
Forum of Mathematics, Sigma (2021), Vol. 9:e28 1–61

doi:10.1017/fms.2021.22

RESEARCH ARTICLE

Asymptotic expansion of low-energy excitations for weakly

interacting bosons

Lea Boßmann 1, Sören Petrat 2,3 and Robert Seiringer 4

1Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; E-mail: lea.bossmann@ist.ac.at.
2Department of Mathematics and Logistics, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany;

E-mail: s.petrat@jacobs-university.de.
3University of Bremen, Department 3 – Mathematics, Bibliothekstr. 5, 28359 Bremen, Germany.
4Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; E-mail: robert.seiringer@ist.ac.at.

Received: 27 October 2020; Revised: 10 February 2021; Accepted: 26 February 2021

2020 Mathematics Subject Classification: Primary – 81V73; Secondary – 81Q10

Abstract

We consider a system of N bosons in the mean-field scaling regime for a class of interactions including the repulsive

Coulomb potential. We derive an asymptotic expansion of the low-energy eigenstates and the corresponding

energies, which provides corrections to Bogoliubov theory to any order in 1/# .

1. Introduction

We consider a system of # interacting bosons in R3 , 3 ≥ 1, which are described by the #-body

Hamiltonian

�# =

#∑
9=1

(
−Δ 9 ++ext

(
G 9

) )
+ _#

∑
1≤8< 9≤#

E
(
G8 − G 9

)
(1.1)

with coupling parameter

_# :=
1

# − 1
,

corresponding to a mean-field (or Hartree) regime of weak and long-range interactions. The Hamiltonian

�# acts on the Hilbert space of square-integrable, permutation-symmetric functions on R3# ,

ℌ#
sym :=

#⊗
sym

ℌ, ℌ := !2
(
R3

)
.

Our assumptions on the interaction E include the repulsive Coulomb potential (3 = 3), and our conditions

on the external trap +ext are satisfied, for example, by harmonic potentials. We study the spectrum1 of

�# ,

ℰ
(0)
# < ℰ

(1)
# < · · · < ℰ

(=)
# < . . . ,

1We follow the convention of counting eigenvalues without multiplicity.
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for excitation energies of order 1 above the ground state, as well as the corresponding eigenfunctions.

Our main result is an asymptotic expansion of the eigenvalues of �# , which, in the case where the

degeneracy does not change in the limit # → ∞, reads

ℰ
(=)
# = #4H + � (=)

0
+ _# � (=)

1
+ _2

# �
(=)
2

+ _3
# �

(=)
3

+ · · · , (1.2)

where the #-dependence is exclusively in the prefactors # and _# . More precisely, we construct an

asymptotic expansion of the spectral projectors of �# , which implies equation (1.2). For eigenvalues

whose degeneracy increases in the limit # → ∞, we obtain a comparable result for the sum of those

eigenvalues that become degenerate in the limit.

Let us explain the different contributions in equation (1.2). It is well known (see, e.g., [65, 27, 34, 36,

39]) that for any fixed = ∈ N0, the eigenstates Ψ
(=)
# of �# associated with ℰ

(=)
# exhibit Bose–Einstein

condensation in the minimiser i of the Hartree functional. As equation (1.1) describes a mean-field

regime, the leading order in equation (1.2) is given by

ℰ
(=)
# =

〈
Ψ

(=)
# , �#Ψ

(=)
#

〉
=

〈
i⊗# , �# i

⊗# 〉
+ O(1), (1.3)

with 〈
i⊗# , �# i

⊗# 〉
= #

〈
i,

(
−Δ ++ext + 1

2
E ∗ i2

)
i
〉
=: #4H . (1.4)

For corresponding results in more singular scaling limits, see [40, 37, 38, 54, 4, 7, 52, 1] and [43, 41,

42, 66, 22, 26, 70, 16, 15, 23].

The error in equation (1.3) is caused by O(1) particles which are excited from the condensate. To

compute their energy, one decomposes Ψ
(=)
# into contributions from condensate and excitations, as was

first proposed in [36]. The excitations form a vector in a truncated Fock space over the orthogonal

complement of i, and the relation between Ψ
(=)
# and the corresponding excitation vector is given by a

unitary map

*# ,i : ℌ# → F≤#
⊥ :=

#⊕
:=0

:⊗
sym

{i}⊥ , Ψ# ↦→ *# ,iΨ
(=)
# =: 6

(=)
≤# , (1.5)

with the usual notation {i}⊥ :=
{
q ∈ ℌ : 〈q, i〉ℌ = 0

}
. Hence,

ℰ
(=)
# = #4H +

〈
*# ,iΨ

(=)
# ,H≤#*# ,iΨ

(=)
#

〉
F

≤#
⊥
, (1.6)

where

H≤# := *# ,i (�# − #4H)*∗
# ,i : F≤#

⊥ → F≤#
⊥ (1.7)

describes the energy due to excitations from the condensate.

By construction, the excitation Hamiltonian H≤# is explicitly #-dependent. To extract the contri-

butions to the energy to each order in _# , we extend H≤# trivially to an operator H acting on the full

excitation Fock space F⊥ and expand it formally as

H = H0 +
∑
9≥1

_
9

2

#H 9 . (1.8)

The coefficients H 9 are #-independent operators on F⊥, which are explicitly given in terms of i and

E (see Definitions 2.4 and 3.3). In particular, H 9 contains an even number of creation/annihilation

operators for 9 even, and an odd number for 9 odd.
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The leading order term H0 is the well-known Bogoliubov Hamiltonian, which was first proposed

by Bogoliubov in 1947 [9]. It is quadratic in the number of creation/annihilation operators and can

be diagonalised by Bogoliubov transformations. The spectrum of H0 gives the O(1) contribution in

equation (1.2) – that is, for any a ∈ N0, there exists an eigenvalue �
(=)
0

of H0 such that

lim
#→∞

(
ℰ

(a)
# − #4H

)
= �

(=)
0
, (1.9)

with

�
(0)
0

< �
(1)
0

< · · · < � (=)
0

< · · ·

the eigenvalues of H0. For bounded interactions E, this was shown in [65] for the homogeneous setting

and in [27] for the inhomogeneous case. Lewin, Nam, Serfaty and Solovej [36] proved equation (1.9)

for a larger class of models, including a class of unbounded interaction potentials as well as a variety

of one-particle operators. Moreover, related results on the torus were obtained in [44, 48]. All error

estimates proven in [65, 27, 36, 44] are at best of the order O
(
#−1/2) . We refer to [21, 55, 6, 5] for

similar results in more singular scaling limits.

In this paper, we derive the remaining terms in the expansion (1.2). To keep the notation simple,

we restrict – for the remainder of this introduction – to the (nondegenerate) ground state. Formally, the

coefficients in equation (1.2) can be determined by Rayleigh–Schrödinger perturbation theory in the

small parameter _
1/2
# . Let us denote by 60 the (nondegenerate) normalised ground state of H0, and by

P0 and Q0 the corresponding orthogonal projections on F⊥ – that is,

H060 = �
(0)
0

60, P0 =
��60

〉 〈
60

�� , Q0 = 1 − P0. (1.10)

By equation (1.8), the first-order perturbation of H0 is

H = H0 + _
1
2

#H1 + O(_# ), (1.11)

and hence first-order perturbation theory yields (see, e.g., [63, Chapter 5])

ℰ
(0)
# − #4H = �

(0)
0

+ _
1
2

#

〈
60,H160

〉
F⊥

+ O(_# ) = � (0)
0

+ O(_# ). (1.12)

Here, the O

(
_

1/2
#

)
contribution vanishes by Wick’s rule because H1 contains an odd number of cre-

ation/annihilation operators and 60 is quasi-free. For the next order, second-order perturbation theory

for the Hamiltonian

H = H0 + _
1
2

#H1 + _#H2 + O

(
_

3/2
#

)
(1.13)

yields

ℰ
(0)
# − #4H = �

(0)
0

+ _#

〈
60,

(
H2 + H1

Q0

�
(0)
0

− H0

H1

)
60

〉
F⊥

+ O

(
_2
#

)
, (1.14)

and the higher orders are constructed similarly. In particular, all terms in the expansion corresponding

to half-integer powers of _# vanish.

In our main result, we make this formal argument rigorous by proving an asymptotic expansion for

the ground-state projector P of H. Recall that

P =
1

2ci

∮
W

1

I − H dI, P0 =
1

2ci

∮
W

1

I − H0

dI, (1.15)
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for some closed contour W which encloses both ℰ
(0)
# − #4H and �

(0)
0

and leaves the remaining spectra

of H and H0 outside. The existence of such a contour with length of order 1 is, for sufficiently large # ,

guaranteed by equation (1.9). Using equation (1.8), we expand the resolvent ofH around the resolvent of

H0, which results in an expansion of P, and the trace against H recovers equations (1.12) and (1.14) (see

Theorem 2). Finally, we show that the error is subleading with respect to the order of the approximation.

In fact, we prove a more general statement, which can be understood as asymptotic expansion

of the ground state of �# : for any operator �(<) on ℌ< that is relatively bounded with respect to∑<
9=1

(
−Δ 9 ++ext

(
G 9

) )
, it holds that

Trℌ#A
(<)
# %# = TrF⊥A

(<)
# P0 +

0∑
ℓ=1

_
ℓ
2

# TrF⊥A
(<)
# Pℓ + O

(
_

0+2
2

#

)
, (1.16)

where %# denotes the projector onto the ground state of �# , A
(<)
# is the symmetrised version of �(<)

on ℌ# , A
(<)
# denotes the conjugation of A

(<)
# with *# ,i , and Pℓ is the ℓth order in the expansion of

the projector P. The full statement, which extends to excited states with energies of order 1 above the

ground state, is given in Theorem 1.

Our analysis is restricted to the mean-field regime. It is an open question whether a similar statement

holds true for interaction potentials that converge to a delta distribution as # → ∞.

In the physics literature, higher-order corrections to the Lee–Huang–Yang formula for the ground-

state energy of a low-density Bose gas with short-range interactions were studied in the 1950s in [17,

18, 2, 3, 69], and a series expansion for the ground-state energy was conjectured in [64, 32]. We refer

to [13, 12, 68] for more recent contributions. However, to the best of our knowledge, the rigorous

derivation of higher-order corrections to the Bogoliubov energy in the mean-field scaling has not been

studied before. Other approaches to perturbations around Bogoliubov theory are based on the ideas

of renormalisation groups and constructive field theory, which is very different from our rather direct

approach. We refer to [19] for recent results and a review of the literature, which mostly treats more

singular scalings than the mean-field regime.

Another approach was proposed by Pizzo in [59, 60, 61], where he considers a Bose gas on a torus

in the mean-field regime. He constructs an expansion for the ground state and a fixed-point equation for

the ground-state energy, first for a simpler three-mode Bogoliubov Hamiltonian [59] and subsequently,

building on these results, for a Bogoliubov Hamiltonian [60] and the full Hamiltonian [61]. The main

result is norm convergence of the expansion to the ground state to arbitrary precision. This expansion is

based on a multiscale analysis in the number of excitations around a product state using Feshbach maps.

In contrast to our work, this is done in the #-particle space, whereas we make use of the #-dependent

unitary map*# ,i to work in the excitation Fock space F⊥.

Finally, we remark that our work is inspired by [11], where an analogous expansion of the dynamics

generated by �# was constructed. Related results for the mean-field dynamics in Fock space have

been obtained in [25, 24], and different approaches characterising the dynamics to any order in 1/#
are discussed in [57, 10]. We also note that there are many recent results on the derivation of the

Bogoliubov dynamics in the mean-field regime [30, 31, 35, 45], as well as in more singular scaling

limits [28, 8, 49, 29, 33, 50, 20, 14, 58].

Notation

◦ We denote by ℭ an expression which may depend on constants fixed by the model – that is,

constants whose values depend on ℎ and H0, such as norms of the Hartree minimiser i, the gap

6H above the ground state of ℎ and norms ‖*0‖op (the operator norm) and ‖+0‖HS (the Hilbert–

Schmidt norm) of the Bogoliubov transformation diagonalising H0. The notation ℭ(=) indicates

that the constant may also depend on the number = of the corresponding eigenvalue of H0, such as
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���� (=)
0

���, its degeneracy X
(=)
0

and the spectral gap above it. Finally, ℭ(=, 0) implies the dependence

on an additional parameter 0. Constants may vary from line to line.

◦ Eigenvalues are always counted without multiplicity – that is, the (discrete) spectrum of an operator

) is denoted as C (0) < C (1) < C (2) < · · · , where each eigenvalue C ( 9) has some finite multiplicity

X ( 9) ≥ 1.

◦ We denote by j := ( 91, ..., 9=) a multi-index and define | j | := 91+· · ·+ 9=. Moreover, we abbreviate

G (:) := (G1, ..., G: ) , dG (:) := dG1 ··· dG: (1.17)

for : ≥ 1 and G 9 ∈ R3 .

2. Preliminaries

2.1. Assumptions

We make the following assumptions on the external potential +ext and the interaction E:

Assumption 1. Let +ext : R3 → R be measurable, locally bounded and nonnegative, and let +ext(G)
tend to infinity as |G | → ∞, that is,

inf
|G |>'

+ext(G) → ∞ as ' → ∞. (2.1)

Assumption 1 implies that+ext must be a confining potential. It is, for example, satisfied by+ext(G) =
lG2 for l > 0. Let us introduce the abbreviation

) : ℌ ⊃ D()) → ℌ, ) := −Δ ++ext. (2.2)

We denote by

)9 := 1 ⊗ ··· ⊗ 1 ⊗ ) ⊗ 1 ⊗ ··· ⊗ 1

the operator acting as ) on the 9 th coordinate.

Assumption 2. Let E : R3 → R be measurable with E(−G) = E(G) and E . 0, and assume that there

exists a constant � > 0 such that, in the sense of operators on Q(−Δ) = �1
(
R3

)
,

|E |2 ≤ � (1 − Δ) . (2.3)

In addition, assume that E is of positive type – that is, that it has a nonnegative Fourier transform.

Assumption 2 is clearly satisfied by any bounded potential with positive Fourier transform. Moreover,

by Hardy’s inequality, it is fulfilled by the repulsive Coulomb potential in 3 = 3 dimensions.

Remark 2.1. (a) Note that inequality (2.3) implies that

2|E(G1 − G2) | ≤ 1 + |E(G1 − G2) |2 ≤ ℭ (−Δ1 − Δ2 + 1) ≤ ℭ()1 + )2 + 1) (2.4)

in the sense of operators on Q()1 + )2) ⊂ ℌ2, because +ext ≥ 0. In particular,

E ∗ q2

∞ ≤ ℭ

(
‖∇q‖2 + 1

)
, (2.5)〈

q ⊗ q, |E(G − H) |2q ⊗ q
〉
ℌ2 ≤ ℭ 〈q, () + 1)q〉 (2.6)

for any normalised q ∈ Q()). Moreover, E being of positive type implies that∫
R23

dG dHq(G)E(G − H)q(H) ≥ 0. (2.7)
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6 Lea Boßmann et al.

(b) Assumptions 1 and 2 imply that |E |2 ≤ Y)2 + �2Y−1 + � for any Y > 0, hence �# is (for each #)

self-adjoint on its domain D

(∑#
9=1 )9

)
by the Kato–Rellich theorem.

(c) Since +ext is measurable and locally bounded and tends to infinity, it is bounded below, and we

take its lower bound to be 0 only for convenience.

Next, we recall the Hartree energy functional, which is defined as

EH [q] :=

∫
R3

(
|∇q(G) |2 ++ext(G) |q(G) |2

)
dG + 1

2

∫
R23

E(G − H) |q(G) |2 |q(H) |2 dG dH (2.8)

for q ∈ DH, with

DH :=
{
q ∈ Q()) : ‖q‖ℌ = 1

}
⊂ ℌ. (2.9)

Its infimum is denoted by

4H := inf
q∈DH

EH [q] . (2.10)

Under Assumptions 1 and 2, EH admits a unique, strictly positive minimiser i, which solves the

stationary Hartree equation:

Lemma 2.2. Let Assumptions 1 and 2 hold.

(a) There exists a unique (up to a phase) i ∈ DH such that

EH [i] = 4H,

and we choose i strictly positive. The minimiser i solves the stationary Hartree equation,

ℎi = 0, (2.11)

in the sense of distributions, where

ℎ : ℌ ⊃ D()) → ℌ, ℎ : ) + E ∗ i2 − `H, (2.12)

with Lagrange multiplier `H ∈ R given by

`H :=
〈
i,

(
) + E ∗ i2

)
i
〉
. (2.13)

(b) The operator ℎ is self-adjoint on its domain D()) and its spectrum is purely discrete. The

minimiser i of EH is the unique ground state i of ℎ, and there exists a complete set of normalised

eigenfunctions
{
i 9

}
9≥0

for ℎ. The spectrum and eigenstates of ℎ are denoted as

ℎi 9 = Y
( 9)i 9 , 0 = Y (0) < Y (1) < · · · , i0 := i. (2.14)

In particular, the spectral gap 6H above the ground state of ℎ is positive:

6H := Y (1) − Y (0) = Y (1) > 0. (2.15)

(c) Define  : ℌ → ℌ as the operator with kernel

 (G; H) := E(G − H)i(G)i(H). (2.16)
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Then  is positive and Hilbert–Schmidt. Moreover,

A :=

(
ℎ + @ @ @ @

@ @ ℎ + @ @

)
≥ 6H > 0 on ℌ⊥ ⊕ ℌ⊥ (2.17)

for ℌ⊥ := {i}⊥ and where @ denotes the orthogonal projection onto ℌ⊥ –that is,

? := |i〉 〈i| , @ := 1ℌ − ?. (2.18)

Proof. For part (a), note first that EH ≥ 0 on DH, hence there exists a sequence {q=}= ⊂ DH such

that EH [q=] → 4H. Moreover, 〈q=, )q=〉 ≤ �, because �
(
|q= |2, |q= |2

)
≥ 0 by inequality (2.7),

where � ( 5 , 6) := 1
2

∫
R23 dG dH 5 (G)E(G − H)6(H). Since ) has a compact resolvent by Assumption 1,

D� := {k ∈ Q()) : ‖k‖ ≤ 1 , 〈k,)k〉 ≤ �} is compact [62, Theorems XIII.16 and XIII.64], and

there exists a subsequence such that q= → q ∈ D� strongly in ℌ. For r := |q|2 and r= := |q= |2,

‖r ∗ E‖∞ ≤ � by the bound (2.5) and
∫
d= →

∫
d, hence

lim
=→∞

� (r=, r=) ≥ 2 lim
=→∞

� (r= − r, r) + � (r, r) = � (r, r). (2.19)

Since D� is weakly compact in both �1
(
R3

)
and the !2-space with norm ‖k‖2

+ :=
∫
+ext |k |2, we find,

passing again to a subsequence, that lim inf=→∞ 〈q=, )q=〉 ≥ 〈q,)q〉 by weak lower semicontinuity of

both norms. With this, part (a) can be shown as in [40, Lemmas A.1–4]. We denote the unique strictly

positive minimiser by i.

Part (b) is a consequence of the estimate (2.5) and Assumption 1, by Kato–Rellich and [62, Theorems

XIII.16 and XIII.64]. Finally, the first part of (c) is implied by the bound (2.6), and the second part

follows since  ≥ 0 by inequality (2.7) and ℎ ≥ 6H on ℌ⊥ by part (b). �

In summary, Assumptions 1 and 2 provide all the necessary properties of the effective one-body

operator ℎ, in particular the existence of a finite spectral gap above the ground state. In addition, we

require the Hartree functional to be a valid description for the #-body energy as # → ∞. Put differently,

we assume that #-body states with an energy of order 1 above the ground state exhibit complete Bose–

Einstein condensation in the Hartree minimiser i. This is implied by the following statement:

Assumption 3. Assume that there exist constants �1 ≥ 0 and 0 < �2 ≤ 1, as well as a function

Y : N→ R+
0

with

lim
#→∞

#− 1
3 Y(#) ≤ �1,

such that

�# − #4H ≥ �2

#∑
9=1

ℎ 9 − Y(#) (2.20)

in the sense of operators on D(�# ).

We do not know how to prove inequality (2.20) under our generic Assumptions 1 and 2. However, it is

known to be true for the examples we have in mind: any bounded and positive definite interaction potential

E satisfies Assumption 3 with optimal rate Y(#) = O(1) [27, Lemma 1 and Remark 2]. Moreover, the

repulsive three-dimensional Coulomb potential fulfils Assumption 3 with Y(#) = O
(
#1/3) [36, Lemma

3.1].

