the domain of H. Let h € D(H). Then
e\/ﬁm—(h)dp( H)e ~VNo4(h)

= dU(H )+f”'}:|'|‘ _(Hh)

N
N”}”Lﬁ! (h, HR) (1 - N*)
(v — 1)
| A]|?

+V/N ]"h’“' 7”(()1”2 (h, Hh)ig_(h)

Ykl — *
+( I ) (h, Hhya*(h)a(h) . (2.14)

+ (a*(h)a(Hh) 4+ a*(Hh)a(h))

Proposition 2.4. Let h € L7 (R?) and denote by Ny the number of particles
operator on fiiv. Then, for every s € R,

(2.15)

Proof. From [b(h),Ny] = b(h) and [b*(h), Ny] = —b*(h), we easily find that
e *Nep(h)eN+ = e*b(h),
e Nep* (R)e N = e=*b* (h) .
Thus
e” N g, (h)e™N+ = e*b(h) + e~ *b*(h),
e Nrig_(R)e*N+ = e*b(h) — e *b*(h) .
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Writing b(h) = (¢4 (h) +i¢p_(h))/2 and b*(h) = (¢4 (h) —ip_(h))/2, we arrive
at (2.15). 0

Proposition 2.5. Let t — @ with ||pi||2 = 1, independently of t. Let t — hy be
a differentiable map, with values in Li% (R3). For &1,&5 € fiﬁi we find

<€17 [@eﬁm(m)}e—ﬁ¢+(ht>§2>

-V ?ilz}ll‘\l (€1, ¢+ (Dthe)E2)

-1
_\/Ncl’—'I;Ztli\%Im(ﬁtht,ht><§17¢_(ht)§2>

— ||k
~VN WRe@tm he)(Er, ds (he)Ea)

O—ﬁhtH
(| t]]2
(neg — 1) )
+1 W Im<atht,ht><fl’a (ht)a(ht)§2>

Vel — 1
[hel]?

—iN

Im(Dshy, he) (€1, (1 — Ny /N)E)

+ <§17 [a* (ht)a(Otht) — a*(O¢hi)a(hy)] §2> . (2.16)

Proof. For any two bounded operators A, B we can write

1 1
et —ef = [eAe’B —1] eB = {/ dr ieTAe*”B} ef = / dre™ (A — B)el=ME |
Jo dr Jo
Hence, if t — A; is an operator-valued functions, differentiable in ¢, we find
1
efrtn — oAt — / dre™ A (Apyy — Ag)elt—mA
0
Dividing by h and letting h — 0, we find
1
Opett = / dre™ 19, A4
0

In particular,

1
[0V 810 =V Nor ) — m/ dr e™VNes(h) g (9, )e=VNé+(he)
0
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With Prop. 2.2, we find
[ateﬁmmt)} o= VNS4 (h)

\ﬁ/ dr |:’77|ht||¢+(8tht) 297 (keI T‘|||ht””2 m(Ohy, he)p— (hy)

f%lae@ht, he)do (he) — %Im@ht, he)é—(he)

Orllhy
_QZW’YTH}HH H}llh”” Im<athtaht>(1 _N+/N)

21 Trllhell Vrllhell —

A

1 orny o (h)a — g a

Integrating over 7, we arrive at (2.16). O

Im <atht, ht>a*(ht)a(ht)

3. Proof of main theorem

To prove Theorem 1.1, we start from (1.15), writing

Eyy ., eA[Z?’ﬂ(O(j)*(%’O%))}

- <Q W (£ 0)e T (@0 VNG (@080 (1 0)Q> _

Lemma 3.1. There exist constants C,c > 0 such that
<Q7 Wi (t; O)QAdF(qzétqt)—s-A\/ﬁm(thsaz)WN(t; 0)Q>
< CNIO?A?

X <Q, Wi (t; O)QA\/N¢+(Qto¢t)/2ec)\|lol‘/\/’+(t)eA\/N¢+(th<pt)/2WN (t; O)Q>

(3.1)
for all X < ||O| 7.

