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SUMMARY
Embryomorphogenesis is impacted by dynamic changes in tissuematerial properties, which have been pro-
posed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides
a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local
cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue
rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine
rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value.
We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and
associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on
blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform
changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis
of material PTs in an organismal context.
INTRODUCTION

Embryonic tissues exhibit structural properties of viscoelastic

materials (Forgacs et al., 1998), the precise spatiotemporal regu-

lation of which is essential for proper embryo development (Pet-

ridou andHeisenberg, 2019). Recent directmeasurements of tis-

sue material properties, such as viscosity, yield stress, and

Young’s modulus, combined with genetic and mechanical per-

turbations have illustrated that spatial and/or temporal changes

in material characteristics can affect morphogenetic processes,

such as tissue spreading and body axis elongation (Barriga et al.,

2018; Mongera et al., 2018; Petridou et al., 2019). For instance,

the dynamics of tissue spreading have been shown to be

controlled by changes in tissue material properties without

altering force application (Morita et al., 2017; Petridou et al.,

2019). This suggests that regulating tissue material properties

constitutes an alternative mechanism of controlling tissue

morphogenesis, in addition to other more direct mechanisms,

such as the regulation of force generation (Heisenberg and Bel-

laı̈che, 2013). Yet, how tissue material properties change within

the developing organism remains poorly understood.

Intriguingly, changes in tissue material properties can be fast

and drastic (Petridou et al., 2019), resembling phase transitions

(PTs), a phenomenon playing a fundamental role in the dynamics

of many complex systems (Domb and Green, 1972; Muñoz,

2017; Solé, 2011; Stanley, 1971). In physics, PTs refer to a broad
1914 Cell 184, 1914–1928, April 1, 2021 ª 2021 Elsevier Inc.
class of phenomena mainly characterized by the presence of

abrupt changes in some of the macroscopic properties of the

system, known as ‘‘order parameters,’’ as a consequence of

smooth variations of a ‘‘control parameter,’’ when the latter rea-

ches a critical value. At such ‘‘critical points,’’ universal core

physical features can be observed, such as singularities in

macroscopic observables or power-law distributions in the sta-

tistics of order parameters (Domb and Green, 1972; Stanley,

1971). These patterns are largely independent of the specific fea-

tures of the system, providing a unifying, simple mechanism

determining collective behaviors of many systems of disparate

nature (Muñoz, 2017; Solé, 2011).

Different classes of theoretical models have been proposed in

the past decade to explore the possibility of tissues undergoing

PTs. On the one hand, active particle models have been devel-

oped to explain density-dependent glassy dynamics observed

during the collective migration of in vitro monolayers (Angelini

et al., 2011; Basan et al., 2013; Garcia et al., 2015; Henkes

et al., 2011; Sepúlveda et al., 2013). On the other hand, vertex

models have been proposed to describe the geometrical

and material properties of confluent epithelial monolayers

(Alt et al., 2017; Atia et al., 2018; Bardet et al., 2013; Farhadifar

et al., 2007; Fletcher et al., 2014; Kokic et al., 2019; Krajnc

et al., 2018; Manning et al., 2010; Okuda et al., 2015; Siber and

Ziherl, 2017). In these models, specific geometric features of

cells, such as their shape arising from cell-cell adhesion and
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Figure 1. Blastoderm cell connectivity as a potential control parameter of a tissue rigidity percolation transition

(A) Schematic representations (top) and bright-field single-plane images (bottom) of an exemplary embryo before (t = �60 min), at the onset (t = 0 min), and after

blastoderm spreading (t = 60 min). The yellow-shaded region represents the central blastoderm.

(B) Exemplary bright-field images of creep and recovery aspiration experiments in the central blastoderm at the stages described in (A) (top) and corresponding

deformation (d) plots showing the distance covered by the tissue in the pipette under constant pressure as a function of time (bottom). Arrowheads indicate the

deformation at pressure release.

(C) Dot plot of individual viscosity values of the central blastoderm obtained from the aspiration experiments shown in (B) overlaid with a line plot of the

mean ±SEMas a function of time (color coded for 10min intervals) (n = 129 embryos, N = 12 embryo batches). Gray dashed line indicates the onset of blastoderm

spreading during the fluidization (yellow shade)/thickening (purple shade) process.

(D) Exemplary 2D confocal sections at the 1st–2nd deep-cell layer of the blastoderm (top) and their connectivity maps (bottom) at the stages described in (A).