2.2. Excitation Fock space and excitation Hamiltonian

In this section, we review the excitation map *# ,i from definition (1.5), which was introduced in [36]

and maps an #-body wave function to the corresponding excitation vector. Recall that any Ψ ∈ ℌ#
sym
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8 Lea Boßmann et al.

can be decomposed into condensate and excitations as

Ψ =

#∑
:=0

i⊗(#−:) ⊗B j
(:) , j (:) ∈

:⊗
sym

ℌ⊥, (2.21)

with ⊗B the symmetric tensor product, which is for k0 ∈ ℌ0 and k1 ∈ ℌ1 defined as

(k0 ⊗B k1)(G1, ..., G0+1) :=

1√
0!1!(0 + 1)!

∑
f∈S0+1

k0 (Gf (1) , ..., Gf (0) )k1 (Gf (0+1) , ..., Gf (0+1) ), (2.22)

with S0+1 the set of all permutations of 0 + 1 elements. The sequence

6≤# :=
(
j (:)

)#
:=0

(2.23)

of :-particle excitations forms a vector in the truncated excitation Fock space over ℌ⊥,

F≤#
⊥ =

#⊕
:=0

:⊗
sym

ℌ⊥ ⊂ F⊥ =

∞⊕
:=0

:⊗
sym

ℌ⊥, (2.24)

and vectors in F⊥ are denoted as

5 =
(
q (0) , q (1) , . . . , q (:) , . . .

)
, 5≤# =

(
q (0) , q (1) , . . . , q (# )

)
. (2.25)

We consider the decomposition of F⊥ into the subspaces

F⊥ = F≤#
⊥ ⊕ F>#

⊥ , (2.26)

and in the following all direct sums are understood with respect to this decomposition. The creation and

annihilation operators on F⊥ are

(
0† ( 5 )5

) (:)
(G1, ..., G: ) =

1
√
:

:∑
9=1

5
(
G 9

)
q (:−1) (

G1, ..., G 9−1, G 9+1, ..., G:
)

(2.27)

for : ≥ 1 and

(0( 5 )5) (:) (G1, ..., G: ) =
√
: + 1

∫
dG 5 (G)q (:+1) (G1, ..., G: , G) (2.28)

for : ≥ 0, where 5 ∈ ℌ⊥ and 5 ∈ F⊥. They can be expressed in terms of the operator-valued distributions

0
†
G and 0G ,

0† ( 5 ) =
∫

dG 5 (G)0†G , 0( 5 ) =
∫

dG 5 (G)0G , (2.29)

which satisfy the canonical commutation relations

[
0G , 0

†
H

]
= X(G − H),

[
0G , 0H

]
=

[
0†G , 0

†
H

]
= 0. (2.30)
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We denote the second quantisation in F⊥ of an <-body operator ) (<) by

dΓ⊥
(
) (<)

)
= 0 ⊕ · · · ⊕ 0 ⊕

⊕
:≥0

∑
1≤ 91< · · ·< 9<≤<+:

)
(<)
91 ,..., 9<

=
1

<!

∑
81 ,...,8<≥1
91 ,..., 9<≥1

〈
k81 ⊗ ··· ⊗ k8< , )

(<)k 91 ⊗ ··· ⊗ k 9<

〉

× 0†
(
k81

)
···0†

(
k8<

)
0

(
k 91

)
···0

(
k 9<

)
(2.31)

for any orthonormal basis
{
k 9

}
9≥1

of ℌ⊥. Equivalently,

dΓ⊥
(
) (<)

)
= dΓ⊥

(
@⊗<) (<)@⊗<

)
= dΓ

(
@⊗<) (<)@⊗<

)
, (2.32)

where dΓ denotes the usual second quantisation in the Fock space over the full space ℌ. Finally, the

number operator on F⊥ is given by

N⊥ := dΓ⊥(1) = dΓ⊥ (@), (N⊥5) (:) = :q (:) for 5 ∈ F⊥. (2.33)

An #-body state Ψ is mapped onto its corresponding excitation vector 6≤# by

*# ,i : ℌ# → F≤#
⊥ , Ψ ↦→ *# ,iΨ := 6≤# , (2.34)

which is unitary and acts as

*# ,iΨ =

#⊕
9=0

@⊗ 9

(
0(i)#− 9√
(# − 9)!

Ψ

)
for Ψ ∈ ℌ# (2.35)

by [36, Proposition 4.2]. Note that the product state i⊗# is mapped to the vacuum of F≤#
⊥ ,

*# ,i i
⊗# = (1, 0, 0, . . . , 0) =: |Ω〉. (2.36)

For 5 , 6 ∈ ℌ⊥, equation (2.35) yields the substitution rules

*# ,i0
† (i)0(i)*∗

# ,i = # −N⊥, (2.37a)

*# ,i0
† ( 5 )0(i)*∗

# ,i = 0† ( 5 )
√
# −N⊥, (2.37b)

*# ,i0
† (i)0(6)*∗

# ,i =
√
# −N⊥0(6), (2.37c)

*# ,i0
† ( 5 )0(6)*∗

# ,i = 0† ( 5 )0(6) (2.37d)

as identities on F≤#
⊥ . As explained in the introduction, conjugating �# with *# ,i extracts the contri-

bution to the energy which is due to excitations from the condensate.

Definition 2.3. Define

H≤# := *# ,i (�# − #4H)*∗
# ,i (2.38)

as an operator on F≤#
⊥ . The eigenvalues � (=) of H≤# relate to the eigenvaluesℰ

(=)
# of �# as

� (=) =ℰ
(=)
# − #4H, = ∈ N0. (2.39)
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As a consequence of the substitution rules (2.37), H≤# can be expressed as

H≤# = K0 +
(
# −N⊥
# − 1

)
K1

+
(
K2

√
(# −N⊥) (# −N⊥ − 1)

# − 1
+

√
(# −N⊥) (# −N⊥ − 1)

# − 1
K∗

2

)

+
(
K3

√
# −N⊥
# − 1

+
√
# −N⊥
# − 1

K∗
3

)
+ 1

# − 1
K4, (2.40)

where we used the shorthand notation

K0 :=

∫
dG0†GℎG0G , (2.41a)

K1 :=

∫
dG1 dG2 1(G1; G2)0†G1

0G2
, (2.41b)

K2 := 1
2

∫
dG1 dG2 2(G1, G2)0†G1

0†G2
, (2.41c)

K3 :=

∫
dG (3) 3(G1, G2; G3)0†G1

0†G2
0G3

(2.41d)

K4 := 1
2

∫
dG (4) 4(G1, G2; G3, G4)0†G1

0†G2
0G3

0G4
, (2.41e)

with

 1 : ℌ⊥ → ℌ⊥,  1 := @ @, (2.42a)

 2 ∈ ℌ⊥ ⊗ ℌ⊥,  2(G1, G2) := (@1@2 ) (G1, G2), (2.42b)

 3 : ℌ⊥ → ℌ⊥ ⊗ ℌ⊥,

k ↦→ ( 3k) (G1, G2) := @1@2, (G1, G2)i(G1) (@2k) (G2), (2.42c)

 ∗
3 : ℌ⊥ ⊗ ℌ⊥ → ℌ⊥,

k ↦→
(
 ∗

3k
)
(G1) = @1

∫
dG2i(G2), (G1, G2) (@1@2k) (G1, G2), (2.42d)

 4 : ℌ⊥ ⊗ ℌ⊥ → ℌ⊥ ⊗ ℌ⊥,

k ↦→ ( 4k) (G1, G2) := @1@2, (G1, G2) (@1@2k) (G1, G2). (2.42e)

Here,  (G1, G2) is defined as in definition (2.16),  is the operator with kernel  (G1, G2) and , is the

multiplication operator on ℌ⊥ ⊗ ℌ⊥ defined by

, (G1, G2) := E(G1 − G2) −
(
E ∗ i2

)
(G1) −

(
E ∗ i2

)
(G2) +

〈
i, E ∗ i2i

〉
. (2.43)

The notation is understood such that the projections @1, @2 act on the respective functions on their right.

For example, the function  3k ∈ ℌ⊥ ⊗ ℌ⊥ is obtained from k ∈ ℌ⊥ by taking the tensor product of

@k and i, acting on it with the multiplication operator , and finally projecting the resulting function

onto the subspace ℌ⊥ ⊗ ℌ⊥. Note that @k = k for k ∈ ℌ⊥, hence the projection @ in front of k is not

necessary here, but it allows us to extend  3 to a map on the full space ℌ. An analogous observation

applies to  1,  ∗
3

and  4. An explicit formula for H≤# was first derived in [36, Section 4], and we

rewrote it in a way that is more convenient for our analysis (see Appendix A).

Finally, we recall the Bogoliubov Hamiltonian H0 and introduce some notation:
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Definition 2.4. The Bogoliubov Hamiltonian H0 for the model (1.1) is defined as

H0 := K0 + K1 + K2 + K∗
2, (2.44)

with K 9 as in definition (2.41). The eigenvalues of H0 are denoted as

�
(0)
0

< �
(1)
0

< · · · < � (=)
0

< · · · , (2.45)

with associated eigenspaces

E
(=)
0

:=
{
5 ∈ F⊥ : H05 = �

(=)
0

5
}
, X

(=)
0

:= dimE
(=)
0
. (2.46)

The spectral gap of H0 above �
(=)
0

is defined as

6
(=)
0

:= �
(=+1)
0

− � (=)
0
, = ∈ N0, (2.47)

and the projections onto E
(=)
0

and its orthogonal complement are given by

P
(=)
0

:= 1
E

(=)
0

, Q
(=)
0

:= 1F⊥ − P(=)
0
. (2.48)

We denote normalised elements of E
(=)
0

as 6
(=)
0

.

3. Results

3.1. Main results

Our goal is a perturbative expansion of the spectral projectors of H≤# = *# ,i (�# − #4H)*∗
# ,i

around the spectral projectors of H0. For our analysis, it is crucial that the low-energy eigenvalues of

H≤# converge to the corresponding eigenvalues of H0, and the same holds true (in a suitable sense)

for the respective eigenstates. This was proven in [65, 27, 36], and we collect the rigorous results in

Lemma 4.8. If different eigenvalues of �# − #4H converge to the same limiting eigenvalue of H0 as

# → ∞, we consider the sum of all corresponding spectral projections of �# :

Definition 3.1. Define

](=) :=

{
a ∈ N0 : lim

#→∞

(
ℰ

(a)
# − #4H

)
= �

(=)
0

}
(3.1)

and

E
(=)
# :=

⊕
a∈ ] (=)

Ẽ
(a)
# , (3.2)

with

Ẽ
(a)
# :=

{
Ψ ∈ ℌ#

sym : �#Ψ =ℰ
(a)
# Ψ

}
, X

(a)
# := dim Ẽ

(a)
# . (3.3)

The corresponding orthogonal projections are denoted by

%
(=)
# := 1

E
(=)
#

. (3.4)

By [36], the set ](=) , which collects all eigenvalues of �# − #4H that converge to the eigenvalue

�
(=)
0

of H0, is of the form {ℓ, ..., ℓ + 9} for some ℓ, 9 ≥ 0. Moreover, 1 ≤
��](=) �� ≤ X (=)

0
, where the second
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12 Lea Boßmann et al.

inequality is strict if at least one of the eigenvaluesℰ
(a)
# is degenerate. The space E

(=)
# is the direct sum

of all eigenspaces of �# associated with eigenvalues with label a ∈ ](=) , hence
∑

a∈ ] (=) X
(a)
# = X

(=)
0

.

We consider expectation values with respect to %
(=)
# for a natural class of <-body operators, namely

for all operators that are relatively bounded with respect to
∑<

9=1 )9 . We use the following notation:

Definition 3.2. For < ∈ N, let �(<) be some operator acting on ℌ<. We denote the corresponding

symmetrised operator on ℌ# by

A
(<)
# :=

(
#

<

)−1 ∑
1≤ 91< · · ·< 9<≤#

�
(<)
91 ,..., 9<

, (3.5)

where �
(<)
91 ,..., 9<

is the operator acting as �(<) on the variables G 91 , ..., G 9< and as identity on all other

variables. Further, we define the corresponding operator A
(<)
# on F⊥ as

A
(<)
# := *# ,iA

(<)
# *∗

# ,i ⊕ 0. (3.6)

We construct an asymptotic expansion of %
(=)
# , in the sense that

Trℌ# �
(<)
1,...,<

%
(=)
# = TrF⊥A

(<)
# P

(=)
0

+ _
1
2

# TrF⊥A
(<)
# P

(=)
1

+ _# TrF⊥A
(<)
# P

(=)
2

+ · · · .

The coefficients P
(=)
ℓ

in the expansion of the projector are defined as follows:

Definition 3.3. Define

P
(=)
ℓ

:=




P
(=)
0

if ℓ = 0,

−
ℓ∑

a=1

∑
j∈Na

| j |=ℓ

∑
k∈Na+1

0

|k |=a

O
(=)
:1
H 91O

(=)
:2
H 92 ···O

(=)
:a
H 9aO

(=)
:a+1

if ℓ ≥ 1, (3.7)

with P
(=)
0

as in Definition 2.4. Here, we have abbreviated

O
(=)
:

:=




−P(=)
0

: = 0,

Q
(=)
0(

�
(=)
0

− H0

) : : > 0, (3.8)

and

H1 := K3 + K∗
3, (3.9a)

H2 := −(N⊥ − 1)K1 −
(
K2

(
N⊥ − 1

2

)
+ h.c.

)
+ K4, (3.9b)

H2 9−1 := 2 9−1

(
K3(N⊥ − 1) 9−1 + h.c.

)
, (3.9c)

H2 9 :=

9∑
a=0

3 9 ,a (K2 (N⊥ − 1)a + h.c.) (3.9d)
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for 9 ≥ 2, with K 9 as in definition (2.41). The coefficients 2 9 and 3 9 ,a are given as

2
(ℓ)
0

:= 1, (3.10a)

2
(ℓ)
9 :=

(
ℓ − 1

2

) (
ℓ + 1

2

) (
ℓ + 3

2

)
···

(
ℓ + 9 − 3

2

)
9!

, 2 9 := 2
(0)
9 ( 9 ≥ 1), (3.10b)

3 9 ,a :=

a∑
ℓ=0

2
(0)
ℓ
2
(0)
a−ℓ2

(ℓ)
9−a ( 9 ≥ a ≥ 0). (3.10c)

Our main result is the following:

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied and let 0 ∈ N0. Let < ∈ N and let �(<) be a

self-adjoint operator on ℌ< such that

�(<)k

ℌ<

≤ ℭ


<∑
9=1

(
)9 + 1

)
k


ℌ<

for k ∈ D
©«

<∑
9=1

)9
ª®¬
. (3.11)

Then, for sufficiently large # , there exists a constant ℭ(=, <, 0) such that�����Trℌ#A
(<)
# %

(=)
# −

0∑
ℓ=0

_
ℓ
2

#TrF⊥A
(<)
# P

(=)
ℓ

����� ≤ ℭ(=, <, 0)_
0+2

2

# . (3.12)

In particular, Theorem 1 proves the validity of Bogoliubov theory up to an error of order O
(
#−1

)
–

that is,

Trℌ#A
(<)
# %

(=)
# = TrF⊥A

(<)
# P

(=)
0

+ O(_# ), (3.13)

which improves previously known error estimates of order O
(
_

1/2
#

)
.

The coefficients TrF⊥A
(<)
# P

(=)
ℓ

in formula (3.12) are not necessarily #-independent, because A
(<)
#

arises from conjugating an operator A
(<)
# on the #-body Hilbert space with the #-dependent unitary

map*# ,i . Unless �(<) is an operator acting only onℌ<
⊥ (such as, e.g., �(1) = @), this conjugation yields

factors
√
# −N⊥ comparable to equation (2.40). Hence, to extract the #-independent contributions in

each order, one needs to expand A
(<)
# in _

1/2
# up to the order of the approximation. Equivalently, one

derives in this way an expansion of the reduced <-particle density matrices of %
(=)
# . For example, the

one-particle reduced density matrix

W
(=)
1;#

:= Trℌ#−1%
(=)
#

admits the asymptotic expansion

Trℌ

�����W (=)1;#
−

0∑
ℓ=0

_ℓ# W̃
(=)
1;ℓ

����� ≤ ℭ(=, 0)_0+1
# , (3.14)

where the coefficients W̃
(=)
1;ℓ

∈ L(ℌ) are independent of # and can be retrieved as already described. For

example, the first correction to the leading order W̃
(=)
1;0

= X
(=)
0

|i〉 〈i| is given by

W̃
(=)
1;1

(G; H) = i(G)TrF⊥0
†
HP

(=)
1

+ i(H)TrF⊥0GP
(=)
1

+ TrF⊥0
†
H0GP

(=)
0

− i(G)i(H)TrF⊥P
(=)
0

N⊥
(3.15)
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(see also [11, Theorem 2] for the dynamical counterpart of this statement). For the ground state of a

homogeneous Bose gas on the torus, a corresponding result was recently shown in [51], using different

methods. Note that in this case, the first line in equation (3.15) vanishes by translation invariance.2

Theorem 1 yields an asymptotic expansion of the projector P(=) onto the subspace E (=) of the

excitation Fock space, which is defined as

E (=) =
⊕
a∈ ] (=)

Ẽ (a) , Ẽ (a) =
{
5 ⊕ 0 : 5 ∈ F≤#

⊥ ,H≤# 5 = � (a)5
}

(see Definition 3.10). The following statement is proven in Section 5.3.2:

Corollary 3.4. Let 0 ∈ N0. Under Assumptions 1, 2 and 3, there exists a constant ℭ(=, 0) such that

TrF⊥

�����P(=) −
0∑

ℓ=0

_
ℓ
2

#P
(=)
ℓ

����� ≤ ℭ(=, 0)_
0+1

2

# (3.16)

for sufficiently large # .

By means of Bogoliubov transformations, the operators P
(=)
ℓ

can be brought into a more explicit

form. For example, the first-order correction for the ground state (= = 0) is given by

P
(0)
1

= U∗
V0

(
UV0
O

(0)
1
U∗
V0

) (
UV0
H1U

∗
V0

) ���Ω〉 〈
6
(0)
0

��� + h.c., (3.17)

where UV0
is the Bogoliubov transformation diagonalising H0 such that 6

(0)
0

= U∗
V0

|Ω〉. As the action

of UV0
on creation/annihilation operators is known (see equation (4.15)), it follows that UV0

H1U
∗
V0

|Ω〉
is a superposition of one- and three-particle states. Moreover,

UV0
O

(0)
1
U∗
V0

=
∑
ℓ>0

X
(ℓ)
0∑

<=1

1

�
(0)
0

− � (ℓ)
0

UV0

���6 (ℓ,<)
0

〉 〈
6
(ℓ,<)
0

���U∗
V0
, (3.18)

where
{
6
(ℓ,<)
0

}
1≤<≤X

(ℓ)
0

denotes a basis of the eigenspace E
(ℓ)
0

of H0 and can be written as

6
(ℓ,<)
0

= U∗
V0

(
0† (b0)

)a0

√
a0!

(
0† (b1)

)a1

√
a1!

···
(
0† (b: )

)a:
√
a: !

|Ω〉 (3.19)

for suitable b 9 ∈ ℌ⊥, : ∈ N0 and (a0, ..., a: ) ∈ N:+1
0

depending on ℓ and < (see Lemma 4.7c). Since

UV0
O

(0)
1
U∗
V0

is particle-number preserving, only the basis elements 6
(ℓ,<)
0

with one and three particles

contribute to equation (3.17), and applying U∗
V0

to the result yields an explicit formula for P
(0)
1

. The

general case (= ≥ 0, ℓ ≥ 1) can be treated analogously.

In our second main result, we derive from Theorem 1 an expansion of the low-energy spectrum of

�# with #-independent coefficients:

Theorem 2. Let = ∈ N0. Under Assumptions 1, 2 and 3, it holds for any 0 ∈ N0 and sufficiently large

# that ����� 1

X
(=)
0

∑
a∈ ] (=)

X
(a)
# ℰ

(a)
# − #4H −

0∑
ℓ=0

_ℓ# �
(=)
ℓ

����� ≤ ℭ(=, 0)_0+1
# (3.20)

2In this case, one computes W̃
(0)
1;1

= −∑
:≠0 W

2
:
|i〉 〈i | + ∑

:≠0 W
2
:
|i: 〉 〈i: |, where i: = ei: ·G , i = i0, W: =

U:

(
1 − U2

:

)−1/2
and U: = Ê (:)

(
:2 + Ê (:) +

√
:4 + 2:2 Ê (:)

)−1
, where Ê denotes the Fourier transform of E .
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for some constant ℭ(=, 0) and for ](=) , X (a)# ,ℰ
(a)
# and X

(=)
0

as in Definitions 2.4 and 3.1. The coefficients

are given as

�
(=)
ℓ

:=
1

X
(=)
0

2ℓ∑
a=1

∑
j∈Na

| j |=2ℓ

∑
m∈Na−1

0

|m |=a−1

1

^(m) TrF⊥P
(=)
0
H 91O

(=)
<1

···H 9a−1
O

(=)
<a−1
H 9a (3.21)

for O
(=)
< as in Definition 3.3, and where

^(m) := 1 +
��{` : <` = 0

}�� ∈ {1, ..., a − 1} (3.22)

is the number of operators P
(=)
0

within the trace.