Proof. For s € [0;1] and a fixed £ > 0, we define
€, = 17N (1)/2 (1=5)AV N1 (q:Op1) /2 SA[dF(qtétQt)‘F\/ﬁ(i’Jr(QtOS%)]/QWN(t;O)Q )

Note that £, € F5_, for all s € [0;1]. Then, we have
l€ol|? = <Q Wi (£ 0)eMV NG+ (@090 [2AN L (D AVNG4 (0000 /2y (1 O)Q>
and
l€)* = <Q,Wz*v(t;O)e“d”q‘@qt”‘/ﬁm(Qto*"f”WN(t;0)Q> :

To compare ||£1]|? with ||£]|?, we compute the derivative

D5 lI€s |1 = 2Re (&4 05&s) -
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We have 05&; = M &, with

M, = 2e=IANL(0)/26(1=)AVN o1 (0:090) 24
2

AK
(QtOtQt) (1— 5)/\\/7¢+(Qt0§9t)/2 —(1=8s)AeNy/2 _ 7N+(t) .

With Proposition 2.3 we find, defining h; = (1 — $)Aqg:Ops,

e(lfs)A\/NfiH—(QtO<Pt)df(qtétqt)e*(lfs)k\/ﬁ¢+(fltow)

2
5 iindl 5 Ny (1)
= dr(thtqt) - NHht||2 <ht70tht> <1 - N

Nl =1\ 5 e (he)a
(M) Ok gt

—1 ~ ~
+%(a*<ht>a<%omt) +a"(q:Oshe)a(h))
t

Ihe]l Nhell — ~ . Hhtl\
/N el bl = 2 5 myid- (he) + VN o
||htH Hht||2 < t t t> (b ( t) Hht” (qt t t)

With Proposition 2.4, we obtain

T,
712

Vhlt =1 ~ .
T <W) (ht, Othi)a™ (hi)a(he)
Ykl —
llhe]
Ilihell Nkl = L
lRell [IAell?
[cosh((1 — s)Ak/2)ip— (hy)
+ sinh((1 — s)Ar/2)d+ (ht)]
+VN 7‘ \}1 htz|il [Cosh((l — 8)Ak/2)id_ (q:O¢hy) + sinh((1 — s))\n/2)¢>+(qt6tht)]
—rNG(t) .

Using the bounds (2.6), (2.7), and the fact that ||h:]] < A|O|| < 1 (from the
assumption A< ||O||’1) we find

Re (§s,0s8s) = TRe (&5, M&s)
1/2 K
< [C||O|| — K] INTZ (D& + CNN[OP e I& )1
Choosing k = ¢||O|| (which also implies that Ax < ¢), we conclude that
0sllén.s1* < CNIOIPN?[lén l* -
By Gronwall, we obtain (3.1). O

2 _
XMS = dI'(¢:O¢qt) — N

N;](t))

(ht,Oghy) (
+e— (a (he)a(q:O¢hye) + a*(qeOche)a(hy))

+VN (he, Oghy)

Lemma 3.2. For a bounded self-adjoint operator O on L*(R3) with |AO(1 —
A)7Y|,p < 00, we recall the notation ||O|| from (1.13). Recall also that, for



Vol. 22 (2021) A Large Deviation Principle in Many-Body 2609

0 < s <t fst denotes the solution of the equation (1.11). For given ¢ > 0,
there exists a constant C' > 0 such that, with the definition

ol (eC(Hv\|1+Hv|\m)S_1>. (3.2)

ko = Ol Clivhitivi)s o MO
« = cllOllor ol + ol

we have

<Q, W (t; O)e)\\/ﬁqﬁ+(Qtow)/2ec\|o\|/\/+ (t>e>\\/ﬁ¢+(qtow>/2WN(t; 0)Q>

< CNNVIIOIP exp(C(1Hwll1-+vlo0)t) <97ewﬁm(fo;t>/2emN+<0>ewﬁ¢+<fo;t)/29>

Jor all X < || O]~ e~ C Ul vt
Proof. For s € [0;t] and with ks as in (3.2), we define
&(s) = eMSNJf(S)/Qe)‘mm(f'”)/QWN(s; 0)Q2 € fii\i
With kg = ¢||O||, we observe that
1€:(0)]12 = <Q,eA\/Nm(fo;t)/2e6>\|\O|W+(O)QA\/N¢+(fo;t)/QQ> )
and that
1&1)]? = <Q’WN(t;0)*e>\\/ﬁ¢+(Qtowt)/QeAHtN+(t)e>\\/ﬁ¢+(Qtow)/QWN(t;0)Q> ]