Interstitial fluid is marked by dextran, nuclei by H2B-GFP, and membranes by membrane-red fluorescent protein (RFP).

(E) Dot plot of individual connectivity <C> values (number of contacts/cell) obtained from central blastoderm confocal sections overlaid with a line plot of themean

± SEM as a function of time (color coded) (n = 11 embryos for time points �60, �30, 0, 30, and 60 min; n = 6 embryos for all other time points; N = 11 embryo

batches). Gray dashed line indicates the onset of blastoderm spreading.

(F) Plot of the central blastoderm viscosity values (mean ± SEM) as a function of connectivity <C> (mean ± SEM) over time (color coded as in E; for viscosity

n = 129 embryos, N = 12 embryo batches; for connectivity n = 103 blastoderms, N = 11 embryo batches).

(F’) Two exemplary blastoderm confocal sections (marked as in D) with overlaid connectivity maps displaying slightly different connectivity, but by an order of

magnitude different viscosity values.

(G) Exemplary simulated networks with normalized connectivity <k> values above (green line in G’) and below (orange line in G’) the critical point (asterisk in G’) of

the rigidity percolation transition. Floppy areas are illustrated in gray, rigid areas in green, and the giant cluster (GC) in red.

(legend continued on next page)
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cytoskeletal forces (control parameters), trigger, when reaching

a critical value, large changes in tissue rigidity (order parameter)

in a density-independent manner (Bi et al., 2015; Merkel and

Manning, 2018; Wang et al., 2020). Notably, in an unjammed

state, cells can move at zero energy cost, thereby connecting

the amplitude of relative cell movements to density-independent

rigidity transitions (Bi et al., 2016). However, although such

motility transitions can be observed in in vitro cell monolayers

and some in vivo settings (Park et al., 2015), direct rheological

measurements demonstrating actual sharp changes in tissue

material properties during such (un)jamming transitions remain

challenging. This has started to be addressed in 3D embryonic

tissues by methods such as micropipette aspirations (MPAs)

(Petridou et al., 2019) or droplets (Mongera et al., 2018), although

the lack of dynamic measurements of a tissue undergoing a pu-

tative PT both in space and time impedes a proper characteriza-

tion of the process.Moreover, from a statistical physics perspec-

tive, there are core universal features that are expected at critical

points of tissue PTs, but they have not yet been traced in in vivo

systems, in particular due to these experimental limitations.

Finally, from a developmental biology perspective, the mecha-

nisms underlying the robust physiological regulation of critical

points in vivo remain largely unknown.

We have tackled these outstanding questions by analyzing

fluidization of the zebrafish blastoderm, a non-confluent tissue

making up the blastula (Morita et al., 2017; Petridou et al.,

2019). By combining rigidity percolation theory withmicropipette

rheological measurements, quantitative image analysis, bio-

physical modeling of cell-cell contacts, and genetic perturba-

tions, we show that the blastoderm undergoes a genuine rigidity

PT, and that the cell-cell adhesion-dependent topology of the

cell-cell contact network is an accurate predictor of its tissue

material properties. Furthermore, we predict and observe key

signatures of criticality in vivo and identify cell-cycle synchrony

as a regulatory mechanism conferring robustness to the blasto-

derm when undergoing a PT.

RESULTS

Cellular dynamics of zebrafish blastoderm fluidization
In order to address whether and how embryonic tissues undergo

PTs, we turned to the zebrafish blastoderm (Figure 1A). We have

previously found, using MPA (Guevorkian et al., 2010; Petridou

et al., 2019), that the viscosity of the central part of the blasto-

derm abruptly drops at the onset of morphogenesis by more

than an order of magnitude within a few minutes (Figures 1A–

1C, yellow box; Figure S1A; Video S1; see STAR Methods).
(G’) Plot of the fraction of the network occupied by the GC as a function of normaliz

(N, number of nodes). The gray-shaded area indicates the network rigid regime ab

how, under the same deformation force (purple arrow), a floppy (left, costing zero e

nodes would deform.

(H) Schematic diagram of the force response (F, green arrow) for set deformation (

networks.

(H’) Plot of the force response illustrated in (H) for viscous 2D networks of size N�
2Te, where Te is the number of simulation time steps. The gray-shaded area in

distance from the critical point.