All half-integer powers of _# vanish by parity. Equivalently, this can be understood as a consequence

of Wick’s rule (Lemma 4.6) and the fact that the eigenstates of H0 are given explicitly as Bogoliubov

transformations of states with fixed particle number (Lemma 4.7c). Moreover, note that the contribution

to definition (3.21) from each a decomposes into products of ^(m) inner products.

Theorem 2 recovers the expressions from perturbation theory as discussed in the introduction. In

particular, for any = ∈ N0 such that X
(=)
0

= 1 (which applies, e.g., to the ground state), ℰ
(=)
# is a

nondegenerate eigenvalue of �# , and the estimate (3.20) reduces to

ℰ
(=)
# = #4H +

0∑
ℓ=0

_ℓ# �
(=)
ℓ

+ O

(
_0+1
#

)
. (3.23)

In this case, the first two coefficients in the estimate (3.20) simplify to

�
(=)
1

=
〈
6
(=)
0
,H26

(=)
0

〉
+

〈
6
(=)
0
,H1

Q
(=)
0

�
(=)
0

− H0

H16
(=)
0

〉
, (3.24a)

�
(=)
2

=

4∑
a=1

∑
j∈Na

| j |=4

〈
6
(=)
0
,H 91

Q
(=)
0

�
(=)
0

− H0

H 92 ···
Q

(=)
0

�
(=)
0

− H0

H 9a 6
(=)
0

〉

−� (=)
1

〈
6
(=)
0
,H1

Q
(=)
0(

�
(=)
0

− H0

)2
H16

(=)
0

〉
. (3.24b)

Remark 3.5. Theorem 1 holds for any fixed = ∈ N0, 0 ∈ N0 and < ∈ N for sufficiently large # , with an

error ℭ(=, <, 0) that is not uniform in =, < or 0. In particular, ℭ(=, <, 0) depends on

���� (=)
0

���, hence the

statement is nontrivial only for eigenvalues of �# of order 1 above the ground-state energy.

Moreover, ℭ(=, <, 0) grows rapidly in the order 0 of the approximation. In the special case where

E ∈ !∞
(
R3

)
, our estimates imply that

ℭ(=, <, 0) ≤
(
ℭ(=, <) (0 + 1)

) (0+6)2

,

and the bound is certainly worse in the general case (see Remark 3.15). We do not expect this estimate

to be optimal, especially as Borel summability was proven for a comparable perturbative expansion

of the mean-field dynamics on Fock space for bounded interactions [25]. Also in that setting, the

available estimates for unbounded potentials are worse and, in particular, insufficient to conclude Borel

summability [24].
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Remark 3.6. As explained in Section 2.1, Assumptions 1, 2 and 3 are satisfied, for example, by bounded

positive definite potentials and by the repulsive Coulomb potential in 3 = 3. These assumptions ensure

that Bogoliubov theory is valid for our model – that is, that all assumptions in [36] are satisfied. In that

work, it is shown that H0 approximates H to leading order for any self-adjoint ) that is bounded from

below, and for interaction potentials

−21 ()1 + )2 + 22) ≤ E(G1 − G2) ≤ 23 ()1 + )2 + 1), 0 < 21 < 1, 22, 23 > 0

[36, (A1)], such that there exists a unique nondegenerate minimiser for the Hartree functional and such

that the operators  1 and  2 from definitions (2.42) ( 2 as operator ℌ∗ → ℌ) are Hilbert–Schmidt [36,

(A2)]. Moreover, it is required that

�# − #4H ≥ 2
#∑
9=1

ℎ 9 + O(#)

for some 0 < 2 < 1 [36, (A3s)]. Our analysis, which can be understood as a perturbative expansion of

H around the leading order H0, relies on the result proven in [36]: we need � (a) ≈ � (=)
0

(for sufficiently

large #) to find a suitable contour W (=) enclosing �
(=)
0

as well as all � (a) with a ∈ ](=) , and we

require that 6 (=) → 6
(=)
0

strongly in the norm induced by the quadratic form of H0 to conclude that〈
6 (=) ,N⊥6 (=) 〉 is bounded uniformly in # (see Lemma 4.8).

In contrast to the generic setting from [36], we choose ) = −Δ ++ext and consider a positive definite

interaction E satisfying the stronger bound (2.3), which implies [34, (A1–A2)] (see Lemma 2.2). In

particular, the bound (2.3) is crucial to bounding K3 by powers of N⊥, and K4 in terms of dΓ⊥(ℎ)1/2

and powers of N⊥. Moreover, Assumption 3 is stronger than [36, (A3s)] since we require an error of at

most O
(
#1/3) to control arbitrary moments of N⊥ with respect to 6 (=) , as explained later.

Our analysis generalises to certain interactions E which are not of positive type, and to a class of

confining potentials +ext that do not diverge at infinity. More precisely, we can cover all potentials E and

+ext such that all assumptions in [36] and Assumption 3 are satisfied. For example, it is shown in [36,

Section 3.2] that a trapped two-dimensional gas with repulsive Coulomb interactions and+ext diverging

sufficiently fast at infinity,

�# =

#∑
9=1

(
−Δ 9 ++ext

(
G 9

) )
− _#

∑
8< 9

ln
��G8 − G 9 �� , 3 = 2,

satisfies [36, (A1–A3s)] as well as Assumption 3 [36, Lemma 3.7], although E(G) = − ln|G | is not of

positive type. Moreover, it is explained in [36, Section 3.2] that bosonic atoms below a critical binding

number C2 , which are described by the rescaled Hamiltonian

�C ,# =

#∑
9=1

(
−Δ 9 −

1

C
��G 9 ��

)
+ _#

∑
8< 9

1��G8 − G 9 �� , C < C2 ∈ (1, 2), 3 = 3,

meet all criteria, including our Assumption 3. Other viable choices for ) are the Laplace operator on a

bounded subset of R3 with Dirichlet, Neumann or periodic boundary conditions, or relativistic kinetic

terms.

Finally, we construct an asymptotic expansion of the #-body eigenstates Ψ
(=)
# of �# that correspond

to nondegenerate eigenvalues of H0:

Theorem 3. Let 0 ∈ N0 and let Assumptions 1, 2 and 3 be satisfied. Assume that = ∈ N0 such that

X
(=)
0

= 1 and let Ψ
(=)
# ∈ E

(=)
# . Then for a suitable choice of the phase of 6

(=)
0

, there exists a constant
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ℭ(=, 0) such that

Ψ (=)
# −

0∑
ℓ=0

_
ℓ
2

#

#∑
:=0

i⊗(#−:) ⊗B

(
6
(=)
ℓ

) (:)
ℌ#

≤ ℭ(=, 0)_
0+1

2

# (3.25)

for sufficiently large # , where

6
(=)
ℓ

:=

ℓ∑
9=0

U 9 6̃
(=)
ℓ− 9

(ℓ ≥ 1), (3.26a)

6̃
(=)
ℓ

:=

ℓ∑
a=1

∑
j∈Na

| j |=ℓ

P
(=)
91

···P(=)9a
6
(=)
0

(ℓ ≥ 1), (3.26b)

and with

U0 := 1, U2=−1 := 0, U2= := −1

2

∑
j∈N4

0

91 , 92<2=
| j |=2=

U 91U 92

〈
6̃
(=)
93
, 6̃

(=)
94

〉
(3.26c)

for = ≥ 1.

Theorem 3 is an immediate consequence of a much more general statement: if a rank 1 projector

admits an asymptotic expansion in a small parameter Y, this implies an asymptotic expansion of the

corresponding wave function. Since we could not find any proof of this seemingly obvious assertion, we

prove it for a generic perturbative setting in Appendix B. By parity, the parameters Uℓ vanish for ℓ odd,

which can be seen analogously to the vanishing of the half-integer powers of _# in Theorem 2. Note that

the estimate (3.25) also holds with 6
(=)
ℓ

replaced by 6̃
(=)
ℓ

times an overall factor U (0) =
∑0

ℓ=0 _
ℓ/2
# Uℓ .

Remark 3.7. Recall that each Bogoliubov eigenstate 6
(=)
0

can be expressed as a Bogoliubov transfor-

mation U∗
V0

of a wave function with fixed particle number <= ∈ N0 (see Lemma 4.7c). Consequently,

6
(=)
ℓ

can be written as U∗
V0

acting on a superposition of wave functions with ` ≤ <= + 3ℓ particles,

with ` + ℓ +<= even. To see this, note that UV0
O

(=)
:
U∗
V0

is particle-number preserving, and UV0
H 9U

∗
V0

has even (resp., odd) parity for 9 even (resp., odd) and contains at most 9 + 2 creation operators. Hence,

the maximum number of creation operators in definition (3.26b) is contributed by a = 1, namely by

the term containing exclusively operators H1 and exactly one operator P0 (i.e., a = ℓ, j = (1, 1, ..., 1)
and k = (1, 1, ..., 1, 0) in definition (3.7)). Such initial data are used for a perturbative expansion of the

dynamics of the Bose gas in the mean-field limit in [11].

Remark 3.8. For any given ℓ ∈ N, expression (3.26b) can be simplified further, since many terms

vanish by parity and most of the remaining terms can be grouped into summands which differ only by

a prefactor (compare equations (3.28)); for example,

6̃
(=)
2

=
(
P
(=)
2

+ P(=)
1
P
(=)
1

)
6
(=)
0

=
(
O

(=)
2
H2 + O(=)

1
H1O

(=)
1
H1

)
6
(=)
0
. (3.27)

The approximating wave functions in Theorem 3 are constructed via the eigenvalue equation∑∞
ℓ=0 _

ℓ/2
# P

(=)
ℓ

6 (=) = 6 (=) (see Appendix B). Alternatively, one can (formally) derive simpler formulas

for both 6̃
(=)
ℓ

and the coefficients �
(=)
ℓ

from Theorem 2 by an analogous construction for the eigenvalue
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equation H6 (=) = � (=) 6 (=) . A formal computation yields

6̃
(=)
ℓ

=

ℓ∑
a=1

∑
j∈Na

| j |=ℓ

O
(=)
1
H′

91
···O(=)

1
H′

9a−1
O

(=)
1
H 9a 6

(=)
0
, (3.28a)

�
(=)
ℓ

=

2ℓ∑
a=1

∑
j∈Na

| j |=2ℓ

〈
6
(=)
0
,H 91O

(=)
1
H′

92
···O(=)

1
H′

9a−1
O

(=)
1
H 9a 6

(=)
0

〉
, (3.28b)

where H′
9 = H 9 for 9 odd and H′

9 = H 9 − �
(=)
9/2 for 9 even. Here, 6̃

(=)
ℓ

is given in terms of the

coefficients �
(=)
ℓ

, which are determined iteratively. For the first few orders, one easily verifies that the

equations (3.28) coincide with the expressions from Theorems 3 and 2 for X
(=)
0

= 1.

3.2. Strategy of proof

In the remainder of this section, we explain the proof of Theorems 1 and 2. We begin with extending

H≤# to the full excitation Fock space F⊥ in the following way:

Definition 3.9. We extend H≤# (see Definition 2.3) from F≤#
⊥ to the full Fock space F⊥ as

H := H≤# ⊕ � (−1) , (3.29)

where

� (−1) := � (0) −
(
� (1) − � (0)

)
, (3.30)

with � (=) the eigenvalues of H≤# (see again Definition 2.3). Consequently, the low-energy spectrum of

H consists of the eigenvalues

� (−1) < � (0) < � (1) < · · · < � (=) < · · · . (3.31)

Note that we could have extendedH≤# toF⊥ in many ways. To motivate the choice of definition (3.29),

recall that our aim is to expand the spectral projectors ofH around the corresponding spectral projectors

of H0, which we do by expressing them as contour integrals over the resolvent of H and subsequently

expanding (I − H)−1 around (I − H0)−1. Let us first consider the case where the eigenvalues � (=) and

�
(=)
0

of H and H0, respectively, are nondegenerate. In view of equation (1.15), we require an O(1)
contour W (=) that encloses both � (=) and �

(=)
0

and leaves the remaining spectrum of H outside. The

choice H = H≤# ⊕ 2, for 2 a finite distance away from any point in the spectrum of H≤# , ensures that H

has precisely one (infinitely degenerate) additional eigenvalue 2 compared to H≤# . Since the spectrum

of H≤# is bounded from below by � (0) , we place 2 at a finite distance below � (0) , for simplicity such

that the spectral gaps below and above � (0) have the same size.

If �
(=)
0

is degenerate, the expansion must be done carefully, because we cannot exclude the possibility

that nondegenerate eigenvalues ofH become degenerate in the limit # → ∞. By [36], every low-energy

eigenvalue of H converges to an eigenvalue of H0 (see Lemma 4.8a), but the situation may occur that an

eigenvalue �
(=)
0

ofH0 is, for instance, twice degenerate, and there exist (for any finite #) two eigenvalues

� (=1) ≠ � (=2) of H such that

lim
#→∞

� (=1) = � (=)
0

= lim
#→∞

� (=2) .

In this case, it makes sense to expand the sum of the corresponding projectors around P
(=)
0

, which

becomes apparent when recalling equation (1.15): since each closed curve of order 1 around �
(=)
0

must
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enclose both poles � (=1) and � (=2) of (I −H)−1, the contour integral gives precisely the sum of the two

spectral projections. This motivates the following definition:

Definition 3.10. For any = ∈ N0, we define the path

W (=) :=
{
�

(=)
0

+ g (=)eiC : C ∈ [0, 2c)
}
⊂ C, (3.32)

where

g (=) := 1
2

min
{
6
(=−1)
0

, 6
(=)
0

}
(3.33)

for 6
(=)
0

as in definition (2.47). For = ∈ N0, define

P(=) :=
1

2ci

∮
W (=)

1

I − H dI, Q(=) := 1F⊥ − P(=) (3.34)

and

E (=) := P(=)F⊥ =
⊕
a∈ ] (=)

Ẽ (a) ⊂ F≤#
⊥ ⊕ 0, (3.35)

with ](=) as in definition (3.1) and where Ẽ (a) denotes the eigenspace of H at � (a) ,

Ẽ (a) :=
{
5 ⊕ 0 : 5 ∈ F≤#

⊥ ,H≤# 5 = � (a)5
}
, (3.36)

with dimension X
(a)
# as in definition (3.3). We denote normalised elements of E (=) as

6 (=) := 6
(=)
≤# ⊕ 0. (3.37)

For = = −1, we define P(−1) as the projector onto the eigenspace of H associated with � (−1) ,

E (−1) :=
{
0 ⊕ 5 : 5 ∈ F>#

⊥
}
, P(−1) := 1E (−1) . (3.38)

Next, we expand H in powers of _
1/2
# . The #-dependence in H has two sources: first, H is defined as

the direct sum of H≤# on F≤#
⊥ and a conveniently chosen constant on F>#

⊥ ; second, the operators in

H≤# come with #-dependent prefactors. To deal with the first point, we write H on F⊥ as

H = H< + H>, (3.39)

with

H< := K0 +
(
1 − N⊥ − 1

# − 1

)
K1 +

(
K2

√
[(# −N⊥) (# −N⊥ − 1)]+

# − 1
+ h.c.

)

+
(
K3

√
[# −N⊥]+
# − 1

+ h.c.

)
+ 1

# − 1
K4, (3.40a)

H> := 0 ⊕
(
� (−1) − K0 −

(
1 − N⊥ − 1

# − 1

)
K1 −

1

# − 1
K4

)
, (3.40b)

where [·]+ denotes the positive part. Note that K0, K1 and K4 conserve the particle number, so the

restriction to F>#
⊥ in definition (3.40b) makes sense. The first term H< is defined on the full space F⊥.

To obtain H<, we add to H the missing contributions to K0, K1 and K4 on the sectors F>#
⊥ , and subtract

them again in H>. Finally, we expand the square roots from H< in a Taylor series (see [11, Appendix C]

for a proof).
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Lemma 3.11. Let 0 ∈ N0 and 2
( 9)
ℓ

and 3ℓ, 9 as in definition (3.10).

(a) Define the operator R̃
(3)
0 on F⊥ via the identity

√
[# −N⊥]+
# − 1

=

0∑
ℓ=0

2ℓ_
ℓ+ 1

2

# (N⊥ − 1)ℓ + _0+
3
2

# R̃
(3)
0 . (3.41)

Then
[
R̃
(3)
0 ,N⊥

]
= 0 and

R̃(3)
0 5


F⊥

≤ 20+1
(N⊥ + 1)0+15


F⊥

(3.42)

for 5 ∈ F⊥.

(b) Define the operator R̃
(2)
0 on F⊥ through

√
[(# −N⊥) (# −N⊥ − 1)]+

# − 1
=

0∑
ℓ=0

_ℓ#

ℓ∑
9=0

3ℓ, 9 (N⊥ − 1) 9 + _0+1
# R̃

(2)
0 . (3.43)

Then
[
R̃
(2)
0 ,N⊥

]
= 0 and

R̃(2)
0 5


F⊥

≤ (0 + 1)240+1
(N⊥ + 1)0+15


F⊥

(3.44)

for 5 ∈ F⊥.

With this, we can expand H< in powers of _
1/2
# :

Proposition 3.12. Let 0 ∈ N0. In the sense of operators on F⊥, it holds that

H< =

0∑
9=0

_
9

2

#H 9 + _
0+1

2

# R0, (3.45)

with H 9 as in Definitions 2.4 and 3.3. The remainders are given as

R0 := R
(1)
0

+ _
1
2

#K4, (3.46a)

R1 := R
(1)
1

+ K4 (3.46b)

and

R
(1)
0

:=

(
K3

√
[# −N⊥]+
# − 1

+ h.c.

)
+ _

1
2

#

((
K2R̃

(2)
0

+ h.c.
)
− (N⊥ − 1)K1

)
, (3.46c)

R
(1)
1

:= −(N⊥ − 1)K1 +
(
K2R̃

(2)
0

+ h.c.
)
+ _

1
2

#

(
K3R̃

(3)
0

+ h.c.
)
, (3.46d)

R2 9 := K3R̃
(3)
9−1

+ _
1
2

#K2R̃
(2)
9 + h.c., (3.46e)

R2 9+1 := K2R̃
(2)
9 + _

1
2

#K3R̃
(3)
9 + h.c. (3.46f )

for 9 ≥ 1, with R̃
(2)
9 and R̃

(3)
9 from Lemma 3.11.
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The next step is to expand P(=) around P
(=)
0

, using the fact that

P
(=)
0

=
1

2ci

∮
W (=)

1

I − H0

dI (3.47)

because W (=) from definition (3.32) encloses �
(=)
0

. In view of the definition (3.34) of P(=) , we first

expand (I − H)−1 around (I − H0)−1 and integrate the resulting expressions along W (=) .

Lemma 3.13. Let 0 ∈ N0 and I ∈ r(H) ∩ r(H0), where r denotes the resolvent set. Then

1

I − H =
1

I − H0

0∑
ℓ=0

_
ℓ
2

# Tℓ (I) + _
0+1

2

#

1

I − H<
S0 (I) +

1

I − H<
H> 1

I − H , (3.48)

where

Tℓ (I) =
ℓ∑

a=1

∑
j∈Na

| j |=ℓ

H 91

1

I − H0

H 92

1

I − H0

···H 9a

1

I − H0

, (3.49)

S0 (I) =
0∑

a=0

Ra
1

I − H0

T0−a (I). (3.50)

Here, the notation is understood such that T0(I) = 1.

The proof of Lemma 3.13 is postponed to Section 5.1.1. Essentially, one uses the identities

H< = H0 + _
1
2

#R0, R0 = H1 + _
1
2

#R1,

which follow from Proposition 3.12, to conclude that

1

I − H<
=

1

I − H0

+ _
1
2

#

1

I − H<
R0

1

I − H0

=
1

I − H0

+ _
1
2

#

1

I − H0

H1

1

I − H0

+ O(_# ),
(3.51)

and iterating this procedure up to order O
(
_
(0+1)/2
#

)
concludes the proof.

The next step is to integrate equation (3.48) along the contour W (=) as in equation (3.47). The

first term in equation (3.48) gives an integral over products of alternately (I − H0)−1 and H 9 . After

decomposing 1 = P
(=)
0

+ Q(=)
0

in each resolvent, we note that the term with exclusively Q
(=)
0

vanishes

because the integrand is, by construction, holomorphic in the interior of W (=) . The remaining terms, all

of which contain at least one projection P
(=)
0

, can be simplified using the residue theorem. Note that

P
(=)
0

/(I − H0) = P(=)0
/
(
I − � (=)

0

)
, hence the number of operators P

(=)
0

determines the order of the pole

at I = �
(=)
0

.