To compare ||£;(0)]|? with ||£;(¢)||?, we are going to compute the derivative with
respect to s. Since the two norms are taken on different spaces, it is convenient
to embed first the s-dependent space ffé\i into the full, s-independent, Fock
space F = P, L?(R3")®". To this end, we observe that

le(s)]I? = <Q7WN(S;0)*exm¢+<fs;t>/2exnsm<s>ewﬁ¢+<fs;t>/2WN(5;O)Q>f

= <Q7 W (s: 0)*6)\\/ﬁ¢+(fs;t)/Qe)\HsNe)\\/NqﬁJr(fs;t)/QWN(S; 0)Q>
F
where N denotes now the number of particles operator on F. Hence, we obtain

Osll&n()]1* = —i (&u(s): [Twe(s) = T ()] &uls)) (3:3)

with the generator (this formula holds if we interpret Jn :(s) as a quadratic
form on fiii )

i\
jNvt(S) = %K'S'/\/:i‘(s) —|— e)‘KSN+(S)/2
[iaseAﬁd’*(f“)/ﬂ e AVNG (Fust) /2= Ars N (5) /2
_|_e>\ns/\/’+(s)/QeA\/N¢+(fs;t)/2LN(s)e*A\/ﬁqﬂ-(fs;t)/2e—>\nsj\/+(s)/2' (3.4)

Remark that only the antisymmetric part of Jn +(s) contributes to the growth
of the norm.

Next, we compute Jn(s), focusing in particular on its antisymmetric
component. We recall the definition (1.6) of the generator £y (s). We introduce
the notation hgy = Afs/2 € Li% (R®). From (2.14), we find, on vectors in

<N . . . . <N
FT,, (since we consider matrix elements on vectors in T, we can replace
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the operator hg(s) + K1 5, which does not leave LL; (R?) invariant, with its

s

restriction to Lﬁ_% (R3); this is the reason why we can apply Prop. 2.3)

VNG (£ 12T (hyg (s) + K15 )e™ MV N S+ (Fa) /2

— dT(ha(s) + K1.0) + VN ]th:f“" i ((har(s) + K1.6)hsit)
s;t
Tin,i
N thz (hsits (he(s) + K1,s)hs;t) (1 — N4 (s)/N)
Vbl —

1
T (a*(hs;e)a((hr (s) + Kus)hs;e) +a™((hu(s) + Ki,s)hsit)a(hs;t))

Ol Vbl — 1 -
VN e %(hs;t, (ha(s) + Ki1,s)hs;t)ip— (hs;e)
”hS;tH ”hS;tH

Vol — 12 .
+ el (hssts (hE () + K1,s)hs;e)a™ (hs;e)a(hs;e) -
s;t

With Prop. 2.4, we obtain, again in the sense of forms on ]—“ii\i,

ARNL () 2AVN G (Fe) 12D (hgg (5) + K1 s )e>VNO+ (Fu) /2= AR N () /2
= dl'(hu(s) + Ki,s)
+VN T [cosh(Aws /2)id— (R (5) + K1,s)hase)
— sinh(Aks /2)d4 (R (5) + K1, 2)hase)]

—N st (e, (it (5) + K, o)haio) (1= Ny /N)

+ 2D (@ (hag)al (i () + K1, )heie) + a* (bt () + K1 st )alhese)

VR el (st (i (5) + K)o
X [cosh(Aks/2)id— (hs;¢) — sinh(Aks/2) P+ (hs;t)]

—1\2
+ (Mt ) (heses (B () + i heia)a” (hage)alhese) -

Removing symmetric terms (which do not contribute to (3.3)) and focusing
on terms that are at most quadratic in A (recall that hey = Afs¢/2), we arrive
at

AN ()2 AVNG4 (Foi) 24T (g (5) + K)o AV NG+ si0)/2g=AraN 1 (5)/2

= AN (o) + K1) o) + 51+ T (33)

where 57 = ST does not contribute to the antisymmetric part of Jn ((s) and
ITllop < ON(IONle* + £s)*X°.
for all A > 0 with A|O]| <1 and Aks < 1 for all s € [0;¢]. Here, we used that