Kruskal-Wallis test (C and E), r Spearman correlation test (F). Scale bars: 100 mm

See also Figure S1 and Video S1.
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This tissue fluidization was only transient, with the blastoderm

returning to its initial viscosity values before fluidization by grad-

ually increasing its viscosity in a slow (�1 h) ‘‘thickening’’

(defined in a rheological sense as increasing viscosity) process

(Figure 1C, purple box; Video S1) (Petridou et al., 2019). We first

askedwhichmicroscopic cellular processmay trigger such stark

macroscopic blastoderm viscosity changes. Given previous re-

ports implicating changes of cell motion and shape in density-in-

dependent unjamming transitions of confluent epithelial tissues

(Bi et al., 2016; Park et al., 2015; Tetley et al., 2019), we first

asked whether blastoderm fluidization might be achieved by

those processes. To this end, we analyzed the mean squared

relative displacement (MSRD) of blastoderm cells and cell shape

index (see STAR Methods) during blastoderm tissue fluidization

and thickening, but found no clearly recognizable temporal cor-

relation between these cellular parameters and changes in blas-

toderm viscosity (Figures S1B, S1B’, S1C, and S1C’). This ar-

gues against the blastoderm undergoing a motion-dependent/

density-independent unjamming transition. Moreover, the in-

crease in cell number in time via proliferation, which was pro-

posed to give rise to density-dependent jamming transitions

in vitro (Angelini et al., 2011; Sadati et al., 2013), could not explain

the viscosity changes, as analysis of blastoderm cell nuclei den-

sity did not reveal any obvious correlation with blastoderm vis-

cosity (Figures S1D and S1D’).

However, we observed that, upon labeling the interstitial

space within the blastoderm, cells were separated by interstitial

fluid accumulations (Figures 1D, S2A, and S2B), suggesting that

the blastoderm tissue is non-confluent. Importantly, when ex-

pressing cell density not as nuclear density, but as the percent-

age of space not occupied by interstitial fluid (cell fraction), we

detected a clear nonlinear relationship between cell fraction

and tissue viscosity, independent of variations in cell size (Fig-

ures S1E, S1E’, S1F, and S1F’). Such a nonlinear relationship be-

tween cell fraction and tissue viscosity is reminiscent of the

physics of granular sphere packings, where increasing the pack-

ing fraction above a critical point triggers a jamming transition,

characterized by the appearance of a non-zero shear modulus

despite structural disorder. This occurs when contacting

spheres are close enough to form a ‘‘rigid’’ graph of contacts,

so that displacing any such spheres requires energy expenditure

(see schematic in Figure S1G) (van Hecke, 2010; Jacobs and

Thorpe, 1996). Thus, we sought to explore this analogy in a bio-

logical setting by creating a temporal map of cellular connectiv-

ity, with cell-cell contacts being defined by the absence of inter-

stitial fluid between neighboring cells (Figures 1D, 1E, and S2C).

We found that blastoderm cell connectivity was directly related
ed connectivity <k> in simulated random 2D triangular lattices of different sizes

ove the critical connectivity point (kc, black asterisk). The schematics illustrate

nergy) or rigid (right, costing non-zero energy due to its central bond) cluster of

dx, blue arrow) induced by a small displacement of the edge layer of viscous 2D

250 nodes, as a function of normalized connectivity <k>. Bond half-life time t is

dicates the rigid regime above the kc, for which viscosity grows linearly as a

in (A) and (B) and 50 mm in (D) and (F’).
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to cell fraction (Figures S1H and S1H’) and consequently dis-

played a nonlinear relationship with blastoderm viscosity (Fig-

ure 1F). Specifically, before blastoderm fluidization, when blas-

toderm tissue viscosity was largely unchanged, cell

connectivity was smoothly and gradually reduced (Figures 1E,

1F, and 1F’, blue-green time points). This reduction in cell con-

nectivity continued up to a threshold value of �3–4 contacts

per cell, when blastoderm viscosity abruptly dropped at the

onset of morphogenesis (Figures 1E, 1F, and 1F’, yellow time

points), followed by a slow increase in cell connectivity during

blastoderm thickening (Figures 1E, 1F, and 1F’, purple time

points). Intriguingly, this transition point of connectivity is very

close to the one predicted by rigidity percolation theory (two-

thirds of maximal average number of contacts) separating floppy

versus rigid connectivity graphs (Jacobs and Thorpe, 1995,

1996; Laman, 1970; Maxwell, 1864; Thorpe, 1983), suggesting

that the blastoderm might undergo a rigidity percolation

transition.