The second term in equation (3.48) is of the same structure as the first one but starts with (I − H<)−1

instead of (I−H0)−1. For later convenience, we decompose the first identity as 1 = P(=)+Q(=) . Moreover,

in case of Q(=) , we resolve all remaining identities as 1 = P
(=)
0

+ Q(=)
0

and note that the contribution

with Q(=) and exclusively Q
(=)
0

vanishes, as the integrand is holomorphic.

Finally, in the last term of equation (3.48) we decompose both identities as 1 = P(=) + Q(=) and

observe that P(=)H> = 0 because P(=) projects onto a subset of F≤#
⊥ , where H> equals zero. This leaves
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only the term with twice Q(=) , which vanishes upon integration. In summary, we obtain the following

formula for P(=) :

Proposition 3.14. Let 0 ∈ N0, = ∈ N0 and W (=) as in definition (3.32). Then

P(=) =
0∑

ℓ=0

_
ℓ
2

#P
(=)
ℓ

+ _
0+1

2

#

(
B
(=)
% (0) + B(=)

&
(0)

)
(3.52)

for P
(=)
ℓ

as in Definition 3.3 and where

B
(=)
% (0) =

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

1

2ci

∮
W (=)

P(=)

I − H<
Ra

1

I − H0

H 91

1

I − H0

···H 9<

1

I − H0

dI (3.53)

and

B
(=)
&

(0) =
0∑

a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

<∑
ℓ=0

∑
k∈{0,1}<+1

|k |=ℓ

1

2ci

∮
W (=)

Q(=)

I − H<
Ra

×
I
(=)
:1

I − H0

H 91

I
(=)
:2

I − H0

···H 9<

I
(=)
:<+1

I − H0

dI,

(3.54)

with

I
(=)
:

=



P
(=)
0
, : = 0,

Q
(=)
0
, : = 1.

(3.55)

To derive the coefficients �
(=)
ℓ

of the energy expansion in Theorem 2, we observe that

TrF⊥HP
(=) =

1

2ci
TrF⊥

∮
W (=)

H

I − H dI =
1

2ci
TrF⊥

∮
W (=)

I

I − H dI

= X
(=)
0
�

(=)
0

+ 1

2ci
TrF⊥

∮
W (=)

I − � (=)
0

I − H dI, (3.56)

then expand (I−H)−1 as in Lemma 3.13 and use the residue theorem to evaluate the resulting expressions.

It remains to show that the difference�����TrF⊥A
(<)
# P

(=) −
0∑

ℓ=0

_
ℓ
2

#TrF⊥A
(<)
# P

(=)
ℓ

�����
is of order _

(0+2)/2
# . We prove this in four steps.

Step 1. First, recall that all low-energy eigenstates of �# exhibit condensation in i, hence the leading-

order contribution to Trℌ# �(<)% (=)
# is determined by the condensate. To take this into account, we

define the auxiliary operator

A
(<)
red

:= A
(<)
# − 〈�〉 (<) ⊕ 0, 〈�〉 (<) :=

〈
i⊗<, �(<)i⊗<

〉
ℌ<

, (3.57)

where we have already subtracted the leading order – that is,

Trℌ# �(<)% (=)
# = TrF⊥A

(<)
# P

(=) = X (=)
0

〈�〉 (<) + TrF⊥A
(<)
red
P(=) . (3.58)
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Our goal is to conclude from Proposition 3.14 that

TrF⊥A
(<)
red
P(=) =

0∑
ℓ=0

_
ℓ
2

#TrF⊥A
(<)
red
P
(=)
ℓ

+ O

(
_

0+2
2

#

)
; (3.59)

that is, we must show that the error terms in equation (3.52) are of the right order. Given equation (3.59),

the statement of the theorem can be inferred as follows: by the definition ofA
(<)
red

, equation (3.59) implies

that

TrF⊥A
(<)
red
P(=) =

0∑
ℓ=0

_
ℓ
2

# TrF⊥A
(<)
# P

(=)
ℓ

− 〈�〉 (<)
0∑

ℓ=0

_
ℓ
2

#TrF⊥P
(=)
ℓ

+ O

(
_

0+2
2

#

)
. (3.60)

Due to Proposition 3.14 and the fact that TrF⊥P
(=) = TrF⊥P

(=)
0

= X
(=)
0

by definition, one can show that

X
(=)
0

= TrF⊥P
(=) = X (=)

0
+

0∑
ℓ=1

_
ℓ
2

#TrF⊥P
(=)
ℓ

+ O

(
_

0+1
2

#

)
(3.61)

for any 0 ∈ N, which implies that TrF⊥P
(=)
ℓ

= 0 for any ℓ ≥ 1. Alternatively, this can be inferred directly

from the definition of P
(=)
ℓ

. Hence, equation (3.60) yields

TrF⊥A
(<)
# P

(=) = TrF⊥A
(<)
red
P(=) + X (=)

0
〈�〉 (<) =

0∑
ℓ=0

_
ℓ
2

#TrF⊥A
(<)
# P

(=)
ℓ

+ O

(
_

0+2
2

#

)
. (3.62)

It remains to prove the two estimates (3.59) and (3.61). To deal with both problems simultaneously, let

us consider

A ∈
{
A

(<)
red
,1

}
.

Step 2. First we show that A satisfies an estimate of the form

‖A5‖F⊥ ≤ ℭ#U (
‖(N⊥ + 1)5‖F⊥ + ‖H05‖F⊥

)
. (3.63)

For A = 1, this holds trivially with U = 0; for A = A
(<)
red

, we prove the bound (3.63) with U = − 1
2

(Lemma 5.4). Let us explain the main idea of the proof for the simplest case < = 1. First, we use*# ,i

to reduce the problem to an estimate on ℌ# and insert identities 1 = ?1 + @1 (see definition (2.18)),

A(1)
red

5


F⊥

=

(?1�
(1)
1
?1 − 〈�〉 (1) +

(
@1�

(1)
1
?1 + h.c.

)
+ @1�

(1)
1
@1

)
*∗

# ,i5


ℌ#

(3.64)

for any 5 ∈ F≤#
⊥ ⊕ 0. For the first term, one observes that

?1�
(1)
1
?1 − 〈�〉 (1) = −@1〈�〉 (1) , (3.65)

hence every contribution to equation (3.64) contains at least one projection @ onto the orthogonal

complement of the condensate wave function. This gives a prefactor #−1/2 because

@1*
∗
# ,i5


ℌ#

= #− 1
2

dΓ⊥ (@) 1
2*∗

# ,i5


ℌ#

= #− 1
2

N 1
2
⊥5


F

≤#
⊥

. (3.66)
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To control the action of �(1) on *∗
# ,i5, note that �(1) is relatively bounded by ℎ by assumption, and,

for any k# ∈ ℌ#
sym,

‖ℎ1k# ‖2
ℌ# = #−1

#∑
9=1

〈
k# , ℎ 9ℎ 9k#

〉
ℌ#

≤ #−1
∑

1≤ 9 ,ℓ≤#

〈
k# , ℎ 9ℎℓk#

〉
ℌ# = #−1 ‖K0k# ‖2

ℌ# (3.67)

by permutation symmetry of k# and as ℎ ≥ 0. The full argument is given in Section 5.2.2.

Step 3. Proposition 3.14 implies that

TrF⊥AP
(=) −

0∑
ℓ=0

_
ℓ
2

#TrF⊥AP
(=)
ℓ

= _
0+1

2

#

(
TrF⊥AB

(=)
% (0) + TrF⊥AB

(=)
&

(0)
)
, (3.68)

withB
(=)
% andB

(=)
&

as defined in equations (3.53) and (3.54). Let us sketch the estimate of the remainders

for the leading order 0 = 0 and the simplest case of a nondegenerate eigenvalue of H0 (and thus H). In

this case,

TrF⊥AB
(=)
&

(0) = 1

2ci
TrF⊥

∮
W (=)

1

I − � (=)
0

Q(=)

I − H<
R0P

(=)
0
A dI, (3.69a)

TrF⊥AB
(=)
% (0) = 1

2ci
TrF⊥

∮
W (=)

P(=)

I − � (=) R0
1

I − H0

A dI, (3.69b)

both of which contain at least one rank 1 projection. By construction, the circumference of W (=) and

its distance to � (=) and �
(=)
0

are of order 1. Hence, after interchanging trace and integral, it remains to

control ����
〈
6
(=)
0
,A
Q(=)

I − H<
R06

(=)
0

〉����
F⊥

≤
A6 (=)

0


F⊥

 Q(=)

I − H<


op

R06
(=)
0


F⊥
, (3.70a)

����
〈
6 (=) ,R0

1

I − H0

A6 (=)
〉����
F⊥

≤
6 (=)


F⊥

A 1

I − H0

R06
(=)


F⊥

(3.70b)

for I ∈ W (=) . To estimate these expressions, recall that R0 is constructed out of the operators K 9 from

definition (2.41) and the Taylor remainders in Lemma 3.11. By inequalities (2.5) and (2.6), K1 to K3

are bounded by powers of (N⊥ + 1). Concerning K4, note that it can be written as

K4 = dΓ⊥(E) + dΓ⊥
(
E ∗ i2 ⊗ 1 + 1 ⊗ E ∗ i2 + 1 ⊗ 1

〈
i, E ∗ i2i

〉)
. (3.71)

Whereas the second term can be controlled by powers of (N⊥ + 1), this is not true for dΓ⊥ (E), since E

may be unbounded. However, due to the estimate (2.3), it can be bounded in terms of K
1/2
0

and (N⊥ + 1)
(Lemma 5.2). In summary, we find (see Lemma 5.3) thatR06

(=)
0


F⊥

≤ ℭ
((N⊥ + 1)26

(=)
0

 + (N⊥ + 1) 3
2H06

(=)
0

) ≤ ℭ(=), (3.72)

because

(N⊥ + 1) 3
2H06

(=)
0

 ≤ ℭ

(N⊥ + 1) 3
2 6

(=)
0

 and because finite moments of N⊥ with respect to

6
(=)
0

are bounded uniformly in # (Lemma 4.7d). Analogously, the estimate (3.63) yields

(3.70a) ≤ ℭ(=)#U, (3.73)
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with U = −1/2 for A = A
(<)
red

and U = 0 for A = 1. Moreover,

(3.70b) ≤ ℭ#U

(N⊥ + 1) 1

I − H0

R06
(=)


F⊥

≤ ℭ#U
R06

(=)

F⊥
. (3.74)

The last inequality, which is proven in Lemma 5.5, follows essentially from the observation that N⊥ ≤
ℭUV0

(
H0 − � (0)

0
+ 1

)
U∗
V0

, for UV0
the Bogoliubov transformation diagonalising H0 (Lemma 4.7e),

because one can control the action of UV0
on the number operator (Lemma 4.4) sufficiently well. As

opposed to the estimate (3.70a), we do not a priori know this to be of order #U, since we do not have

sufficient control of (N⊥ + 1)1 6 (=) for 1 > 1/2 and of R06
(=) , which contains a contribution K46

(=) .

Step 4. To prove a uniform bound for TrF⊥ (N⊥+1)1P(=) for any 1 ≥ 1, we make use of the a priori bound

TrF⊥ (N⊥ + 1)P(=) ≤ ℭ(=),

TrF⊥ (N⊥ + 1)1P(=) ≤ ℭ(1, =)# 1
3 TrF⊥ (N⊥ + 1)1−1P(=)

(3.75)

(Lemma 4.8c) to close a bootstrap argument. Let us explain the strategy for the simplest case 1 = 2

and a nondegenerate eigenvalue �
(=)
0

. First, we expand P(=) one step around P
(=)
0

– that is, we apply

equation (3.68) to A = (N⊥ + 1)2 for 0 = 0. Since TrF⊥ (N⊥ + 1)2P
(=)
0

is bounded uniformly in # , it

remains to show that the error terms corresponding to expressions (3.70a) and (3.70b) are bounded.

Whereas expression (3.70a) is clearly bounded uniformly in # , we make use of the foregoing a priori

bound to estimate expression (3.70b). The positive powers of # arising from this can be compensated

for by the prefactor _
1/2
# in equation (3.68) – which, however, requires some manipulations since we do

not yet have a sufficient bound for K46
(=) . This cancellation is precisely the point where the restriction

Y(#) ≤ �#
1
3 in Assumption 3 enters. The full argument is given in Lemma 5.6. Note that for the 3-

dimensional torus, a uniform bound for TrF⊥ (N⊥ + 1)1 was shown in [44, Corollary 3.2] by a different

argument.

Finally, the estimate TrF⊥K
2
4
P(=) ≤ ℭ follows from a similar bootstrap argument, using the a priori

bound

K4 ≤ ℭ
(
(N⊥ + 1) 3

2 dΓ⊥(ℎ) (N⊥ + 1) 3
2 + (N⊥ + 1)4

)
(3.76)

together with Assumption 3 and the previous estimate of TrF⊥ (N⊥ + 1)1P(=) .

Remark 3.15. For interactions E ∈ !∞
(
R3

)
, step 4 is not necessary. In this case, Assumption 3 holds

with Y(#) = O(1) [27, Lemma 1], hence the a priori bound (3.75) is already uniform in # (see

Lemma 4.8c), and moreover, K4 is bounded by powers of N⊥.

The latter also explains why the estimate of the growth of ℭ(=, <, 0) in 0 is better than for generic

E (Remark 3.5): since all operators H 9 and R 9 from the expansion of H< are bounded by powers of

N⊥ (and not by H0), each commuting with a resolvent (I −H0)−1 cancels one of these powers as in the

estimate (3.74). Consequently, the final power of N⊥ acting on 6 (=) and 6
(=)
0

is less than in the generic

case, where this effect is cancelled by H0 hitting the resolvent. Since conjugating powers of N⊥ with

Bogoliubov transformations is the main source for the growth in 0 (see Lemma 4.4), this leads to a

better estimate.

4. Bogoliubov theory

In this section, we summarise some known results concerning the Bogoliubov Hamiltonian H0 and its

connection to the #-body Hamiltonian �# . As preparation, recall that

0†G� (N⊥) = � (N⊥ − 1)0†G , 0G� (N⊥) = � (N⊥ + 1)0G (4.1)

for any function �. Moreover, normal ordered expressions can be bounded in terms of N⊥:
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Lemma 4.1. Let =, ? ≥ 0 and let 5 : ℌ
?
⊥ → ℌ=

⊥ be a bounded operator with (Schwartz) kernel

5
(
G (=) ; H (?)

)
and 5 ∈ F⊥. Then

∫
dG (=) dH (?) 5

(
G (=) ; H (?)

)
0†G1

···0†G=0H1
···0H?5


F⊥

≤ ‖ 5 ‖ℌ?
⊥→ℌ=

⊥

(N⊥ + =)
=+?

2 5


F⊥
. (4.2)

A proof is given in [11, Lemma 5.1]. In the following, we will always assume that Assumptions 1, 2

and 3 are satisfied.

4.1. Bogoliubov transformations

We begin by briefly recalling the concept of Bogoliubov transformations, mainly following [67, 11].

Let us consider

� = 5 ⊕ �6 = 5 ⊕ 6 =

(
5

6

)
∈ ℌ⊥ ⊕ ℌ⊥, (4.3)

where � : ℌ⊥ → ℌ⊥, (� 5 ) (G) = 5 (G), denotes complex conjugation, and define the generalised creation

and annihilation operators �(�) and �† (�) as

�(�) = 0( 5 ) + 0† (6), �†(�) = �(J�) = 0† ( 5 ) + 0(6) (4.4)

for J =

(
0 �

� 0

)
. An operator V on ℌ⊥ ⊕ℌ⊥ such that � ↦→ �(V�) has the same properties as � ↦→ �(�),

that is,

�† (V�) = �(VJ�),
[
�(V�1), �†(V�2)

]
=

[
�(�1), �† (�2)

]
, (4.5)

is called a (bosonic) Bogoliubov map.

Definition 4.2. A bounded operator V : ℌ⊥ ⊕ ℌ⊥ → ℌ⊥ ⊕ ℌ⊥ is a Bogoliubov map if

V∗SV = S = VSV∗, JVJ = V, (4.6)

for S =

(
1 0

0 −1

)
. Equivalently, V has the block form

V :=

(
* +

+ *

)
, *,+ : ℌ⊥ → ℌ⊥, (4.7)

where* and + satisfy the relations

*∗* = 1 ++∗+, **∗ = 1 +++∗
, +∗* = *∗+, *+∗ = +*

∗
. (4.8)

We denote the set of Bogoliubov maps on ℌ⊥ ⊕ ℌ⊥ as

V(ℌ⊥) := {V ∈ L (ℌ⊥ ⊕ ℌ⊥) | V is a Bogoliubov map} . (4.9)

The adjoint and inverse of V ∈ V(ℌ⊥) with block form (4.7) are given as

V∗ =

(
*∗ +∗

+
∗
*

∗

)
, V−1 = SV∗S =

(
*∗ −+∗

−+∗
*

∗

)
. (4.10)

Under certain conditions, Bogoliubov maps can be unitarily implemented onF⊥ (see, e.g., [67, Theorem

9.5]):
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Lemma 4.3. Let V ∈ V(ℌ⊥). Then there exists a unitary transformation UV : F⊥ → F⊥ such that

UV�(�)U∗
V
= �(V�) (4.11)

for all � ∈ ℌ⊥ ⊕ ℌ⊥ if and only if

‖+ ‖2
HS(ℌ⊥) := Trℌ⊥ (+∗+) < ∞ (4.12)

(Shale–Stinespring condition). In this case,V is called (unitarily) implementable. We refer to the unitary

implementation of a Bogoliubov map as Bogoliubov transformation.

If+ is Hilbert–Schmidt, the mapV ↦→ UV is a group homomorphism, which in particular implies that

UV−1 = (UV)−1 = U∗
V
. (4.13)

Writing*,+ as integral operators with (Schwartz) kernels* (G; H) and + (G; H), that is,

(* 5 ) (G) =
∫
* (G; H) 5 (H) dH, (+ 5 ) (G) =

∫
+ (G; H) 5 (H) dH (4.14)

for any 5 ∈ ℌ⊥, we can express the transformation rule (4.11) as

UV0GU
∗
V
=

∫
dH* (H; G)0H +

∫
dH+ (H; G)0†H ,

UV0
†
GU

∗
V
=

∫
dH+ (H; G)0H +

∫
dH* (H; G)0†H .

(4.15)

In particular, powers of N⊥ conjugated with UV can be bound as follows (see [11, Lemma 4.4] for a

proof):

Lemma 4.4. Let V ∈ V(ℌ⊥) be unitarily implementable and denote by UV the corresponding Bogoli-

ubov transformation on F⊥. Then it holds for any 1 ∈ N that

UV (N⊥ + 1)1U∗
V
≤ �1

V
11 (N⊥ + 1)1

in the sense of operators on F⊥, where

�V := 2 ‖+ ‖2
HS + ‖*‖2

op + 1 (4.16)

for V =

(
* +

+ *

)
and with ‖·‖op := ‖·‖L(ℌ⊥) and ‖·‖HS := ‖·‖HS(ℌ⊥) .

Finally, we recall the notion of quasi-free states:

Definition 4.5. A normalised state 5 ∈ F⊥ is called a quasi-free (pure) state if there exists some

V ∈ V(ℌ⊥) such that

5 = UV |Ω〉. (4.17)

Alternatively, quasi-free states can be defined via Wick’s rule (e.g. [46, Theorem 1.6]):

Lemma 4.6. Let 5 ∈ F⊥ be normalised. Then 5 is quasi-free if and only if

〈5,N5〉F⊥ < ∞ (4.18)
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and 〈
5, 0♯ ( 51) ···0♯ ( 52=−1)5

〉
F⊥

= 0, (4.19a)

〈
5, 0♯ ( 51) ···0♯ ( 52=)5

〉
F⊥

=
∑

f∈%2=

=∏
9=1

〈
5, 0♯

(
5f (2 9−1)

)
0♯

(
5f (2 9)

)
5
〉
F⊥

(4.19b)

for 0♯ ∈
{
0†, 0

}
, = ∈ N and 51, ..., 52= ∈ ℌ⊥. Here, %2= denotes the set of pairings

%2= := {f ∈ S2= : f(20 − 1) < min{f(20), f(20 + 1)} ∀0 ∈ {1, 2, ..., 2=}}, (4.20)

where S2= denotes the symmetric group on the set {1, 2, ..., 2=}.

4.2. Properties of H and H0

Since H0 is a quadratic Hamiltonian, it can be diagonalised by Bogoliubov transformations, which

makes it possible to compute its spectrum:

Lemma 4.7.