1(h1(5) + K1) fssell < ClO]]e*

for all s € [0;¢], t > 0. This follows from the estimate ||¢; g+ < CeCltl for a
constant C' > 0 depending on ||¢||gs (propagation of high Sobolev norms for
the Hartree equation is standard; see [9]).
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To handle the quadratic off-diagonal term with kernel K5 5 in (1.6), w
apply (2.12) (and its Hermitian conjugate, with h replaced by —h, for bf, y)
and then Prop. 2.4. Removing the symmetric part and keeping track only of
contributions that are at most quadratic in A\, we find

AN (N RAVNG(L)/2 ([ [ Ky o (w5)baby + Ko, (w; y)b3by] dady)
xe_k\/ﬁ¢+(fs:t)/2e_AK‘sN+(3)/2
= =Xk [ [Kos(2;9)bsby, —F275(.T;y)b;b;} dzdy
7)‘\/N |:(1 - W) b(KQ;sfs;t)

—b* (Ko fort) (1 - w)}
dedngs( O (fo)away — [ dedyKy o(x,y)akak b(fsit)]
W [ dady Ka s(z;y)a* (fs;¢)asby — [ dady Ko (2 y)biaz al(fst)]
+S52 + 15
where Sy = S5 and [|T3]lop < CN([|O|| + £5)3A3 for all s € [0;¢], if A[|O]| < 1

and Akg < 1 for all s € [0;¢]. Thus, we obtain

e/\mJ\Q(S)/?e/\\/N¢+(f.m)/2( [ [K2,s(25y)baby + K2, (x; y)b*b*] dzdy)
xe— AN (Fu0) /26— AR N (5)/2

7M¢7(K2-5f3-t) + So + T2+ iR2 (36)
where Sz = 53, | Ta]lop < CN(||O]]| + £5)3A and
£Ry < C(kslvlloo + [[OINAN(s)

for all s € [0;¢] and all A > 0 with A||O| < 1 and Aks < 1 for all s € [0;¢].
(Here we used that || K2 sllop < | K2,s|lus < ||v]|eo for all s € [0;1].)

Setting ds = (v * |ps|?) + K1, and using Prop. 2.3 and then Prop. 2.4,
we obtain

AN ()2 AVNGL (F) 124D (d, ) (N (8) /N e MY N O+ (fa) /2= ARs N (5) /2
1
e [AT(d)i— (hasy) + b (hay)AT(ds
e AP ()i0 (1) + 6 ()T ()]
1
_|_
2V N
with S§ = S5 and [|T3]lop < CN([|O|| + £s)3A3. We conclude that
AN ()2 AVNGL (F) 124D (d, ) (N (5) /N e MY N O+ (fa) /2= ARs N (5) /2
= S35+ Ty + iRs (3.7)
where S3 = S3, | Ts]lop < CN(||O]]| + £5)3A and
+R3 < C[|OfIAN(s)
for all s € [0;¢] and all A > 0 with A||O]| <1 and ks <1 for all s € [0;¢].

[i(b— (dshS;t)N+ +N+i¢— (dshS;t)] + 53+ 13
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‘We consider now
1 * %k *
C= i /dxdy v(z —y) [biaya. + ajayb,]

Conjugating separately b; and aja, (or aya, and b, in the second term), we
arrive, using (2.12) (and its Hermitian conjugate), (2.13) and then Prop. 2.4,
at

NG (8)/20V N1 (hait) 00— VNG (hast) o= AN (5)/2

= ;j]%/dxdyv(m -y) [b;a?jax - a;aybz]
_%/dxdyv(x— )[fst( )bibr = Fat ()b} }
7% /dxdy v(x —y) {fS;t(z)b;bZ - fS;t(x)byb‘T}

+% /dxdy v(z —y) [fs;t(x)(l — Ny /N)aja, — for(x)asay(1 =Ny /N)

A 1 * * * *
_§N dxdyv(x - y) [axa<fs;t)ayaz — 0,0ya (fs;t)aw] + 54 + T4

where S; = Sy and ||Ty[lop < CN([|O]|| + 5)3A3, for all s € [0;¢] and all A > 0
with A|O]] <1 and Ak < 1 for all s € [0;¢]. We obtain that

NG (8)/20V NG (hast) 00— VNG (hsit) o= AN (5)/2 =Sy +Ty+iRy (3.8)
where Sy = S}, || Tullop < CN([|O|| + £s)3X* and
£Ry < C([ON + ([[vll + lv]loc) s ) AN (5) -