Rigidity percolation as a predictor for in vivo tissue
material properties
To test whether the blastoderm indeed undergoes a rigidity

percolation transition, we first generated in silico 2D triangular

graphs of different sizes and connectivity levels typically used

to characterize the network of contacts in a standard sphere

packing (Figure S1I) and performed a rigidity analysis to deter-

mine which tissue regions are expected to be rigid (Figure 1G).

A cluster is considered as rigid when all its degrees of freedom

are absorbed by the structure and thus cannot be deformed

without expense of energy (Figure 1G’, green cluster). As pre-

viously described (Jacobs and Thorpe, 1995, 1996), we found

above the critical point of two-thirds of the maximum average

connectivity the appearance of a rigid ‘‘giant cluster’’ (GC),

which percolated over the size of almost the entire system

(Figures 1G, 1G’, and S1G, red cluster). In this framework,

the average connectivity of the network represents the control

parameter, with two-thirds of the maximum connectivity (i.e.,

�4 contacts per cell), constituting the critical point for a rigidity

PT. The size of the GC, in turn, corresponds to the order

parameter of the system, being small below the critical point

and close to the size of the system above it (Figures 1G and

G’). Crucially, the presence of a GC implies that the network

will resist any deformation, whereas in the absence of the

GC, deformations and rearrangements of network nodes and

regions are possible at no energy cost (Figure S1G). Therefore,

cell connectivity, and thus the size of the GC, might represent

a simple putative criterion for predicting the material property

of a tissue, and corresponding PT, from purely topological

metrics.

Notably, classical rigidity percolation considers networks of

elastic springs, giving rise to zero elastic modulus below the crit-

ical point and linearly increasing shear modulus as a function of

distance above it (van Hecke, 2010). By contrast, the abrupt tis-

sue material changes that we observed within the blastoderm

are changes in viscosity (Petridou et al., 2019). Such viscous

response of tissues can arise from turnover or re-arrangements

(Cavanaugh et al., 2020; David et al., 2014; Iyer et al., 2019; Ranft

et al., 2010). To incorporate this behavior in a minimal way within
our rigidity percolation network analysis, we analyzed 2D net-

works of elastic springs where the bonds can spontaneously

break and heal (with a characteristic timescale t; see STAR

Methods for details of this modeling strategy), revealing that

the critical point of rigidity percolation triggers a transition from

low to high viscosity (Figures 1H, H’, and S1J; see STAR

Methods). This suggests that rigidity percolation can be used

to describe the changes in tissue viscosity observed within the

blastoderm.

To directly test the relationship between cell connectivity, GC

size, and tissue viscosity in vivo, we sought to compare simu-

lated random networks with experimental 2D cell connectivity

networks within the blastoderm. We reasoned that a 2D anal-

ysis is applicable for the 3D tissue context of the blastoderm,

given that no systematic changes in 2D network connectivity

were found between 2D sections of the blastoderm at different

heights within the tissue (Figures S1K and S1K’) and that

measuring average connectivity changes in 3D showed a very

similar pattern as observed in 2D (Figures S1L and S1L’), with

a decrease of connectivity at fluidization up to a value close

to that expected for the critical point of a rigidity PT in 3D net-

works (Chubynsky and Thorpe, 2007). We then compared simu-

lated random 2D networks of similar average size with those

typically imaged within the blastoderm (�100 cells per network)

(Figures 2A and 2B; see STARMethods). We found that not only

the relationship between GC size and network connectivity was

conserved between simulated and experimentally observed

connectivity networks (Figures 2A and 2B), but also that the

temporal change in the experimentally observed size of the

GC in such networks (Figures 2A and S2D; Video S2) closely

matched the temporal changes in tissue viscosity measured

during the blastoderm fluidization/thickening process (Fig-

ure 2C): high tissue viscosity (before fluidization and after thick-

ening) corresponded to rigid networks with connectivity above

the critical point and large GCs, and low tissue viscosity (during

fluidization) corresponded to floppy networks with connectivity

below the critical point and small GCs (Figures 2C and 2D).

Taken together, these findings show that the changes in blasto-

derm viscosity can be explained by changes in cell connectivity,

which control overall tissue rigidity, as predicted by rigidity

percolation theory.