(a) There exists a unitarily implementable Bogoliubov map

V0 =

(
*0 +0

+0 *0

)
∈ V(ℌ⊥)

such that the corresponding Bogoliubov transformation UV0
: F⊥ → F⊥ diagonalises H0 – that

is, there exists a self-adjoint operator � > 0 on ℌ⊥ such that

UV0
H0U

∗
V0

= dΓ⊥ (�) + inf f(H0). (4.21)

The spectrum of � is purely discrete, and we denote its eigenvalues as

0 < 3 (0) < 3 (1) < · · · < 3 ( 9) < · · · . (4.22)

In particular, � admits a complete set of normalised eigenfunctions, denoted as
{
b 9

}
9≥0

.

(b) The spectrum of H0 is purely discrete, and the ground-state energy of H0 is negative. For any

= ∈ N, there exists some : ∈ N0 and some tuple (a0, ..., a: ) ∈ N:+1
0

such that

�
(=)
0

= �
(0)
0

+ a03
(0) + a13

(1) + · · · + a:3 (:) . (4.23)

Further, g (=) > 0, for g (=) as in definition (3.33).

(c) The ground state of H0 is unique and given by

6
(0)
0

= U∗
V0

|Ω〉. (4.24)

For each = ∈ N, there exists a basis
{
6
(=,<)
0

}
1≤<≤X

(=)
0

of E
(=)
0

such that

6
(=,<)
0

= U∗
V0

(
0† (b0)

)a0

√
a0!

(
0† (b1)

)a1

√
a1!

···
(
0† (b: )

)a:
√
a: !

|Ω〉 (4.25)

for some : ∈ N0 and some tuple (a0, ..., a: ) ∈ N:+1
0

depending on <.
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(d) Let 1 ∈ N0 and let 6
(=,<)
0

∈ E
(=)
0

be given by equation (4.25). Then

〈
6
(=,<)
0

, (N⊥ + 1)1 6 (=,<)
0

〉
F⊥

≤ (ℭ1(1 + a0 + · · · + a: ))1 ≤ (ℭ(=)1)1, (4.26)

and (N⊥ + 1)1P(=)
0


L(F⊥)

≤ (ℭ(=)1)1 . (4.27)

(e) In the sense of operators on F⊥, it holds that

N⊥ + 1 ≤ ℭU∗
V0

(N⊥ + 1)UV0
≤ ℭ

(
H0 − � (0)

0
+ 1

)
. (4.28)

All statements of Lemma 4.7 are well known and are proven for various models in, for example, [67,

47, 36, 53, 56]. In the following, we summarise a proof for our model:

Proof. Part (a). Let us abbreviate  ̃ := @ @ for  as in definition (2.16). By Lemma 2.2,  ̃
(
ℎ +  ̃

)−1

is Hilbert–Schmidt on ℌ⊥, since ̃
(
ℎ +  ̃

)−1


HS

≤ ‖ ‖HS


(
ℎ +  ̃

)−1


op

≤ 6−1
H ‖ ‖HS (4.29)

as  ≥ 0 and ℎ ≥ 6H > 0 on ℌ⊥. Moreover, � :=
(
ℎ +  ̃

)− 1
2

 ̃
(
ℎ +  ̃

)− 1
2

is Hilbert–Schmidt on ℌ⊥,

since

Tr(�∗�) = Tr

((
 ̃

(
ℎ +  ̃

)−1
)2

)
≤

 ̃
(
ℎ +  ̃

)−1


2

HS

, (4.30)

and ‖�‖op =

 ̃ 1
2

(
ℎ +  ̃

)−1

 ̃
1
2


op

< 1 because

 ̃
1
2

(
ℎ +  ̃

)−1

 ̃
1
2 ≤  ̃

6H +  ̃
≤

 ̃
op

6H +
 ̃

op

1, (4.31)

where we use the fact that the inverse is operator monotone and that G ↦→ G(6H + G)−1 is increasing.

Hence, by [53, Theorems 1 and 2], there exists a unitarily implementable V0 ∈ V(ℌ⊥) such that

V0AV∗
0 = V0

(
ℎ +  ̃  ̃

 ̃ ℎ +  ̃

)
V0

∗ =

(
� 0

0 ���

)
(4.32)

for some self-adjoint operator � > 0 on ℌ⊥, and

UV0
H0U

∗
V0

= dΓ⊥(�) + inf f(H0), (4.33)

where UV0
denotes the unitary implementation of V0 on F⊥. Finally, one can show as in Step 6 in the

proof of [36, Theorem A.1] that � has purely discrete spectrum.

Parts (b) and (c). By [36, Theorem A.1(iii-iv)], f(H0) = fdisc(H0) and inf f(H0) < 0. Since � > 0,

|Ω〉 is the unique ground state of dΓ⊥(�) with eigenvalue 0, hence U∗
V0

|Ω〉 is the unique ground state
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of H0 with eigenvalue �
(0)
0

= inf f(H0) by equation (4.21). By part (a), there is a complete set of

normalised eigenstates
{
b 9

}
9≥0

for �, hence

dΓ⊥ (�) =
∑
9≥0

3 ( 9)0†
(
b 9

)
0

(
b 9

)
. (4.34)

Consequently, all eigenstates of dΓ⊥ (�) can be written as

(
0† (b0)

)a0

√
a0!

···
(
0† (b: )

)a:
√
a: !

|Ω〉 (4.35)

for some : ∈ N0, and all eigenvalues of dΓ⊥(�) are of the form

a03
(0) + a13

(1) + · · · + a:3 (:) (4.36)

for some : ∈ N0 and (a0, ..., a: ) ∈ N:+1
0

. Finally, equations (4.25) and (4.23) follow from equa-

tion (4.21).

Part (d). For 6
(=,<)
0

as in equation (4.25), we compute by Lemma 4.4 that

〈
6
(=,<)
0

, (N⊥ + 1)1 6 (=,<)
0

〉
F⊥

=

(N⊥ + 1) 1
2 U∗

V0

(
0† (b0)

)a0

√
a0!

···
(
0† (b: )

)a:
√
a: !

|Ω〉


2

F⊥

≤ 11�1
V0

(N⊥ + 1) 1
2

(
0† (b0)

)a0

√
a0!

···
(
0† (b: )

)a:
√
a: !

|Ω〉


2

F⊥

, (4.37)

where �V0
denotes the constant from Lemma 4.4 for V = V0. This proves the estimate (4.26), because

(N⊥ + 1) 1
2

(
0† (b0)

)a0

√
a0!

···
(
0† (b: )

)a:
√
a: !

|Ω〉

= (a0 + · · · + a: + 1) 1
2

(
0† (b0)

)a0

√
a0!

···
(
0† (b: )

)a:
√
a: !

|Ω〉, (4.38)

and the bound (4.27) follows from the decomposition P
(=)
0

=
∑X

(=)
0

<=1

���6 (=,<)
0

〉 〈
6
(=,<)
0

���.
Part (e). This follows from parts (a) and (c) and by Lemma 4.4, since

〈
5,

(
H0 − � (0)

0

)
5
〉
F⊥

=

〈
UV0

5,
∑
9≥0

3 ( 9)0†
(
b 9

)
0

(
b 9

)
UV0

5

〉
F⊥

≥ 6
(0)
0

〈
5,U∗

V0
N⊥UV0

5
〉
F⊥
. (4.39)

�

Next, we recall that for excitation energies of order 1, the eigenvalues ofH≤# converge to eigenvalues

of H0 as # → ∞. Statements of this kind have been proven in [65, 27, 36, 44].
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Lemma 4.8.

(a) For any a ∈ N0 and � (a) as in Definition 2.3, there exists some = ∈ N0 such that

lim
#→∞

� (a) = � (=)
0
. (4.40)

(b) In the sense of operators on F≤#
⊥ ,

N⊥ + 1 ≤ ℭ
(
H≤# + # 1

3

)
. (4.41)

(c) Let 6 (=) ∈ E (=) for = ∈ N0. Then

〈
6 (=) , (N⊥ + 1)6 (=)

〉
F⊥

≤ ℭ(=), (4.42)

and 〈
6 (=) , (N⊥ + 1)1 6 (=)

〉
F⊥

≤ ℭ(1, =)# ℓ
3

〈
6 (=) , (N⊥ + 1)1−ℓ 6 (=)

〉
F⊥

(4.43)

for 1 ∈ N0 and any 0 ≤ ℓ ≤ 1. If Y(#) = O(1) in Assumption 3, one obtains the improved bound

〈
6 (=) , (N⊥ + 1)1 6 (=)

〉
F⊥

≤
(
ℭ(=) + 3

1
2

)1
. (4.44)

Proof. Part (a). By Lemma 2.2 and Assumption 3, all assumptions (A1), (A2) and (A3s) in [36] are

satisfied, hence part (a) follows from [36, Theorem 2.2(ii)].

Part (b). By Assumption 3, there exist constants �1 ≥ 0 and 0 < �2 ≤ 1 such that, for sufficiently large

# ,

�# − #4H ≥ �2 dΓ⊥ (ℎ) − �1#
1
3 (4.45)

in the sense of operators onℌ# . Since i is the unique ground state of ℎ with eigenvalue 0, it follows that

dΓ⊥(ℎ) =
∑
9≥0

Y ( 9)0†
(
i 9

)
0

(
i 9

)
=

∑
9≥1

Y ( 9)0†
(
i 9

)
0

(
i 9

)
≥ 6HN⊥ (4.46)

on ℌ# , where 0 < Y (1) ≤ Y (2) ≤ · · · . Consequently, it holds for 5 ∈ F≤#
⊥ that

〈5,N⊥5〉F≤#
⊥

=
〈
*∗

# ,i5,N⊥*
∗
# ,i5

〉
ℌ#

≤ 1

�26H

〈
5,

(
H≤# + �1#

1
3

)
5
〉
F

≤#
⊥
. (4.47)

Part (c). By Lemma 2.2 and Assumption 3, [36, Theorem 2.2(iv)] implies that there exists some

6
(=)
0

∈ E
(=)
0

such that, up to a subsequence,

lim
#→∞

6 (=) − 6
(=)
0


F⊥

= 0, lim
#→∞

〈(
6 (=) − 6

(=)
0

)
,H0

(
6 (=) − 6

(=)
0

)〉
F⊥

= 0, (4.48)
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hence, by Lemma 4.7e,

〈
6 (=) , (N⊥ + 1)6 (=)

〉
F⊥

≤ ℭ
〈(

6 (=) − 6
(=)
0

)
,
(
H0 − � (0)

0
+ 1

) (
6 (=) − 6

(=)
0

)〉
F⊥

+ℭ
〈
6
(=)
0
,
(
H0 − � (0)

0
+ 1

)
6
(=)
0

〉
F⊥

+ 2ℭ

6 (=) − 6
(=)
0


F⊥

(H0 − � (0)
0

+ 1
)
6
(=)
0


F⊥

≤ ℭ
(
�

(=)
0

− � (0)
0

+ 1
)

(4.49)

for sufficiently large # . Further, part (b) implies that

〈
6 (=) , (N⊥ + 1)1+16 (=)

〉
F⊥

=
〈
(N⊥ + 1) 1

2 6 (=) , (N⊥ + 1) (N⊥ + 1) 1
2 6 (=)

〉
F

≤#
⊥

≤ ℭ
〈
(N⊥ + 1) 1

2 6 (=) ,
(
H≤# + # 1

3

)
(N⊥ + 1) 1

2 6 (=)
〉
F

≤#
⊥

≤ ℭ
〈
(N⊥ + 1)1 6 (=) ,

(
H≤# + # 1

3

)
6
(=)
≤#

〉
F

≤#
⊥

+ℭ
(N⊥ + 1) 1

2 6 (=)

F

≤#
⊥

[H≤# , (N⊥ + 1) 1
2

]
6 (=)


F

≤#
⊥

≤ ℭ
(���� (=)

0

��� + # 1
3 + 3

1
2

) 〈
6 (=) , (N⊥ + 1)1 6 (=)

〉
F⊥

(4.50)

by Lemma 5.2b and since 6 (=) ∈ E (=) . Iterating over 1 concludes the proof. �

5. Proofs

In the remainder of the paper, we abbreviate

‖·‖F⊥ ≡ ‖·‖ , 〈·, ·〉F⊥ ≡ 〈·, ·〉 , ‖·‖L(F⊥) ≡ ‖·‖op , TrF⊥ ≡ Tr.

We will always assume that Assumptions 1, 2 and 3 are satisfied.

5.1. Asymptotic expansion of P(=)

5.1.1. Proof of Lemma 3.13

Recall that H = H< + H>, by equation (3.39), hence

1

I − H =
1

I − H<

(
I − H + H>) 1

I − H =
1

I − H<
+ 1

I − H<
H> 1

I − H . (5.1)

Next, we prove by induction over 0 ∈ N0 that

1

I − H<
=

1

I − H0

0∑
ℓ=0

_
ℓ
2

#Tℓ (I) + _
0+1

2

#

1

I − H<

0∑
a=0

Ra
1

I − H0

T0−a (I), (5.2)
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where

Tℓ (I) =
ℓ∑

a=1

Ha
1

I − H0

T0−a (I), T0 (I) = 1. (5.3)

Base case. Proposition 3.12 implies that

H< = H0 + _
1
2

#R0, (5.4)

hence

1

I − H<
=

1

I − H<

(
I − H< + _

1
2

#R0

)
1

I − H0

=
1

I − H0

+ _
1
2

#

1

I − H<
R0

1

I − H0

. (5.5)

Induction step. Assume equation (5.2) holds for 0 − 1 ∈ N. Since

H< =

a∑
9=0

_
9

2

#H 9 + _
a+1

2

# Ra =

a∑
9=0

_
9

2

#H 9 + _
a+1

2

# Ha+1 + _
a+2

2

# Ra+1, (5.6)

it follows that

Ra = Ha+1 + _
1
2

#Ra+1, (5.7)

hence we conclude with equation (5.5) and by the induction hypothesis that

1

I − H<
=

1

I − H0

0−1∑
ℓ=0

_
ℓ
2

#Tℓ (I)

+ _
0
2

#

1

I − H<

0−1∑
a=0

(
Ha+1 + _

1
2

#Ra+1

)
1

I − H0

T0−a−1(I)

=
1

I − H0

0−1∑
ℓ=0

_
ℓ
2

#Tℓ (I) + _
0
2

#

1

I − H0

0−1∑
a=0

Ha+1

1

I − H0

T0−a−1(I)

+ _
0+1

2

#

1

I − H<
R0

1

I − H0

0−1∑
a=0

Ha+1

1

I − H0

T0−a−1(I)

+ _
0+1

2

#

1

I − H<

0−1∑
a=0

Ra+1

1

I − H0

T0−a−1(I)

=
1

I − H0

0∑
ℓ=0

_
ℓ
2

#Tℓ (I)

+ _
0+1

2

#

1

I − H<

(
R0

1

I − H0

T0 +
0−1∑
a=0

Ra+1
1

I − H0

T0−a−1(I)
)

=
1

I − H0

0∑
ℓ=0

_
ℓ
2

#Tℓ (I) + _
0+1

2

#

1

I − H<

0∑
a=0

Ra
1

I − H0

T0−a (I), (5.8)
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which concludes the induction. Finally, we rewrite T0 (I) as

T0 (I) =
0∑

91=1

H 91

1

I − H0

T0− 91 (I)

=

0∑
91=1

0− 91∑
92=1

H 91

1

I − H0

H 92

1

I − H0

T0−( 91+ 92) (I)

=

0∑
a=1

∑
j∈Na

| j |=0

H 91

1

I − H0

···H 9a

1

I − H0

T0(I), (5.9)

which concludes the proof. �

5.1.2. Proof of Proposition 3.14

Let = ∈ N0. The expansion of the resolvent from Lemma 3.13 yields

P(=) = P(=)
0

+
0∑

ℓ=1

_
ℓ
2

#

ℓ∑
a=1

∑
j∈Na

| j |=ℓ

A
(=)
j

+ _
0+1

2

#

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

B
(=)
j

+ C(=) , (5.10)

where

A
(=)
j

:=
1

2ci

∮
W (=)

1

I − H0

H 91

1

I − H0

H 92

1

I − H0

···H 9a

1

I − H0

dI, (5.11)

B
(=)
j

:=
1

2ci

∮
W (=)

1

I − H<
Ra

1

I − H0

H 91

1

I − H0

···H 9<

1

I − H0

dI, (5.12)

C(=) :=
1

2ci

∮
W (=)

1

I − H<
H> 1

I − H dI. (5.13)

Computation of A
(=)
j

. We decompose 1 = P
(=)
0

+ Q(=)
0

in each term in definition (5.11) and sort

according to the number of projections Q
(=)
0

, which takes the values : = 0, ..., a + 1. This yields

A
(=)
j

=

a+1∑
:=0

∑
m∈{0,1}a+1

|m |=:

1

2ci

∮
W (=)

1(
I − � (=)

0

)a+1−: Õ
(=)
<1

(I)H 91 ···Õ
(=)
<a

(I)H 9a Õ
(=)
<a+1

(I) dI

=:

a+1∑
:=0

Ã
(=)
:, j
, (5.14)

where we abbreviate

Õ
(=)
0

(I) := P
(=)
0
, Õ

(=)
1

(I) :=
Q

(=)
0

I − H0

. (5.15)

Observe first that the contributions with exclusively P
(=)
0

(: = a + 1) or exclusively Q
(=)
0

(: = 0) vanish:
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in case of only P
(=)
0

,

Ã
(=)
0, j

=
1

2ci

©«
∮
W (=)

1(
I − � (=)

0

)a+1
dI

ª®®¬
P
(=)
0
H 91P

(=)
0

···P(=)
0
H 9aP

(=)
0

= 0, (5.16)

and in case of only Q
(=)
0

, the integrand is holomorphic in the area enclosed by W (=) , hence Ã
(=)
a+1, j

= 0.

For 1 ≤ : ≤ a, the integrand in Ã
(=)
:, j

has a pole of order a + 1 − : at I = �
(=)
0

, hence the residue

theorem implies that

Ã
(=)
:, j

=
∑

m∈{0,1}a+1

|m |=:

1

(a − :)! lim
I→�

(=)
0

da−:

dIa−:

(
Õ

(=)
<1

(I)H 91 ···Õ
(=)
<a

(I)H 9a Õ
(=)
<a+1

(I)
)
. (5.17)

Let us consider the case where < 9 = 1 for 9 = 1, ..., : and < 9 = 0 for 9 = : + 1, ..., a + 1. By the

Leibniz rule and since

d<

dI<
Õ

(=)
1

(I)
����
I=�

(=)
0

= (−1)<<!O
(=)
<+1

(5.18)

with O
(=)
:

and O
(=)
0

as in definition (3.8), that is,

O
(=)
0

= −P(=)
0
, O

(=)
:

=
Q

(=)
0(

�
(=)
0

− H0

) : , (5.19)

we obtain for this case

1

(a − :)! lim
I→�

(=)
0

da−:

dIa−:

(
Õ

(=)
1

(I)H 91 ···Õ
(=)
1

(I)
)
H 9:P

(=)
0
H 9:+1

···P(=)
0
H 9aP

(=)
0

=
1

(a − :)!
∑
m∈N:

0

|m |=a−:

(
a − :
m

) (
d<1

dI<1
Õ

(=)
1

(I)
����
I=�

(=)
0

)
H 91 ···

···
(

d<:

dI<:
Õ

(=)
1

(I)
����
I=�

(=)
0

)
H 9:P

(=)
0
H 9:+1

···P(=)
0
H 9aP

(=)
0

= −
∑
m∈N:

0

|m |=a−:

O
(=)
<1+1
H 91 ···O

(=)
<:+1
H 9:O

(=)
0
H 9:+1

···O(=)
0
H 9aO

(=)
0

= −
∑
m∈N:

|m |=a

O
(=)
<1
H 91 ···O

(=)
<:
H 9:O

(=)
0
H 9:+1

···O(=)
0
H 9aO

(=)
0
. (5.20)

The other contributions to Ã
(=)
:, j

are related to equation (5.20) through permutations, hence

Ã
(=)
:, j

= −
∑

m∈N:×{0}a−:+1

|m |=a

O
(=)
<1
H 91 ···O

(=)
<a
H 9aO

(=)
<a+1

(5.21)
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and consequently

A
(=)
j

=

a∑
:=1

Ã
(=)
:, j

= −
∑

m∈Na+1
0

|m |=a

O
(=)
<1
H 91 ···O

(=)
<a
H 9aO

(=)
<a+1

. (5.22)

Computation of B
(=)
j

. Decomposing the first identity in definition (5.12) as 1 = P(=) + Q(=) , we note

that the term with P(=) yields B
(=)
% . For the term with Q(=) , we decompose in each resolvent of H0 the

identity as 1 = P
(=)
0

+Q(=)
0

. Note that the term containing exclusively Q(=) and Q
(=)
0

vanishes, since the

integrand has no poles in the area enclosed by W (=) .