Finally, we consider the term
V= € /dmdyv(m —y)ayayaya; = = /dxdyv(m —Y)ayagayay — @J\/ (s)
2N vTvTvTe T 9N vletyfy TN T

Conjugating separately aya, and aja, (and also the operator N (s), using
Prop. 2.3), we obtain

e/\"fs-/\/+(S)/2e)\\/ﬁ¢+(fs;t)/2ve_)‘\/ﬁ¢+(fs;t)/Qe_)‘HsN+(S)/2
)\ * T/ * *
= 7 /dxdyv(x - y) [amaxfs;t(y)by - by.fs;t(y)awaw} + S5 +Ts

where S5 = S2 and [|T5|lop < CN(||O]| 4 £5)3A3. Thus
NG (8)/2AV NG (£552) /2= AV NG (fo:0) /2= AR N (5)/ = S5 + T + iRE3.9)
with S5 = Sz, | T5/lop < CN(||O|| + #s)3A% and
Ry < CJOJIMW, (5)

for all s € [0;¢] and all A > 0 with A||O]| < 1 and Ak < 1 for all s € [0;¢].
Combining (3.5), (3.6), (3.7), (3.8) and (3.9), we conclude that

eAKSNﬁ- (5)/28\/ﬁ¢+(hs:t)[,N(s)e_\/ﬁ¢+(hs;t)e_)"‘€s]\/+(5)/2

vl
_ ! \QF¢>,((hH(s)+K17S+JK2,s)fs;t)+S+T+z‘R
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where S* = S, || T|lop < CN([|O]le€t + £k5)2A% and
R < CA([O1ll + ([[vlloo + l[0ll1)5s)N7-(5)
for all s € [0;¢] and all A > 0 with A||O]| < 1 and Ak < 1 for all s € [0;¢].
Let us now focus on the second term on the r.h.s. of (3.4). With Prop. 2.5

we find, in the sense of forms on ff;\: and keeping track only of contributions
that are antisymmetric and at most quadratic in A,
AN (5)/2 [iasexﬁmm;t)/z} e MWNG L (foi0) /2= Arms N (5)/2
iIWN .
= - 9 ¢—(Zasfs;t) +S+T

where S = §* and ||T||op < CN([[O]| + 5s)3X3.
From (1.11) and (3.4), we conclude that

i% [Tne(s) = Tn ()] < ON([O][e" + 15)°A°
FACUON + (1vlloo + llvlln)fs) — Fs] Ny (s)

for all s € [0;¢] and all A > 0 with A||O]| <1 and Ak < 1 for all s € [0;¢].
With the choice (3.2), we find

i% [Tt (s) = Tx.4(5)] < ON([[O[]e“* + k5)A°
+A[ClON + ([vlloe + llvlln)s) = £s] N4 (s)
for all s € [0;¢] and all A < C|| O]~ ‘e~ CUlltlviieo)t,
Inserting in (3.3), we obtain that
|0:]I& 01| < CNN¥ O]t vl g, ()12 .
By Gronwall, we arrive at

1€:(2)]|2 < eCNNNOIP exp(CQHIvlatlvlioe)t) | ¢, (0)]2
for all s € [0;¢] and all A < ||O]| e~ CUvlitlvl)t, O

Lemma 3.3. Let k; be defined as in (3.2). Then, there exists a constant C > 0
such that

<Q, eAx/Nm(fo;tWemM<0>exx/ﬁ¢+(fo;t)/2g>
< AN Ioitl*/2CNA NP exp(C (o]l + vl o)1) (3.10)
Jor all X < || Ot e~ CUllletlIvlt gnd all ¢ > 0.

Remark. The lemma could be extended to bound the expectation on the l.h.s.
of (3.10) for a larger class of states, including quasi-free states, rather than
only in the vacuum. This would allow us to consider more general initial data
in Theorem 1.1. To keep the focus on the main novelty of our paper (the
possibility of proving a large deviation principle for many-body quantum dy-
namics), we restricted our attention on the simplest case of factorized initial
data (leading to the vacuum in (3.10).
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Proof. For s € [0;1] and setting hy = Afo,1/2 € Lﬁ_@(R‘g), we define
€, = ANG(0)/205V N4 (he) o(1=5)VND* (he) o (1=5)VNb(he) o (1=5)* N[ he[|*/2¢)
Then
€112 = <Q,ewﬁm<fo;t>/2emN+<o>ewﬁ¢+<fo;t)/29>
is the quantity we want to estimate, while
1€oll* = eNHhtHQ<e‘/ﬁb*(ht)9,e)‘“‘N+(0)e\/ﬁb*(ht)Q> (3.11)

is going to give the bound on the r.h.s. of (3.10).
To compare [|£;]|? with ||&||?, we compute the derivative