Perturbation experiments reveal conserved
dependency of tissue rheology on cell connectivity
We next sought to experimentally perturb blastoderm cell con-

nectivity to challenge the percolation model and address how

reliably cell connectivity can predict tissue rheology (Table S1).

To modulate cell connectivity, we interfered with cell-cell adhe-

sion directly by reducing the levels of E-cadherin expression

via injection of e-cadherin-morpholino (MO) (Figures S3B and

S3C) (Babb andMarrs, 2004) and indirectly by analyzing different

regions of the blastoderm or changing cell fate specification

within the blastoderm. Directly interfering with cell connectivity

by diminishing E-cadherin expression reduced global cell

network connectivity within the blastoderm (Figures 3A and

S3G) and, as predicted by the theory, GC size to values below

the critical point during the period when control-MO-injected

embryos were undergoing tissue fluidization/thickening (Figures
Cell 184, 1914–1928, April 1, 2021 1917
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Figure 2. A tissue rigidity percolation transition describes the temporal blastoderm viscosity profile

(A) Exemplary 2D confocal sections at the 1st–2nd deep-cell layer of the central blastoderm with overlaid connectivity maps (top) and their rigidity profile (bottom)

at consecutive time points during the fluidization/thickening process (color coded). Interstitial fluid is marked by dextran, nuclei by H2B-GFP, andmembranes by

membrane-RFP. Floppy areas are illustrated in gray, rigid areas in green, and the rigid GC in red. Shaded yellow and purple areas indicate the time period of tissue

fluidization and thickening, respectively.

(B) Plot of the fraction of the network occupied by the GC (mean ± 95% confidence interval [CI]) as a function of normalized connectivity <k> in simulated random

networks of the same size as the average size of experimental networks (black). Overlaid dot plot of the measured GC sizes as a function of the normalized

connectivity <k> for experimental networks of the central blastoderm at different time points during the fluidization/thickening process (color coded for 10 min

intervals) (n = 103 experimental networks, N = 11 embryo batches), agreeing with the theoretical expectation.

(C) Plot of tissue viscosity (mean ± SEM) as a function of the GC relative size (mean ± SEM) for experimental networks of the central blastoderm at different time

points during the fluidization/thickening process (color coded as in B) (for viscosity n = 129 embryos, N = 12 embryo batches; for GC n = 103 blastoderms, N = 11

embryo batches). Statistical tests were performed in comparison to t = 0 min.

(D) Plot of tissue viscosity (mean ± SEM) as a function of normalized connectivity <k> (mean ± SEM) for the samples described in (C) (for viscosity n = 129

embryos, N = 12 embryo batches; for normalized connectivity <k> n = 103 blastoderms, N = 11 embryo batches). Statistical tests were performed in comparison

to t = 0 min. The integrated plot illustrates the time trajectory (color coded) of the central blastoderm material phase state (relative size of GC) as a function of its

connectivity (kc).

The gray-shaded region in (B) and (D) indicates the rigid regime above the kc.

Kruskal-Wallis test (C and D), r Spearman correlation test (C and D). Scale bars: 50 mm in (A).

See also Figure S2, Table S1, and Video S2.
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3A, 3A’’, 3D, and S3A–S3C). Importantly, measurement of tissue

viscosity in e-cadherinmorphant embryos during this period also

revealed low values of viscosity, as expected for networks below

the critical point within the floppy regime (Figures 3A’, 3E, S3F,

and S3H).

Furthermore, we had previously shown that the blastoderm

margin, in contrast to the blastoderm center, does not undergo

tissue fluidization and that this is due to the restricted expression

ofWnt/PCP pathway components within themargin (Figure S3D)
1918 Cell 184, 1914–1928, April 1, 2021
(Petridou et al., 2019). Consistent with our previous observa-

tions, we found that cell connectivity remained persistently

high in the blastoderm margin during the period when the blas-

toderm center was undergoing fluidization (Figures 3B and

S3G). As theoretically expected, we found that this high level

of connectivity was accompanied by the presence of large

GCs and high tissue viscosity (Figures 3B–3B’’, 3E, S3F, and

S3H). By contrast, marginal tissues of mutant embryos for the

Wnt/PCP pathway component wnt11f2 (slb) (Heisenberg et al.,
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2000), which undergo marginal tissue fluidization in a similar

manner as the blastoderm center (Figures S3E, S3F, and S3H),

displayed low connectivity values (Figure S3G) and small GCs

(Figures 3E, S3E, and S3F).