Computation of C(=) . Recall that P(=) projects onto a subspace of F≤#
⊥ ⊕ 0, hence

P(=)H> = H>P(=) = 0. (5.23)

Consequently, decomposing both identities in C(=) yields

C(=) =
1

2ci

∮
W (=)

Q(=)

I − H<
H> Q

(=)

I − H dI = 0, (5.24)

since the integrand is holomorphic in the area enclosed by W (=) .

5.2. Auxiliary estimates

5.2.1. Preliminaries

In this section, we collect some preliminary estimates. First, we provide bounds for second-quantised

<-body operators; subsequently, we estimate K 9 , H 9 and R 9 as well as commutators of N⊥ with H≤#
and H.

Lemma 5.1. Let< ∈ N and let$ (<) be an operator onℌ<. Assume that there exist constants 21, 22 ≥ 0

such that

$ (<)k
2

ℌ<
≤ 21


<∑
9=1

)9k


2

ℌ<

+ 22 ‖k‖2
ℌ< (5.25)

for any k ∈ D

(∑<
9=1 )9

)
and with ) as in definition (2.2).

(a) Let k ∈ ℌ<. Then

$ (<)k
2

ℌ<
≤ 221


<∑
9=1

ℎ 9k


2

ℌ<

+ 223 ‖k‖2
ℌ< , (5.26)

where 23 = ℭ21<
2 + 22

2
.

(b) Let : ≥ < and k ∈ ℌ:
sym. Then


<∑
9=1

ℎ 9k


2

ℌ:

≤ <

:


:∑
9=1

ℎ 9k


2

ℌ:

. (5.27)
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(c) Let : ≥ <. Then it follows for k: ∈ ℌ:
sym that


∑

1≤ 91< · · ·< 9<≤:
$

(<)
91 ,..., 9<

k:


2

ℌ:

≤
(
:

<

)2 ©«
221<

:


:∑
9=1

ℎ 9k:


2

ℌ:

+ 223 ‖k: ‖2
ℌ:

ª®®¬
. (5.28)

Proof. Part (a) follows since ℎ 9 = )9 +
(
E ∗ i2

) (
G 9

)
− `H and by inequality (2.5), because

$ (<)k
2

ℌ<
≤ 21

©«


<∑
9=1

ℎ 9k


ℌ<

+


<∑
9=1

(
E ∗ i2

(
G 9

)
− `H

)
k


ℌ<

ª®®¬

2

+ 22 ‖k‖2
ℌ<

≤ 221


<∑
9=1

ℎ 9k


2

+
(
221ℭ<

2 + 22

)
‖k‖2

ℌ< . (5.29)

For part (b), the permutation symmetry of k leads to the estimate


<∑
9=1

ℎ 9k


2

ℌ:

= < 〈k, ℎ1ℎ1k〉ℌ: + <(< − 1) 〈k, ℎ1ℎ2k〉ℌ:

=
<

:

:∑
9=1

〈
k, ℎ 9ℎ 9k

〉
ℌ: +

<(< − 1)
: (: − 1)

∑
1≤ 9 ,ℓ≤:

≠ 9

〈
k, ℎ 9ℎℓk

〉
ℌ:

≤ <

:

∑
1≤ 9 ,ℓ≤:

〈
k, ℎ 9ℎℓk

〉
ℌ: , (5.30)

since < ≤ : and ℎ ≥ 0. For part (c), we obtain with parts (a) and (b)

$ (<)
1,...,<

k:

2

ℌ:
≤ 221<

:


:∑
9=1

ℎ 9k:


2

ℌ:

+ 223 ‖k: ‖2
ℌ: , (5.31)

which proves the claim since


∑

1≤ 91< · · ·< 9<≤:
$

(<)
91 ,..., 9<

k:


2

ℌ:

≤ ©«
∑

1≤ 91< · · ·< 9<≤:

$ (<)
91 ,..., 9<

k:

ª®¬
2

. �

In the next lemma, we collect bounds for the operators K1 to K4 from definition (2.41):

Lemma 5.2. Let 5 ∈ F⊥.
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(a) For K
(∗)
9 ∈

{
K 9 ,K

∗
9

}
,

‖K15‖ ≤ ℭ ‖(N⊥ + 1)5‖ , (5.32a)K(∗)
2

5

 ≤ ℭ ‖(N⊥ + 1)5‖ , (5.32b)K(∗)
3

5

 ≤ ℭ

(N⊥ + 1) 3
2 5

 , (5.32c)

‖K45‖ ≤ ℭ

((N⊥ + 1)25
 +

K 1
2

0
(N⊥ + 1) 3

2 5


)

(5.32d)

≤ ℭ
((N⊥ + 1)25

 + H0 (N⊥ + 1) 3
2 5

) . (5.32e)

(b) Let ℓ ≥ 0. Then

[H≤# , (N⊥ + 1)ℓ
]
5

F

≤#
⊥

≤ 3ℓℭ
(N⊥ + 1)ℓ5


F

≤#
⊥
, (5.33a)[H0, (N⊥ + 1)ℓ

]
5
 ≤ 3ℓℓℭ

(N⊥ + 1)ℓ5
 . (5.33b)

Proof. Part (a). Since ‖ ‖ℌ→ℌ ≤ ‖ ‖HS ≤ ℭ by the estimate (2.6), and as inequalities (2.3) and (2.5)

imply that

‖ 3k‖ℌ2
⊥
≤ ‖E(G1 − G2)i(G1)k(G2)‖ℌ2

⊥
+

(E ∗ i2
)
(G1)i(G1)k(G2)


ℌ2
⊥
≤ ℭ ‖k‖ (5.34)

for any k ∈ ℌ⊥, the bounds for K1, K
(∗)
2

and K
(∗)
3

follow from Lemma 4.1. Finally, note that

K4 = dΓ⊥ (E) − dΓ⊥
(
 ̃4

)
, (5.35)

where  ̃4 denotes the multiplication operator on ℌ⊥ ⊗ ℌ⊥ corresponding to

 ̃4(G1, G2) :=
(
E ∗ i2

)
(G1) +

(
E ∗ i2

)
(G2) −

〈
i, E ∗ i2i

〉
. (5.36)

As before, the bound (2.5) and Lemma 4.1 imply that

dΓ⊥ (
 ̃4

)
5

 ≤ ℭ
(N⊥ + 1)25

 . Moreover,

〈
k, |E(G1 − G2) |2k

〉
ℌ: ≤ ℭ

(
‖k‖2

ℌ: + 〈k, ℎ1k〉ℌ: +
E ∗ i2 − `H


∞ ‖k‖2

ℌ:

)

≤ ℭ
©«
‖k‖2

ℌ: +
1

:

〈
k,

:∑
9=1

ℎ 9k

〉
ℌ:

ª®¬
(5.37)

for k ∈ ℌ: by inequalities (2.4) and (2.5); hence it follows from Lemmas 4.1 and 5.1c that

‖dΓ⊥(E)5‖2 ≤
∑
:≥0


∑

1≤8< 9≤:
E
(
G8 − G 9

)
q (:)


2

ℌ:
⊥

≤ ℭ

(∑
:≥0

: (: − 1)2
〈
q (:) ,K0q

(:)
〉
ℌ:

+
(N⊥ + 1)25

2

)

≤ ℭ

(K 1
2

0
(N⊥ + 1) 3

2 5


2

+
(N⊥ + 1)25

2

)
, (5.38)
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where we used the fact that dΓ⊥(ℎ) = K0. Moreover, K
1
2

0
≤ 1 + K0 = 1 + H0 − K1 − K2 − K∗

2
implies

K 1
2

0
(N⊥ + 1) 3

2 5


2

≤
(H0 + 1) (N⊥ + 1) 3

2 5

2

+
���〈(N⊥ + 1) 3

2 5,K1(N⊥ + 1) 3
2 5

〉���
+ 2

���〈(N⊥ + 1) 3
2 5,K2(N⊥ + 1) 3

2 5
〉���

≤ ℭ
(H0 (N⊥ + 1) 3

2 5

 + (N⊥ + 1)25
)2

, (5.39)

where we used the fact that
��〈5,K 95

〉�� ≤ ℭ

(N⊥ + 1) 1
2 5

2

for 9 = 1, 2 by the estimate (2.6).

Part (b). Since [K0,N⊥] = [K1,N⊥] = [K4,N⊥] = 0, equation (2.40) implies that[
H≤# , (N⊥ + 1)ℓ

]
=

[
K2, (N⊥ + 1)ℓ

]
6N⊥ + 6N⊥

[
K∗

2, (N⊥ + 1)ℓ
]

+
[
K3, (N⊥ + 1)ℓ

]
6̃N⊥ + 6̃N⊥

[
K∗

3, (N⊥ + 1)ℓ
]
, (5.40)

where 6N⊥ :=

√
[ (#−N⊥) (#−N⊥−1) ]+

#−1
and 6̃N⊥ :=

√
[#−N⊥ ]+
#−1

. For # ≥ 2,

6N⊥5

F

≤#
⊥

≤ 2 ‖5‖
F

≤#
⊥
,

6̃N⊥5

F

≤#
⊥

≤ 3(# + 1)− 1
2 ‖5‖

F
≤#
⊥
. (5.41)

By equation (4.1), we find that

[
K2, (N⊥ + 1)ℓ

]
= −K2

(
(N⊥ + 3)ℓ − (N⊥ + 1)ℓ

)
, (5.42)

and analogously for K∗
2
, K3 and K∗

3
. Since it holds for 0, : ≥ 0 and 2 ≥ 1 that

(: + 0)2 − :2 ≤ 20(: + 0)2−1 ≤ 202 (: + 1)2−1, (5.43)

we conclude with part (a) that

[K2, (N⊥ + 1)ℓ
]
6N⊥5


F

≤#
⊥

≤ ℭ

((N⊥ + 3)ℓ+1 − (N⊥ + 1)ℓ+1
)
6N⊥5


F

≤#
⊥

≤ 3ℓℭ
(N⊥ + 1)ℓ5


F

≤#
⊥
, (5.44)

[K3, (N⊥ + 1)ℓ
]
6̃N⊥5


F

≤#
⊥

≤ 3ℓℓℭ


(
N⊥ + 1

# + 1

) 1
2

(N⊥ + 1)ℓ5

F

≤#
⊥

≤ 3ℓℓℭ
(N⊥ + 1)ℓ5


F

≤#
⊥
, (5.45)

and similarly for K∗
2

and K∗
3
. The proof for H0 works analogously. �

Next, we observe that the operators H 9 and R 9 can be bounded in terms of N⊥ and H0, which follows

immediately from Lemma 5.2a:

Lemma 5.3. Let 5 ∈ F⊥ and 1 ≥ 0.

(a) For any 9 ∈ N, it holds that(N⊥ + 1)1H 95


≤ ℭ(1 + 9)
((N⊥ + 1)1+

9

2
+15

 + (N⊥ + 1)1H0 (N⊥ + 1) 3
2 5

) . (5.46)
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(b) Further,

(N⊥ + 1)1R(1)
0

5

 ≤ ℭ(1)
((N⊥ + 1)1+ 3

2 5


+_

1
2

#

(N⊥ + 1)1+25
) , (5.47a)

(N⊥ + 1)1R05
 ≤ ℭ(1)

((N⊥ + 1)1+ 3
2 5

 + _ 1
2

#

(N⊥ + 1)1+25


+_
1
2

#

(N⊥ + 1)1H0(N⊥ + 1) 3
2 5


)
, (5.47b)

(N⊥ + 1)1R15
 ≤ ℭ(1)

((N⊥ + 1)1+25
 + _ 1

2

#

(N⊥ + 1)1+ 5
2 5


+

(N⊥ + 1)1H0 (N⊥ + 1) 3
2 5

) , (5.47c)

and for any 9 ∈ N0,

(N⊥ + 1)1R 95
 ≤ ℭ(1, 9)

((N⊥ + 1)1+
9+3
2 5

 + _ 1
2

#

(N⊥ + 1)1+
9+4
2 5


+
(N⊥ + 1)1H0(N⊥ + 1) 3

2 5

) . (5.48)

5.2.2. Bound for A
(<)
red

In this section, we show that A
(<)
red

as in definition (3.57) is bounded in terms of H0 and N⊥.

Lemma 5.4. For �(<) satisfying the bound (3.11) and the corresponding operator A
(<)
red

as in defini-

tion (3.57), it holds that

A(<)
red

5

 ≤ ℭ(<)#− 1
2 (‖(N⊥ + 1)5‖ + ‖H05‖) . (5.49)

Proof. In the following, we abbreviate

k# := *∗
# ,i5.

Decomposing 1 = ? 91 ···? 9< + (1 − ? 91 ···? 9< ) and observing that

? 91 ···? 9<�
(<)
91 ,..., 9<

? 91 ···? 9< = 〈�〉 (<) ? 91 ···? 9< (5.50)

yields

A(<)
red

5

 ≤
(#
<

)−1

〈�〉 (<)
∑

1≤ 91< · · ·< 9<≤#

(
1 − ? 91 ···? 9<

)
k#


ℌ#

(5.51a)

+
(#
<

)−1


∑

1≤ 91< · · ·< 9<≤#
�
(<)
91 ,..., 9<

(
1 − ? 91 ···? 9<

)
k#


ℌ#

(5.51b)

+
(#
<

)−1


∑

1≤ 91< · · ·< 9<≤#

(
1 − ? 91 ···? 9<

)
�
(<)
91 ,..., 9<

? 91 ···? 9<k#


ℌ#

. (5.51c)
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To estimate the contributions in inequality (5.51), observe first that

�(<)i⊗<

ℌ<

≤ ℭ (5.52)

by Lemma 5.1a, because ℎi = 0. Further, it was shown in [10, Lemma 3.2] that

‖@1 ···@ℓk# ‖ℌ# ≤
(
#−ℓ + 2ℓ#−ℓ 〈

5,Nℓ
⊥5

〉
F

≤#
⊥

) 1
2 ≤ #− 1

2 2
ℓ
2

(N⊥ + 1) 1
2 5


F

≤#
⊥

(5.53)

for ℓ ∈ {1, ..., #}, because N⊥
# ≤ 1 as operator on F≤#

⊥ . Hence, by the permutation symmetry of k# ,

it holds that

(5.51a) ≤ ℭ ‖(1 − ?1 ···?<)k# ‖ℌ#

≤ ℭ

<∑
ℓ=1

(
<

ℓ

)
‖@1 ···@ℓ ?ℓ+1 ···?<k# ‖ℌ#

≤ ℭ(<)#− 1
2

(N⊥ + 1) 1
2 5


F

≤#
⊥
. (5.54)

For expression (5.51b), Lemma 5.1a implies

(5.51b) ≤
�(<)

1,...,<
(1 − ?1 ···?<)k#


ℌ#

≤ ℭ
©«


<∑
9=1

ℎ 9 (1 − ?1 ···?<)k#


ℌ#

+ ‖(1 − ?1 ···?<)k# ‖ℌ#

ª®®¬
≤ ℭ(<)

©«


<∑
9=1

ℎ 9k#


ℌ#

+ #− 1
2

(N⊥ + 1) 1
2 5


F

≤#
⊥

ª®®¬
, (5.55)

since ℎ 9 = @ 9ℎ 9@ 9 and @ 9 (1 − ?1 ···?<) = @ 9 . For the first term, Lemma 5.1b yields


<∑
9=1

ℎ 9k#


ℌ#

≤
√
<

#


#∑
9=1

ℎ 9k#

 ≤ ℭ(<)#− 1
2

(
‖H05‖F≤#

⊥
+ ‖(N⊥ + 1)5‖

F
≤#
⊥

)
, (5.56)

because ℎi = 0 implies that K0 = dΓ⊥(ℎ) = *∗
# ,iK0*# ,i and, by Lemma 5.2a,

‖H05‖F⊥ ≥ ‖K05‖ − ℭ ‖(N⊥ + 1)5‖F⊥ . (5.57)
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Finally, for < ≪ # ,

( (#
<

)
(5.51c)

)2

=
(#
<

) ∑
1≤ 91< · · ·< 9<≤#

〈
k# , ?1 ···?<�(<)

1,...,<
(1 − ?1 ···?<)

(
1 − ? 91 ···? 9<

)

× �
(<)
91 , ... , 9< ? 91 ···? 9<k#

〉
ℌ#

=
(#
<

) <∑
ℓ=0

(#−<
ℓ

) (<
ℓ

) 〈
k# , ?1 ···?<�(<)

1,...,<
(1 − ?1 ···?<) (1 − ?ℓ+1 ···?ℓ+<)

× �
(<)
ℓ+1,...,ℓ+<?ℓ+1 ···?ℓ+<k#

〉
ℌ#

≤
(#
<

) <−1∑
ℓ=0

(#−<
ℓ

) (<
ℓ

) �(<)
1,...,<

i⊗<
2

ℌ<
‖5‖2

F
≤#
⊥

+
(#
<

) (#−<
<

) 〈
k# , ?1 ···?<�(<)

1,...,<
(1 − ?1 ···?<) (1 − ?<+1 ···?2<)

× �
(<)
<+1, ... ,2<?<+1 ···?2<k#

〉
ℌ#

≤ ℭ(<)
(#
<

)2
#−1

(
‖5‖2

F
≤#
⊥

+
(N⊥ + 1) 1

2 5

2

F
≤#
⊥

)
, (5.58a)

where we use the facts that

(#
<

) <−1∑
ℓ=0

(#−<
ℓ

) (<
ℓ

)
≤ <2<

(#
<

)2

(#−<
<−1

)
(#
<

) ≤ ℭ(<)
(#
<

)2
#−1 (5.59)

and 〈
k# , ?1 ···?<�(<)

1,...,<
(1 − ?1 ···?<) (1 − ?<+1 ···?2<)�(<)

<+1, ... ,2<?<+1 ···?2<k#

〉
ℌ#

=
〈
(1 − ?<+1 ···?2<)k# , ?1 ···?<�(<)

1,...,<
�
(<)
<+1,...,2<

?<+1 ···?2<

× (1 − ?1 ···?<)k# 〉ℌ#

≤
�(<)

1,...,<
i⊗<

2

ℌ<
‖(1 − ?1 ···?<)k# ‖2

ℌ#

≤ ℭ(<)
(
#− 1

2

(N⊥ + 1) 1
2 5


F

≤#
⊥

)2

(5.60)

as in estimate (5.54). �

5.2.3. Resolvent estimates

Lemma 5.5. Let

I(=) ∈
{
1, P

(=)
0
,Q

(=)
0

}
and I ∈ W (=) .

(a) It holds that  I(=)I − H0


L(F⊥)

≤ ℭ(=), (5.61a)
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and for sufficiently large # ,  1

I − H<


L(F⊥)

≤ ℭ(=). (5.61b)

(b) Let 1 ≥ 0. Then

(N⊥ + 1)1+1 I
(=)

I − H0

5

 ≤ ℭ(=, 1)
(N⊥ + 1)15

 , (5.62a)(N⊥ + 1)1H0
I(=)

I − H0

5

 ≤ ℭ(=, 1)
(N⊥ + 1)15

 . (5.62b)

Proof. By definition (3.33) of g (=) , it follows that

inf
I∈W (=)

_∈f (H0)

|I − _ | = min
{���I − � (=)

0

��� , ���I − � (=−1)
0

��� , ���I − � (=+1)
0

���} = g (=) , (5.63)

which implies the first part of (a), and the second part follows with Lemma 4.8a. For part (b), recall that

there exists a Bogoliubov transformation UV0
diagonalising H0 (Lemma 4.7a), hence

[
U∗
V0

(N⊥ + 1)UV0
,H0

]
= 0,

[
UV0

I(=)

I − H0

U∗
V0
,N⊥

]
= 0. (5.64)

As a consequence, Lemma 4.7e implies that

U∗
V0

(N⊥ + 1):UV0
≤ ℭ:

(
H0 − � (0)

0
+ 1

) :
, (5.65)

hence

I(=)

I − H0

U∗
V0

(N⊥ + 1)2UV0

I(=)

I − H0

≤ ℭ2

���� I(=)I − H0

����
2 (

|H0 − I | +
���I − � (0)

0
+ 1

���)2

≤ ℭ(=)2, (5.66)

because

���I − � (0)
0

+ 1

��� ≤ ���� (=)
0

��� + g (=) +
���� (0)

0

��� + 1 ≤ ℭ(=). Consequently, Lemma 4.4 leads, for 1 ≥ 1,

to the estimate(N⊥ + 1)1 I
(=)

I − H0

5

 =

(N⊥ + 1)1U∗
V0
UV0

I(=)

I − H0

U∗
V0
UV0

5


≤ ℭ(1)

(N⊥ + 1) (N⊥ + 1)1−1UV0

I(=)

I − H0

U∗
V0
UV0

5


= ℭ(1)

(N⊥ + 1)UV0

I(=)

I − H0

U∗
V0

(N⊥ + 1)1−1UV0
5


≤ ℭ(=, 1)

(N⊥ + 1)1−1UV0
5


≤ ℭ(=, 1)
(N⊥ + 1)1−15

 . (5.67)

The second statement of (b) is a consequence of the triangle inequality, since

H0
I(=)

I − H0

= −I(=) + I I
(=)

I − H0

. �
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5.2.4. Bounds for moments of N⊥ and K4 with respect to P(=)

In this section, we show that moments of N⊥ with respect to both 6 (=) and K46
(=) are bounded

uniformly in # .