9,/1€5]1* = 2Re (&, G:&) (3.12)
where
Gs = —(1 = s)N|h|?
+\/]Ve>\ﬁt/\f+(0)/268\/ﬁ¢+(ht)
x| b4 (he) = b*(he) — e<1*8>ﬁb*<ht>b(ht)ef<1fs>ﬁb*(m>}
we—$VN¢ 1 (ht) o= AR N (0)/2

is defined so that 05&s; = Gs&. With the commutation relations (2.1)-(2.4), we
find the identity

1=)VRV* (), Yo~ (1= ) V" (o)
N. *
= () = VN Rl = ) (1= 252) — 0|21 = )26 (o)
+ a0 (h)ahy) -
Thus
G, = —e MitN+(0)/25V NG (he)
X [(1= ) IRlPA(0) + (1 = s)a* (ho)alhe) = VNIIRJ2(1 = )20 (he)
eV N1 (he) o= AreN4(0)/2

With Prop. 2.2 and Prop. 2.3, we obtain

= —(1 = 8)[[he]PN4(0) = (1 = s)a* (he)a(he) + T
where (using the definition (3.2) of k)
IT|| < CNA3[[O]|Pe vl tlvller)t,

for all A < [[O]||"e~CUlvlle+lIv[1)t (This guarantees that Ak, < 1 and A||O]| <
1.) From (3.12), we obtain

3
Osll&: 117 < ONAP|O||Pec Pt je )12

and thus that
1€1]|2 < eCNNNON® exp(CClvlla+lIvlloe)) | ¢, (12
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for all A < [|O| e C vl tlvlie,
It remains to compute

||€0H2 _ eNHhtH2<e\/ﬁb*(h‘)Q,eAHtN+(O)e\/Nb*(ht)Q>
N
2 Nn K+ * n
_ oNlihel Zwe* 0% (he) "2
n=0 ’

Notice that
6™ (he)" Q| = [|[a* (he)(1 = N4 (0)/N) /2a* (he) (1 — N4 (0)/N)/2
coa* (he)(1 — N4 (0)/N)/20)?
[la* (he)™ (1 = (N5(0) + n — 1)/N)*/2(1 = (N4(0) +n — 2)/N)*/2
(1= N4 (0)/N)/20)?
_ (Nf(n;}'az.l.).(Nfl) Ha*(ht)nQHQ

N—1)!
= mnwhtﬂ%-

Therefore, recalling that hy = Afo.¢/2

N
N
||§0||2 _ eNHht||2 z : (n) HhtHQne)\mn
n=0

= eNHht,H2 (1 4 Hht||2e)\m)N

< eNIhlP @+ )  (NX[lfo]?/2CNA O exp(C ([[vllootv]l1)1)
for all A < [|O| " e~ CIlPl=*IvID! We conclude that
<97 exmm(fo;n/2emN+<o>ewﬁ¢+<fo;t>/2ﬂ>
< NN ot I12/2CN N O exp(C(Jlvll o +v]1)1)
for all A < [|O]]| ~te=CUlvlleatlvl)e, .

Proof of Theorem 1.1. Combining Lemma 3.1, Lemma 3.2 and Lemma 3.3, we
arrive at

<Q’ W;f (t, O)e)\dF(QtatQt)+>\\/ﬁ¢+ (qtowt)WN (t, O)Q>
< NN foiell?/2 CNA[IO]I® exp(C (140l + vl o )t)
Therefore,
1 .
N IOg Ed’N,t e)‘[ ;'\]:1(0(’)*@%,0%))]
1 * AL (g1 Orqi)+AV N4 (q:Opr)
= log (2 Wi (t:0)e N W (t:0)0)

)\2
< Sl foell” + CN|O]IP exp(C (1 + [[v]l1 + [[v]loo)t)

for all A < [|O]|” e~ CUlvlletllvlint,
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