Finally, to indirectly interfere with cell connectivity within the

blastoderm by changing cell fate specification, we ectopically

induced mesodermal cell fate, which in wild-type (WT) em-

bryos is confined to the blastoderm margin, in the blastoderm

center (Figure S3D). Given that mesoderm specification in-

duces the expression of Wnt/PCP components within the

blastoderm margin (Figure S3D) (Makita et al., 1998) and,

consequently, high cell connectivity and tissue viscosity

within this area, we predicted and found that ectopic meso-

derm induction in the blastoderm center not only abrogated

tissue fluidization but also raised the level of cell connectivity

consistently above the critical point during the period when

control embryos underwent tissue fluidization and thickening

(Figures 3C–3C’’, 3E and S3F–S3H). Collectively, our pertur-

bation experiments show that all of the tested blastoderm

cell connectivity networks collapse on the same master

curves describing the relationship between cell connectivity,

GC size (Figure 3D), and tissue rheology (Figure 3E), suggest-

ing that rigidity percolation analysis reliably predicted

changes in tissue viscosity on the basis of associated

changes in cell connectivity within the blastoderm. This cen-

tral role of cell connectivity in determining tissue viscosity

was further confirmed by our observation that interfering

with blastoderm cell motility (Figures S3I and S3I’), but not

connectivity (Figure S3J), by mildly reducing myosin II activity

in those cells, had no recognizable effect on GC size and

blastoderm viscosity (Figures 3E and S3F–S3H).
Figure 3. The blastoderm connectivity profile identifies key hallmarks

(A–C) Exemplary 2D confocal sections at the 1st–2nd deep-cell layer of the cent

marginal blastoderm of aWT embryo (B), and of the central blastoderm of amesod

characteristics (bottom) during the fluidization/thickening process (color coded f

and membranes by membrane-RFP. Floppy areas are illustrated in gray, rigid a

fluidized and rigid blastoderms, respectively.

(A’, B’, and C’) Plots of the time trajectory (color coded) of blastoderm viscosity (m

blastoderm (A’; for viscosity n = 94, N = 6; for connectivity n = 54, N = 6),WTmargin

mesoderm-induced central blastoderm (C’; for viscosity n = 42, N = 6; for conne

(A’’, B’’, and C’’) Plots of the time trajectory (color coded) of the GC relative size as

(B’), and (C’).

(D) Plot of the fraction of the network occupied by the GC (mean ± 95%CI) as a fun

size as the average size of WT experimental networks (black). Overlaid dot plot of

of the central blastoderm in WT (n = 103, N = 11), e-cadherin-MO (n = 54, N = 6), co

N = 2), andmesoderm-inducedWT (n = 15, N = 3) embryos and of themarginal bla

number of networks; N, number of embryos.

(E) Plot of central blastoderm tissue viscosity (mean ± SEM) as a function of norm

in (D) (for viscosity: central blastoderm of WT n = 129, N = 11; e-cadherin-MO n = 9

n = 54, N = 4; mesoderm-induced WT n = 42, N = 6; mesoderm-induced slb/wnt1

slb/wnt11f2 mutant n = 44, N = 5 embryos; for connectivity: samples described

(F) Plot of the variance (Var) of the distribution of rigid cluster sizes p(s) other than th

of the same size as the average size of experimental networks (black) and in th

showing divergence at the critical point, with good theory-experiment agreemen

(G) Plot of the cumulative distribution of rigid cluster sizes p(s) other than the GC

of cluster size distribution p(s) for networks of arbitrary large size (�1,200 node

networks, showing excellent agreement with predictions. The dashed line shows

The gray-shaded regions at the plots indicate the rigid regime above the theoret

r Spearman correlation test (E). Scale bars: 50 mm in (A)–(C).

See also Figure S3 and Table S1.
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Hallmarks of a rigidity percolation PT in vivo