Lemma 5.6. Let 6 (=) ∈ E (=) and 1 ≥ 0. Then

(a) 〈
6 (=) , (N⊥ + 1)1 6 (=)

〉
≤ ℭ(=, 1), (5.68)

(b) (N⊥ + 1)1K46
(=)

 ≤ ℭ(=, 1). (5.69)

Proof. Part (a). Proposition 3.14 with 0 = 0 implies that

Tr
(
P(=) (N⊥ + 1)1+1

)
= Tr

(
P
(=)
0

(N⊥ + 1)1+1
)

(5.70a)

+_
1
2

# Tr

(
1

2ci

∮
W (=)

1

I − � (=)
0

Q(=)

I − H<
R0P

(=)
0

(N⊥ + 1)1+1 dI

)
(5.70b)

+_
1
2

# Tr

(
1

2ci

∮
W (=)

P(=)

I − H<
R0

1

I − H0

(N⊥ + 1)1+1 dI

)
. (5.70c)

For the first term, note that (5.70a) ≤ ℭ(=, 1) by Lemma 4.7d. Denoting by
{
6
(=,<)
0

} X (=)
0

<=1
some

orthonormal basis of E
(=)
0

and interchanging trace and integral by Fubini’s theorem, we estimate the

second term as

| (5.70b)|

≤ _
1
2

#g
(=) sup

I∈W (=)

©«
����� 1

I − � (=)
0

�����
X
(=)
0∑

<=1

(N⊥ + 1)1+16
(=,<)
0


 Q(=)

I − H<


op

R06
(=,<)
0

ª®®¬
≤ #− 1

2 ℭ(=, 1) (5.71)

by Lemmas 4.7d, 5.5a, 5.3b and 5.2b and since H06
(=,<)
0

= �
(=)
0

6
(=,<)
0

. Similarly, we find for the last

term

| (5.70c)|

≤ _
1
2

#g
(=) sup

I∈W (=)

a∈ ] (=)

©«
���� 1

I − � (a)

����
X
(=)
0∑

<=1

����
〈
6 (=,<) ,R0

1

I − H0

(N⊥ + 1)1+16 (=,<)
〉����ª®®¬

≤ ℭ(=)#− 1
2

X
(=)
0∑

<=1

����
〈
6 (=,<) ,R(1)

0

1

I − H0

(N⊥ + 1)1+16 (=,<)
〉���� (5.72a)

+ℭ(=)#−1

X
(=)
0∑

<=1

����
〈
6 (=,<) ,K4

1

I − H0

(N⊥ + 1)1+16 (=,<)
〉���� (5.72b)
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for
{
6 (=,<)} X

(=)
0

<=1
some orthonormal basis ofE (=) and forR0 = R

(1)
0

+_
1
2

#K4 as defined in Proposition 3.12.

In expression (5.72a), we obtain the bound

����
〈
6 (=,<) , (N⊥ + 1)1+1 1

I − H0

R
(1)
0

6 (=,<)
〉����

≤
(N⊥ + 1) 1

2 6 (=,<)

(N⊥ + 1) 1

2
+1 1

I − H0

R
(1)
0

6 (=,<)


≤ ℭ(=, 1)
(N⊥ + 1) 1

2 6 (=,<)
 ((N⊥ + 1) 1+3

2 6 (=,<)


+ #− 1
2

(N⊥ + 1) 1+4
2 6 (=,<)

) (5.73)

by Lemmas 5.5b and 5.3b. Since

(N⊥ + 1) 1+ℓ
2 6 (=,<)

 ≤ ℭ(=, 1 + ℓ)# ℓ
6

(N⊥ + 1) 1
2 6 (=,<)

 (5.74)

for all ℓ ∈ N0 by Lemma 4.8c, it follows that

(5.72a) ≤ ℭ(=, 1)
(N⊥ + 1) 1

2 6 (=,<)
2

. (5.75)

Since [K4,N⊥] = 0, the sum in expression (5.72b) can be estimated as

����
〈
6 (=,<) ,K4

1

I − H0

(N⊥ + 1)1+16 (=,<)
〉����

≤
(N⊥ + 1) 1

2 6 (=,<)

K4(N⊥ + 1)− 1

2
1

I − H0

(N⊥ + 1)1+16 (=,<)


≤ ℭ

(N⊥ + 1) 1
2 6 (=,<)


(H0 (N⊥ + 1) 3−1

2
1

I − H0

(N⊥ + 1)1+16 (=,<)


+
(N⊥ + 1)2− 1

2
1

I − H0

(N⊥ + 1)1+16 (=,<)

)

≤ #
5
6 ℭ(=, 1)

(N⊥ + 1) 1
2 6 (=,<)

2

(5.76a)

+ ℭ(=, 1)
(N⊥ + 1) 1

2 6 (=,<)

(N⊥ + 1)2− 1

2
1

I − H0

(N⊥ + 1)1+16 (=,<)
 , (5.76b)

where we use Lemmas 5.2a and 5.5b, the bound (5.74) and the fact that

H0 (N⊥ + 1) 3−1
2

1

I − H0

5


≤

(N⊥ + 1) 3−1
2 5

 +

[
H0, (N⊥ + 1) 3−1

2

] 1

I − H0

5


+ |I |

(N⊥ + 1) 3−1
2

1

I − H0

5


≤ ℭ(=, 1)

((N⊥ + 1) 3−1
2 5

 +
(N⊥ + 1) 3−1

2
1

I − H0

5


)

(5.77)
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by Lemma 5.2b. To control expression (5.76b), we prove by induction that(N⊥ + 1)2− 1
2

1

I − H0

(N⊥ + 1)1+15


≤ ℭ(=, 1)

(N⊥ + 1) 1
2 5

1−( 1
2
):

(N⊥ + 1)− 1
2
+2:+1 1

I − H0

(N⊥ + 1)1+15


( 1

2
): (5.78)

for all : ∈ N0. The base case : = 0 is obvious. Now assume that inequality (5.78) holds for some

: ∈ N0. Then (N⊥ + 1)2− 1
2

1

I − H0

(N⊥ + 1)1+15


≤ ℭ(=, 1)

(N⊥ + 1) 1
2 5

1−( 1
2
):

〈
(N⊥ + 1) 1

2 5, (N⊥ + 1) 1
2
+1 1

I − H0

× (N⊥ + 1)−1+2:+2 1

I − H0

(N⊥ + 1)1+15

〉 ( 1
2
):+1

≤ ℭ(=, 1)
(N⊥ + 1) 1

2 5

1−( 1
2
):+1

×
(N⊥ + 1)− 1

2
+2:+2 1

I − H0

(N⊥ + 1)1+15


( 1

2
):+1

(5.79)

by Lemma 5.5b. Now choose : in inequality (5.78) such that 2:+2 ≥ 1 + 2; then − 1
2
+ 2:+1 ≥ 1 and

consequently (N⊥ + 1)− 1
2
+2:+1 1

I − H0

(N⊥ + 1)1+15


≤ ℭ(=, 1)

(N⊥ + 1) 1+2:+2

2 5


( 1

2 ):

≤ ℭ(=, 1)# 2
3

(N⊥ + 1) 1
2 6 (=,<)

 1

2:

(5.80)

by Lemma 5.5b and inequality (5.74). In summary,

Tr
(
P(=) (N⊥ + 1)1+1

)
≤ ℭ(=, 1)

(N⊥ + 1) 1
2 6 (=,<)

2

. (5.81)

Finally, we prove the lemma via the following bootstrap argument:

(1) Lemma 4.8c implies that

(N⊥ + 1) 1
2 6 (=,<)

 ≤ ℭ(=)
(5.81)
=====⇒ Tr

(
P(=) (N⊥ + 1)2

)
≤ ℭ(=). (5.82)

(2) By step (1), (N⊥ + 1)6 (=,<)
 ≤ ℭ(=)

(5.81)
=====⇒ Tr

(
P(=) (N⊥ + 1)3

)
≤ ℭ(=). (5.83)

(b) By step (1 − 1),
(N⊥ + 1) 1

2 6 (=,<)
 ≤ ℭ(=, 1)

(5.81)
====⇒ Tr

(
P(=) (N⊥ + 1)1+1

)
≤ ℭ(=, 1). (5.84)
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Part (b). Define

K−
4 := K4

��
F

≤#
⊥

⊕ 0.

By Lemma 5.2a and Assumption 3, there exists a constant 2 such that

(N⊥ + 1)1K−
4 5

2

=
(N⊥ + 1)1K45

2

F
≤#
⊥

≤ ℭ
((N⊥ + 1)1+25

2

F
≤#
⊥

+
〈
(N⊥ + 1)1+25, dΓ⊥(ℎ) (N⊥ + 1)1+25

〉
F

≤#
⊥

)
≤ ℭ

((N⊥ + 1)1+25
2

+
〈
(N⊥ + 1)1+25,

(
H≤# + 2# 1

3

)
(N⊥ + 1)1+25

〉
F

≤#
⊥

)

≤ ℭ

(
#

1
6

(N⊥ + 1)1+25


+
���〈5, (N⊥ + 1)1+2H≤# (N⊥ + 1)1+25

〉
F

≤#
⊥

��� 1
2

)2

. (5.85)

In particular, this implies that

(N⊥ + 1)1K46
(=)

 = (N⊥ + 1)1K−
4 6

(=)
 ≤ ℭ(=, 1)# 1

6 (5.86)

by part (a) and Lemma 5.2b. To improve this a priori bound, we apply a similar argument to the

bootstrapping in part (a). As in equation (5.70),

Tr
(
P(=) (N⊥ + 1)21K2

4

)
= Tr

(
P(=) (N⊥ + 1)21 (

K−
4

)2
)

= Tr
(
P
(=)
0

(N⊥ + 1)21 (K−
4 )2

)
(5.87a)

+ _
1
2

#Tr

(
1

2ci

∮
W (=)

1

I − � (=)
0

Q(=)

I − H<
R0P

(=)
0

(N⊥ + 1)21 (K−
4 )2 dI

)
(5.87b)

+ _
1
2

#Tr

(
1

2ci

∮
W (=)

P(=)

I − H<
R0

1

I − H0

(N⊥ + 1)21 (K−
4 )

2 dI

)
. (5.87c)

Since
[
K−

4
,N⊥

]
= 0, Lemma 5.2a implies for the first term that

(5.87a) =

X
(=)
0∑

<=1

K4 (N⊥ + 1)1 6 (=,<)
0

2

F
≤#
⊥

≤ ℭ(=, 1). (5.88)

In expression (5.87b), this leads – for I ∈ W (=) and 6
(=,<)
0

∈ E
(=)
0

– to

#− 1
2

����
〈
K−

4 (N⊥ + 1)21+26
(=,<)
0

,K−
4 (N⊥ + 1)−2 Q

(=)

I − H<
R06

(=,<)
0

〉����
≤ ℭ#− 1

2

(N⊥ + 1)21+46
(=,<)
0
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× ©«
#

1
6

 Q(=)

I − H<
R06

(=,<)
0

 +
����
〈
Q(=)

I − H<
R06

(=,<)
0

,H< Q
(=)

I − H<
R06

(=,<)
0

〉����
1
2 ª®¬

≤ ℭ(=, 1)#− 1
3 , (5.89)

where we use Lemmas 5.2a and 5.2b for the left-hand side and equation (5.85) for the right-hand side

of the inner product in the first line, as well as Lemmas 5.5a and 5.3b. Finally, for expression (5.87c),

equation (5.86) and Lemma 5.2a imply that

#− 1
2

����
〈
6 (=,<) ,R0

1

I − H0

(N⊥ + 1)21 (K−
4 )

26 (=,<)
〉����

≤ #− 1
2

(N⊥ + 1)21K46
(=,<)


K4

1

I − H0

R06
(=,<)


≤ ℭ(=, 1)#− 1

3

(N⊥ + 1) 3
2

(
R
(1)
0

+ _
1
2

#K
−
4

)
6 (=,<)

 ≤ ℭ(=, 1)#− 1
3 (5.90)

by definition (3.46a) of R0 and by part (a). In summary, we find

TrP(=) (N⊥ + 1)21K2
4 =

X
(=)
0∑

<=1

(N⊥ + 1)1K46
(=,<)

2

≤ ℭ(=, 1). �

5.3. Proof of the main results

In the following, we consider

A ∈
{
A

(<)
red
,1

}

for 9 ∈ N0. By Lemma 5.4, A satisfies

‖A5‖ ≤ ℭ#U (‖(N⊥ + 1)5‖ + ‖H05‖) (5.91)

for

U =

{
− 1

2
if A = A

(<)
red
,

0 if A = 1.
(5.92)

5.3.1. Proof of Theorem 1

Recall that by Proposition 3.14,

TrAP(=) =
0∑

ℓ=0

_
ℓ
2

# TrAP
(=)
ℓ

+ _
0+1

2

#

(
TrAB

(=)
% (0) + TrAB

(=)
&

(0)
)
,

where

B
(=)
% (0)

=

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

1

2ci

∮
W (=)

P(=)

I − H<
Ra

1

I − H0

H 91

1

I − H0

···H 9<

1

I − H0

dI
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and

B
(=)
&

(0)

=

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

<∑
ℓ=0

∑
k∈{0,1}<+1

|k |=ℓ

1

2ci

∮
W (=)

Q(=)

I − H<
Ra

I
(=)
:1

I − H0

H 91 ···H 9<

I
(=)
:<+1

I − H0

dI

with I
(=)
0

= P
(=)
0

and I
(=)
1

= Q
(=)
0

.

Estimates for B
(=)
% (0).

Let
{
6 (=,ℓ)} X

(=)
0

ℓ=1
denote an orthonormal basis of E (=) such that H6 (=,ℓ) = � (=,ℓ) 6 (=,ℓ) . Consequently,

P(=) =
∑X

(=)
0

ℓ=1

��6 (=,ℓ) 〉 〈
6 (=,ℓ) ��, and interchanging trace and contour integral by Fubini’s theorem yields

���TrAB
(=)
% (0)

��� ≤ ℭ

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

X
(=)
0∑
ℓ=1

∮
W (=)

���� 1

I − � (=,ℓ)

����

×
����
〈
6 (=,ℓ) ,Ra

1

I − H0

H 91 ···H 9<

1

I − H0

A6 (=,ℓ)
〉���� dI. (5.93)

Lemmas 5.3a and 5.5b lead to the estimate

(N⊥ + 1)1H 9
I(=)

I − H0

5

 ≤ ℭ(1, 9)
(N⊥ + 1)1+

9

2
+15

 (5.94)

for I(=) ∈
{
1, P

(=)
0
,Q

(=)
0

}
, hence

����
〈
6 (=,ℓ) ,Ra

1

I − H0

H 91

1

I − H0

···H 9<

1

I − H0

A6 (=,ℓ)
〉����

≤
6 (=,ℓ)


A 1

I − H0

H 9<

1

I − H0

···H 91

1

I − H0

Ra 6
(=,ℓ)


≤ ℭ#U

H 9<

1

I − H0

···H 91

1

I − H0

Ra 6
(=,ℓ)


≤ ℭ(=, 0)#U

(N⊥ + 1) 3
2
(0−a)Ra 6

(=,<)
 ≤ ℭ(=, 0)#U (5.95)

by Lemmas 5.4, 5.3b and 5.6. Here we use the facts that R0 = R
(1)
0

+ _
1
2

#K4 and R1 = R
(1)
1

+ K4, and

apply Lemmas 5.2a and 5.6. In summary, this yields

���TrAB
(=)
% (0)

��� ≤ #Uℭ(=, 0). (5.96)
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Estimates for B
(=)
&

(0).
By the definition of B

(=)
&

, it follows that

���TrAB
(=)
&

(0)
��� ≤ ℭ(=)

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

<∑
ℓ=0

∑
k∈{0,1}<+1

|k |=ℓ

sup
I∈W (=)

������TrA
Q(=)

I − H<
Ra

I
(=)
:1

I − H0

H 91

I
(=)
:2

I − H0

···H 9<

I
(=)
:<+1

I − H0

������ . (5.97)

Each term contains at least one projector P
(=)
0

–that is, there exists some f ∈ {1, ..., < + 1} such that

:f = 0. Decomposing P
(=)
0

=
∑X

(=)
0

`=1

���6 (=,`)
0

〉 〈
6
(=,`)
0

��� for a basis
{
6
(=,`)
0

} X (=)
0

`=1
ofE

(=)
0

as in Lemma 4.7c,

we obtain

������TrA
Q(=)

I − H<
Ra

I
(=)
:1

I − H0

H 91

I
(=)
:2

I − H0

···H 9<

I
(=)
:<+1

I − H0

������
≤ ℭ(=)

X
(=)
0∑
`=1


Q(=)

I − H<
Ra

I
(=)
:1

I − H0

H 91 ···
I
(=)
:f−1

I − H0

H 9f−1
6
(=,`)
0

 (5.98a)

×

A
I
(=)
:<+1

I − H0

H 9<

I
(=)
:<

I − H0

···
I
(=)
:f+1

I − H0

H 9f 6
(=,`)
0

 . (5.98b)

Using estimate (5.94) in combination with Lemmas 5.3 and 5.2b, we find for expression (5.98a)


Q(=)

I − H<
Ra

I
(=)
:1

I − H0

H 91 ···
I
(=)
:f−1

I − H0

H 9f−1
6
(=,`)
0


≤ ℭ(=, 0)

(N⊥ + 1)
a+2f+1+ 91+···+ 9f−1

2 6
(=,`)
0

 (5.99)

analogously to before, and for expression (5.98b)

A
I
(=)
:<+1

I − H0

H 9<

I
(=)
:<

I − H0

···
I
(=)
:f+1

I − H0

H 9f 6
(=,`)
0


≤ #Uℭ(=, 0)

(N⊥ + 1)
9f+1+···+ 9<+2(<−f)

2 H 9f 6
(=,`)
0


≤ #Uℭ(=, 0)

(N⊥ + 1)
9f+···+ 9<+2(<−f+1)

2 6
(=,`)
0

 , (5.100)

since H06
(=,`)
0

= �
(=)
0

6
(=,`)
0

. Combining both estimates yields, with Lemma 4.7d,

���TrAB
(=)
&

(0)
��� ≤ ℭ(=, 0)#U . (5.101)
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5.3.2. Proof of Corollary 3.4

For any bounded operator A ∈ L(F⊥), Proposition 3.14 implies that�����TrAP(=) −
0∑

ℓ=0

_
ℓ
2

#TrAP
(=)
ℓ

����� ≤ _
0+1

2

#

(���TrAB
(=)
% (0)

��� + ���TrAB
(=)
&

(0)
���) , (5.102)

and one infers from the previous section that���TrAB
(=)
% (0)

��� + ���TrAB
(=)
&

(0)
��� ≤ ‖A‖op ℭ(=, 0). (5.103)

Consequently,

Tr

�����P(=) −
0∑

ℓ=0

_
ℓ
2

#P
(=)
ℓ

����� = sup
A compact
‖A‖op=1

�����TrAP(=) −
0∑

ℓ=0

_
ℓ
2

#TrAP
(=)
ℓ

����� ≤ _
0+1

2

# ℭ(=, 0). �

5.3.3. Proof of Theorem 2

Let us abbreviate
∮ ′
W (=) := 1

2ci

∮
W (=) . Note first that

∑
a∈ ] (=)

X
(a)
# � (a) = TrHP(=) = Tr

∮ ′

W (=)

H

I − H dI = Tr

∮ ′

W (=)

I

I − H dI

= �
(=)
0

TrP(=) + Tr

∮ ′

W (=)

I − � (=)
0

I − H dI. (5.104)

Since TrP(=) = X (=)
0

and

∮ ′

W (=)

I − � (=)
0

I − H0

dI = P
(=)
0

∮ ′

W (=)
1 dI +

∮ ′

W (=)

Q
(=)
0

I − H0

(I − � (=)
0

) dI = 0, (5.105)

this implies by Lemma 3.13 that

TrHP(=) = X (=)
0
�

(=)
0

+
0∑

ℓ=1

_
ℓ
2

#

ℓ∑
a=1

∑
j∈Na

| j |=ℓ

Tr

∮ ′

W (=)

1

I − H0

H 91

1

I − H0

···H 9a

I − � (=)
0

I − H0

dI (5.106a)

+ _
0+1

2

#

0∑
a=0

0−a∑
<=1

∑
j∈N<

| j |=0−a

Tr

∮ ′

W (=)

1

I − H<
Ra

1

I − H0

H 91

1

I − H0

···H 9<

I − � (=)
0

I − H0

dI. (5.106b)

For I ∈ W (=) , it holds that

���I − � (=)
0

��� ≤ ℭ; hence the proof of Theorem 1 for A = 1 yields

| (5.106b)| ≤ _
0+1

2

# ℭ(=, 0). (5.107)

Moreover, all half-integer powers of _# in expression (5.106a) vanish by parity: define the unitary map

U% : F → F, U%0
† ( 5 )U% = 0† (− 5 ) = −0† ( 5 ), (5.108)

for any 5 ∈ ℌ. Clearly, U% preserves F⊥ and acts on the operator-valued distributions 0
†
G and 0G

as U%0
†
G U% = −0†G and U%0G U% = −0G . By definition (3.9), H 9 contains an even number of
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creation/annihilation operators for 9 even and an odd number for 9 odd, hence

U%H 9U% = (−1) 9H 9 , U%
1

I − H0

U% =
1

I − H0

, (5.109)

because U%H
ℓ
0
U% = Hℓ

0
for any ℓ ∈ R. Consequently,

Tr
1

I − H0

H 91 ···H 9a

1

I − H0

= TrU%
1

I − H0

H 91 ···H 9a

1

I − H0

U%

= (−1)ℓTr
1

I − H0

H 91 ···H 9a

1

I − H0

(5.110)

for any j such that | j | = ℓ. This yields

TrHP(=) = X (=)
0
�

(=)
0

+
0∑

ℓ=1

_ℓ#

2ℓ∑
a=1

E
(=)
ℓ,a

+ O

(
_0+1
#

)
(5.111)

with

E
(=)
ℓ,a

:=
∑
j∈Na

| j |=2ℓ

∮ ′

W (=)
Tr

(
1

I − H0

)2

H 91

1

I − H0

···H 9a (I − �
(=)
0

) dI. (5.112)

For a = 1, one computes

E
(=)
ℓ,1

=

∮ ′

W (=)
TrP

(=)
0
H2ℓ

dI

I − � (=)
0

= TrP
(=)
0
H2ℓ . (5.113)

For a ≥ 2, we decompose each identity as 1 = P
(=)
0

+ Q(=)
0

and order the summands according to the

number : of projections Q
(=)
0

, which yields

E
(=)
ℓ,a

=

a−2∑
:=1

E
(=)
ℓ,a,:

+ E(=)
ℓ,a,a−1

, (5.114)

with

E
(=)
ℓ,a,a−1

=
∑
j∈Na

| j |=2ℓ

TrP
(=)
0
H 91O

(=)
1

···O(=)
1
H 9a (5.115)

for O
(=)
< as in Definition 3.3, and

E
(=)
ℓ,a,:

=
∑
j∈Na

| j |=2ℓ

©«
∮ ′

W (=)
TrP

(=)
0

[
H 91Õ

(=)
1

···H 9: Õ
(=)
1
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p

× dI(
I − � (=)

0

)a−: (5.116a)

+
∮ ′

W (=)
TrÕ

(=)
2

[
H 91Õ

(=)
1

···H 9:−1
Õ

(=)
1
H 9:P

(=)
0

···P(=)
0
H 9a

]
p
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× dI(
I − � (=)

0

)a−:−1

ª®®¬
(5.116b)

for : ≤ a − 2. Here, we abbreviate

Õ
(=)
< =

Q
(=)
0

(I − H0)<
,

and the notation [·]p indicates the sum of all possibilities to distribute the operators P
(=)
0

over the slots

between the operators H 9 . By cyclicity of the trace,

∑
j∈Na

| j |=2ℓ

TrP
(=)
0

[
H 91Õ

(=)
1

···H 9: Õ
(=)
1
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p

=
∑
j∈Na

| j |=2ℓ

a − :
a

Tr
[
Õ

(=)
1
H 91 ···Õ

(=)
1
H 9:P

(=)
0
H 9:+1

···P(=)
0
H 9a

]
p
, (5.117)

which can be seen by observing that the first line is a sum of
(a−1

:

)
terms while the sum in the second

line has
(a
:

)
= a

a−:
(a−1

:

)
addends. Next we note that for any 5 which is holomorphic in the interior of

W (=) , the residue theorem implies that∮ ′

W (=)
5 (I) dI(

I − � (=)
0

)a−: =
1

a − : − 1

∮ ′

W (=)
5 ′(I) dI(

I − � (=)
0

)a−:−1
. (5.118)

Since

d<

dI<
Õ

(=)
1

= (−1)<<!Õ
(=)
<+1

, (5.119)

it follows that

∑
j∈Na

| j |=2ℓ

d

dI
Tr

[
Õ

(=)
1
H 91 ···Õ

(=)
1
H 9:P

(=)
0
H 9:+1

···P(=)
0
H 9a

]
p

= −a
∑
j∈Na

| j |=2ℓ

TrÕ
(=)
2

[
H 91Õ

(=)
1

···Õ(=)
1
H 9:P

(=)
0
H 9:+1

···P(=)
0
H 9a

]
p
, (5.120)

because by the product rule, the first line is a sum of :
(a
:

)
= a

(a−1
:−1

)
terms. Integrating by parts yields

E
(=)
ℓ,a,:

=
∑
j∈Na

| j |=2ℓ

1

a

∮ ′

W (=)
Tr

[
Õ

(=)
1
H 91Õ

(=)
1

···Õ(=)
1
H 9:P

(=)
0

···P(=)
0
H 9a

]
p

dI(
I − � (=)

0

)a−:
=

∑
j∈Na

| j |=2ℓ

1

a − :

∮ ′

W (=)
TrP

(=)
0

[
H 91Õ

(=)
1

···H 9: Õ
(=)
1
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p

× dI(
I − � (=)

0

)a−: . (5.121)
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Consequently, the residue theorem and equation (5.119) lead to

E
(=)
ℓ,a,:

=
∑
j∈Na

| j |=2ℓ

1

(a − :)!
da−:−1

dIa−:−1
TrP

(=)
0

[
H 91Õ

(=)
1

···Õ(=)
1
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p

���
I=�

(=)
0

=
∑
j∈Na

| j |=2ℓ

(−1)a−:−1

a − :
∑
m∈N:

0

|m |=a−:−1

TrP
(=)
0

[
H 91O

(=)
<1+1

···O(=)
<:+1
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p

=
∑
j∈Na

| j |=2ℓ

(−1)a−:−1

a − :
∑
m∈N:

|m |=a−1

TrP
(=)
0

[
H 91O

(=)
<1

···O(=)
<:
H 9:+1

P
(=)
0

···P(=)
0
H 9a

]
p
. (5.122)

Recall that the subscript ‘p’ indicates the sum over all possibilities to distribute P0. In particular, this

implies that all empty slots are subsequently filled up with the tuple
(
O

(=)
<1
, . . . ,O

(=)
<:

)
without permuting

the positions of the O
(=)
< 9

. Using the notation O
(=)
0

= −P(=)
0

, one can equivalently write

a−1∑
:=1

E
(=)
ℓ,a,:

=
∑
j∈Na

| j |=2ℓ

a−1∑
:=1

∑
m∈N:

|m |=a−1

1

a − : TrP
(=)
0

[
H 91O

(=)
<1

···H 9:O
(=)
<:
H 9:+1

O
(=)
0

···O(=)
0
H 9a

]
p

=
∑
j∈Na

| j |=2ℓ

∑
m∈Na−1

0

|m |=a−1

1

^(m)TrP
(=)
0
H 91O

(=)
<1

···H 9a−1
O

(=)
<a−1
H 9a , (5.123)

where we denote by ^(m)−1 the number of operatorsO
(=)
0

. Finally, in case of a nondegenerate eigenvalue

�
(=)
0

, some terms vanish by parity, which leads to the simplified equations (3.24). �

Appendix A. Excitation Hamiltonian

For ℎ and 4H as in Lemma 2.2 and

, (G1, G2) = E(G1 − G2) −
(
E ∗ i2

)
(G1) −

(
E ∗ i2

)
(G2) +

〈
i, E ∗ i2i

〉
,

(as in definition (2.43)), it follows that

�# = #4H +
#∑
9=1

ℎ 9 + _#
∑

1≤8< 9≤#
,

(
G8 , G 9

)
. (A.1)

We denote by {i=}=≥0, i0 = i, an eigenbasis for ℎ and abbreviate

ℎ<= := 〈i<, ℎi=〉 , (A.2)

,<=?@ :=

∫
dG dHi< (G)i= (H), (G, H)i? (G)i@ (H) (A.3)
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and 0
♯
< := 0♯ (i<). Since ℎ<0 = ℎ0= = 0 and ℎ<= = 0 for < ≠ =, it follows that

�# = #4H +
∑

<,=≥0

ℎ<=0
†
<0= +

_#

2

∑
<,=,?,@≥0

,<=?@0
†
<0

†
=0?0@

= #4H +
∑
<>0

ℎ<<0
†
<0< + _#

2
,00000

†
0
0
†
0
0000

+
(
_#

∑
<>0

,000<0
†
0
0
†
0
000< + h.c.

)

+ _#
2

( ∑
<,=>0

,<0=00
†
<0

†
0
0=00 + h.c.

)
+

(
_#

2

∑
<,=>0

,<=000
†
<0

†
=0000 + h.c.

)

+ _#
2

∑
<,=>0

(
,0<=00

†
0
0†<0=00 +,<00=0

†
<0

†
0
000=

)

+ ©«
_#

∑
<,=,?>0

,<=?00
†
<0

†
=0?00 + h.c.

ª®¬
+ _#

2

∑
<,=,?,@>0

,<=?@0
†
<0

†
=0?0@ . (A.4)

As ,0000 = ,000< = ,<0=0 = 0, ,0<=0 = 〈i<,  1i=〉ℌ, ,<=00 = 〈i< ⊗ i=,  2〉ℌ2 and ,<=?0 =〈
i< ⊗ i=,  3i?

〉
ℌ2 , equation (2.40) follows from equation (A.4) by the substitution rules (2.37).

Appendix B. Asymptotic expansion of the wave function

Theorem 4. Let ℌ be a Hilbert space, let j ∈ ℌ with ‖j‖ = 1 and define % := |j〉 〈j |. Assume that

% admits an asymptotic expansion in the small parameter Y > 0 – that is, there exists a family of

Y-independent operators {%ℓ }ℓ∈N0
such that for any 0 ∈ N0,

Trℌ

�����% −
0∑

ℓ=0

Yℓ%ℓ

����� ≤ � (0)Y0+1 (B.1)

for some constant� (0) > 0 and sufficiently small Y. Moreover, assume that there exists some normalised

j0 ∈ ℌ such that %0 = |j0〉 〈j0 |. Then for a suitable choice of the phase of j0, there exists for any

0 ∈ N0 a constant �̃ (0) > 0 such that

j −
0∑

ℓ=0

Yℓ 6ℓ

 ≤ �̃ (0)Y0+1, (B.2)

where

jℓ :=

ℓ∑
9=0

U 9 j̃ℓ− 9 (ℓ ≥ 1), (B.3a)

j̃ℓ :=

ℓ∑
a=1

∑
j∈Na

| j |=ℓ

% 91 ···% 9a j0 (ℓ ≥ 1) (B.3b)
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and

U0 = 1, Uℓ := −1

2

∑
j∈N4

0

91 , 92<ℓ
| j |=ℓ

U 91U 92

〈
j̃ 93 , j̃ 94

〉
(ℓ ≥ 1). (B.3c)

Before proving Theorem 4, let us first formally derive definition (B.3). Inserting the estimate (B.1)

and the ansatz

j =
∑
ℓ≥0

Yℓ jℓ (B.4)

into the equation %j = j yields formally

∞∑
ℓ=0

ℓ∑
:=0

Yℓ%: jℓ−: =

∞∑
ℓ=0

Yℓ jℓ , (B.5)

hence

jℓ − %0jℓ =

ℓ∑
:=1

%: jℓ−: (B.6)

and consequently

jℓ =

ℓ∑
:=1

%: jℓ−: + Uℓ j0 (B.7)

for any ℓ ≥ 0 and Uℓ ∈ C, U0 = 1. By induction over ℓ ∈ N0, one easily verifies that jℓ can equivalently

be written as definition (B.3a), with j̃ℓ given by definition (B.3b), without any further restriction on the

parameters Uℓ . It remains to derive definition (B.3c) for the (so far free) parameters Uℓ . To this end, we

observe that formally

% = |j〉 〈j | =
∞∑
ℓ=0

Yℓ
ℓ∑

:=0

|j:〉 〈jℓ−: | , (B.8)

which motivates the definition

%wf
ℓ :=

ℓ∑
:=0

|j:〉 〈jℓ−: | . (B.9)

By definition (B.3a), this can equivalently be expressed as

%wf
ℓ =

ℓ∑
:=0

:∑
8=0

ℓ−:∑
<=0

U8U< | j̃:−8〉 〈j̃ℓ−:−< | =
∑
j∈N4

0

| j |=ℓ

U 91U 92

��j̃ 93

〉 〈
j̃ 94

�� . (B.10)

Formally, it is clear that %wf
ℓ

are the coefficients in the expansion of %, and our goal will be to rigorously

establish the equality %wf
ℓ

= %ℓ . By the bound (B.1) and since Trℌ%0 = 1, it follows that

1 = Trℌ% = 1 +
0∑

ℓ=1

YℓTrℌ%ℓ + O

(
Y0+1

)
, (B.11)
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hence Trℌ%ℓ = 0 for any ℓ ≥ 1. Therefore, we choose the free parameters Uℓ such that Trℌ%
wf
ℓ

= 0 for

any ℓ ≥ 0, which implies that

Uℓ + Uℓ = −
∑
j∈N4

0
91 , 92<ℓ
| j |=ℓ

U 91U 92

〈
j̃ 93 , j̃ 94

〉
= 0, (B.12)

and choosing Uℓ real results in definition (B.3c). Next, we prove an auxiliary lemma:

Lemma B.1. Under the assumptions of Theorem 4, it holds for any ℓ ∈ N0 that

%ℓ =

ℓ∑
9=0

% 9%ℓ− 9 . (B.13)

Proof. By assumption, it holds for any 0 ∈ N0 that

% =

0∑
ℓ=0

Yℓ%ℓ + Y0+1'0 (B.14)

for some '0 ∈ L(ℌ) with ‖'0‖op ≤ � (0). Since %2 = %, this implies that

0∑
ℓ=0

Yℓ%ℓ + Y0+1'0 =

0∑
ℓ=0

Yℓ

(
ℓ∑

<=0

%<%ℓ−<

)
+ Y0+1 '̃0, (B.15)

with

'̃0 =

0∑
ℓ=0

ℓ−1∑
<=0

Y<%ℓ%<+0+1−ℓ +
0∑

:=0

Y: ('0%: + %:'0) + Y0+1'0'0 . (B.16)

Consequently, it holds for any 0 ∈ N0 that


0∑

ℓ=0

Yℓ

(
%ℓ −

ℓ∑
<=0

%<%ℓ−<

)
op

≤ Y0+1
'0 − '̃0


op

≤ � (0)Y0+1, (B.17)

and equation (B.13) follows by induction over 0 ∈ N. �

Proof of Theorem 4

We prove Theorem 4 in two steps: first, we show that the operators %wf
ℓ

from definition (B.9), which are

constructed from the ansatz (B.3) for the functions jℓ , equal the coefficients %ℓ in the expansion (B.1)

of %; second, we estimate the difference between the truncated power series with coefficients jℓ and

the function j.

Claim 1. Under the assumptions of Theorem 4, it holds for any ℓ ∈ N0 that

%
wf

ℓ
= %ℓ . (B.18)

Proof. We prove equation (B.18) by induction over ℓ ∈ N0. By Lemma B.1 and since Trℌ%1 = 0, we

conclude that Trℌ%0%1 = 0 and consequently U1 = 0. Hence, j1 = j̃1 = %1j0, and definition (B.9) and
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Lemma B.1 imply that %wf
1

= %1. Now assume equation (B.18) for some ℓ ∈ N. Then, by equation (B.7),

%wf
ℓ+1 =

ℓ∑
:=0

|j:〉 〈jℓ+1−: | + |jℓ+1〉 〈j0 |

=

ℓ+1∑
9=1

ℓ+1− 9∑
:=0

|j:〉
〈
jℓ+1−:− 9

�� % 9 +
ℓ∑

:=1

(Uℓ+1−: + %ℓ+1−: ) |j:〉 〈j0 |

+ 2Uℓ+1%0 + %ℓ+1%0

=

ℓ+1∑
9=1

%wf
ℓ+1− 9% 9 +

ℓ∑
:=1

(%ℓ+1−: + Uℓ+1−: ) |j:〉 〈j0 |

+ 2Uℓ+1%0 + %ℓ+1%0. (B.19)

By the induction hypothesis and Lemma B.1,

ℓ+1∑
9=1

%wf
ℓ+1− 9% 9 + %ℓ+1%0 =

ℓ+1∑
9=0

%ℓ+1− 9% 9 = %ℓ+1, (B.20)

hence

%wf
ℓ+1 = %ℓ+1 +

ℓ∑
:=1

(%ℓ+1−: + Uℓ+1−: ) |j:〉 〈j0 | + 2Uℓ+1%0. (B.21)

By construction, Trℌ%
wf
ℓ

= Trℌ%ℓ = 0 for any ℓ ≥ 1. Consequently, taking the trace of equation (B.21)

yields

Uℓ+1 = −1

2

ℓ∑
:=1

〈j0, (%ℓ+1−: + Uℓ+1−: )j:〉 , (B.22)

which implies that

%wf
ℓ+1 = %ℓ+1 + (1 − %0)

ℓ∑
:=1

(%ℓ+1−: + Uℓ+1−: ) |j:〉 〈j0 | . (B.23)

Finally,

%0%
wf
ℓ+1 = %0%ℓ+1, %wf

ℓ+1(1 − %0) = %ℓ+1 (1 − %0) (B.24)

and, since both %ℓ+1 and %wf
ℓ+1

are self-adjoint, the first equality implies that %wf
ℓ+1
%0 = %ℓ+1%0. Adding

this to the second equality in equation (B.24) concludes the proof of Claim 1. �

Claim 2. Under the assumptions of Theorem 4, it holds for any 0 ∈ N0 that

j −
0∑

ℓ=0

Yℓ jℓ


ℌ

≤ �̃ (0)Y0+1. (B.25)

Proof. By the bound (B.1), all operators %ℓ are bounded uniformly in Y. Recall that for any normalised

5 , 6 ∈ ℌ, it holds that ‖ 5 − 6‖ℌ ≤ 1/
√

2Trℌ
�� | 5 〉 〈 5 〉 − |6〉 〈6 |

�� for a suitably chosen relative phase. By

construction, the phase of all jℓ is determined by the phase of j0. Hence, setting =Y,0 :=
∑0

ℓ=0 Y
ℓ jℓ

−1
,
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Claim 1 implies for a suitable choice of the phase of j0 thatj −
0∑

ℓ=0

Yℓ jℓ


ℌ

≤ 1
√

2
Trℌ

�����% − =2
Y,0

0∑
ℓ=0

0∑
:=0

Yℓ+: |jℓ〉 〈j: |
����� +

����1 − =Y,0
=Y,0

����
≤ 1

√
2

Trℌ

�����% −
0∑

ℓ=0

Yℓ%wf
ℓ

����� + Y
0+1

√
2

0∑
ℓ=0

ℓ∑
9=1

‖jℓ ‖ℌ
j0+ 9−ℓ |ℌ

+
�����
1 − =2

Y,0√
2=2

Y,0

����� +
����1 − =Y,0
=Y,0

����
≤ �̃ (0)Y0+1 (B.26)

by the bound (B.1) and definition (B.3). In addition, we use the fact that

=−2
Y,0 = Trℌ

�����
0∑

ℓ=0

Yℓ jℓ

〉 〈
0∑

:=0

Y: j:

����� = Trℌ

(
0∑

ℓ=0

Yℓ%ℓ

)
+ Y0+1'Y,0 = 1 + Y0+1'Y,0, (B.27)

with

'Y,0 =

0∑
ℓ=0

ℓ∑
9=1

Y 9−1Trℌ |jℓ〉
〈
j0+ 9−ℓ

�� , |'Y,0 | ≤ � (0) (B.28)

for some constant � (0), which implies that

��� 1−=2
Y,0

=2
Y,0

��� ≤ � (0)Y0+1, as well as

��� 1−=Y,0

=Y,0

��� ≤ � (0)Y0+1. �
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