A defining feature of high-order PTs is the divergence of specific

observables near critical points as well as the appearance of po-

wer-law distributions in observables related to the order param-

eter (Domb and Green, 1972; Solé, 2011; Stanley, 1971). Our

simulations showed a clearly defined power-law pattern in the

distribution of cluster sizes other than the GC close to the critical

point, with an exponent around 2.5 (Figures 3G and S3K; see

STAR Methods for fitting techniques). This critical exponent im-

plies that the variance of rigid cluster sizes (outside the GC)

should diverge at the critical point in infinite systems. In the

case of finite systems, traces of this singularity remained as a

sharp peak in the variance of rigid cluster sizes around the critical

point, whose height, given the critical exponent found, should

diverge with system size as �N1/2, where N is the number of no-

des (Figures S3L and S3M; see STAR Methods). The average of

rigid cluster sizes, on the contrary, is nearly constant across sys-

tem sizes and connectivity values (Figure S3N; see STAR

Methods). To test the existence of such universal features within

the blastoderm, we compared the average and variance of rigid

cluster sizes as a function of connectivity between experimental

and theoretical networks, which revealed a close match in a

parameter-free manner (Figures 3F and S3N). We then went

one step further and computed the experimental rigid cluster

size distribution outside the GC for 30 networks from all of the

above-described experimental conditions lying near the critical

point (see STARMethods). As predicted by the numerical exper-

iments, and despite the relatively small size of the system, the

experimental cluster size distribution near criticality closely fol-

lowed the theory, displaying a power law with exponent around

�2.5 with a correction for small cluster sizes (Figure S3K; note
of criticality during its rigidity percolation PT

ral blastoderm of an e-cadherin-morpholino (MO)-injected embryo (A), of the

erm-induced embryo (C) with overlaid connectivity maps (top) and their rigidity

or 30 min intervals). Interstitial fluid is marked by dextran, nuclei by H2B-GFP,

reas in green, and the GC in red. Yellow- and purple-shaded areas indicate

ean) as a function of its normalized connectivity <k> for e-cadherin-MO central

al blastoderm (B’; for viscosity n = 115, N = 9; for connectivity n = 15, N = 3), and

ctivity n = 15, N = 3).

a function of its normalized connectivity <k> for the samples described in (A’),

ction of normalized connectivity <k> in simulated random networks of the same

the measured GC size as a function of the normalized network connectivity <k>

ntrol-MO (n = 15, N = 3), CAMypt1 (n = 89, N = 13), slb/wnt11f2mutant (n = 10,

stoderm inWT (n = 15, N = 3) and slb/wnt11f2mutant (n = 15, N = 3) embryos. n,

alized connectivity <k> (mean ± SEM) for the experimental networks described

4, N = 6; control-MO n = 71, N = 6; CAMypt1 n = 66, N = 7; slb/wnt11f2mutant

1f2mutant n = 13, N = 3 embryos; marginal blastoderms of WT n = 115, N = 9;

in D).

e GC, as a function of their normalized connectivity <k>, in simulated networks

e experimental networks described in (D) (gray) (except marginal networks),

t.

near the critical point. The numerical experiment shows the scaling behavior

s). The overlaid plot shows the cluster size distribution near criticality for real

a power-law p(s) � s�2.5.

ical kc.



Figure 4. Cell-cell adhesion defines cell connectivity and blastoderm rigidity

(A) Numerical simulations of a mechanical toy model for the morphology of a 4-cell rhombus cluster. Increasing cell-cell adhesion (blue) by decreasing cell-cell

tension a (orange) results in contact size expansion and increased connectivity, promoting the emergence of rigid connectivity motifs (green cluster). Contact

angle qe (magenta) is used to infer a. Floppy areas are illustrated in gray and rigid areas in green. Yellow- and purple-shaded areas indicate floppy and rigid

clusters, respectively (exact values of the a threshold slightly depend on the initial configuration of cells).

(B) Exemplary high-magnification 2D confocal sections at the 1st–2nd deep-cell layer of the central blastoderm at consecutive time points overlaid with their

rigidity profile during the fluidization/thickening process, with close-ups of exemplary contact angle qe measurements (right, magenta) and calculated cell-cell

tension a. Interstitial fluid is marked by dextran, nuclei by H2B-GFP, and membranes by membrane-RFP. Floppy areas are illustrated in gray and rigid areas

in green.

(B’) Dot plot of individual cell-cell tension a measurements in the central blastoderm obtained from the experiments shown in (B) overlaid with a line plot of the

mean ± SEM as a function of time (color coded) (n = 50 cell-cell contacts, N = 4 embryos per time point).

(C) Plot of normalized connectivity <k> (mean ± SEM) as a function of cell-cell tension a (mean ± SEM) for several experimental conditions during the fluidization/

thickening process (for connectivity: central blastoderm ofWT n = 55, N = 11; e-cadherin-MO n = 30, N = 6;mesoderm-induced n = 15, N = 3;marginal blastoderm

n = 15, N = 3; n, number of blastoderms, N, number of embryos; for cell-cell tension a: n = 50 cell contacts, N = 4 embryos each data point).

(D) Plot of viscosity (mean ± SEM) as a function of cell-cell tension a (mean ± SEM) for the experimental conditions described in (C) during the fluidization/

thickening process (for cell-cell tension a: n = 50 cell contacts, N = 4 embryos each data point; for viscosity: central blastoderm of WT n = 53, N = 11; e-cadherin-

MO n = 54, N = 6; mesoderm-induced n = 42, N = 6; marginal blastoderms of WT n = 115, N = 9; n, number of embryos; N, number of embryo batches).

Kruskal-Wallis test (B’), r Spearman correlation test (C and D). Scale bars: 20 mm in (B).

See also Figure S4.
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that this exponent is well defined only for large systems; see

STAR Methods for details) (Hanel et al., 2017) (Figure 3G;

STARMethods). Collectively, these findings reveal key hallmarks

of criticality in the blastoderm, further supporting the hypothesis

that the blastoderm indeed undergoes a rigidity percolation PT.

Cell-cell adhesion defines cell connectivity and
blastoderm rigidity
Our results so far demonstrate that average cell-cell contact

number is sufficient to predict global contact topology (such as

GC size), which itself serves as a reliable predictor for tissue ma-

terial properties across time and experimental perturbations. But

how is contact topology regulated from a biomechanical and

biophysical perspective? Our previous findings had shown that

cell-cell adhesion decreased due tomitotic rounding at the onset
of blastoderm fluidization (Petridou et al., 2019). To evaluate the

role of cell-cell adhesion in determining global contact topology,

we developed a mechanical toy model of a 2D cluster of 4 cells

organized in a rhombus, one of the simplest non-rigid topologies

(Figures 1G’ and 4A), based on previous studies of cell-cell adhe-

sion and embryo compaction (David et al., 2014; Maı̂tre et al.,

2012, 2015). We considered constant cell volume, so that the ra-

tio a=gcc=2gcf of cell-cell tension (gcc) to cell-fluid tension (gcf ),

which defines cell-cell adhesion strength, is the single parameter

specifying cluster configuration (Figure 4A). For a> 1, cells are

non-adhesive as they round up tominimize their total surface en-

ergy, while for a< 1, cells become adhesive by forming cell-cell

contacts that result in surface energy minimization. Conse-

quently, increasing cell-cell adhesion (decreasing a) in our 2D

cluster of 4 cells organized in an initially floppy rhombus
Cell 184, 1914–1928, April 1, 2021 1921
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(Figure 4A, gray cluster, floppy regime) led to cell-cell contact

expansion up to the point where tricellular junctions appeared,

forming an additional contact in the cluster that collapsed the

central interstitial space and transformed the configuration into

a rigid topological structure (Figure 4A, green cluster, rigid

regime).

To test whether this could be amechanism to explain how cell-

cell adhesion determines the experimentally observed transi-

tions between floppy and rigid cell connectivity networks within

the blastoderm, we determined relative cell-cell tension a across

different time points during blastoderm fluidization/thickening by

measuring the contact angle qe between blastoderm cells at their

interface to the interstitial fluid (Figures 4A and 4B; see STAR

Methods for determining a). We found an increase in a, and

thus a decrease in cell-cell adhesion, during blastoderm fluidiza-

tion (Figures 4B and B’) and qualitatively similar local cellular

connectivity patterns as theoretically predicted (Figure 4A).

Moreover, performing the same analysis across multiple time

points and experimental conditions (e-cadherin-MO, marginal

blastoderm, mesoderm induced) (Figure S4A), revealed a close

correlation between a and the average connectivity (Figure 4C),

GC size (Figure S4B), cell fraction (Figure S4C) as well as tissue

viscosity (Figure 4D), suggesting that a is functionally linked to

those properties. Remarkably, we also found that blastoderm

fluidization occurred for values of az0:85� 0:9 that are close

to the values theoretically predicted by our mechanical model

for the transition between floppy and rigid local topologies (Fig-

ures 4A and S4A). Likewise, simulating cell-cell contact forma-

tion as a function of a for large non-confluent 2D cell aggregates

using our mechanical model not only produced cell connectivity

maps qualitatively matching our experimental cell-cell connec-

tivity graphs but also showed a floppy-to-rigid network transition

for similar a values as found in the 4-cell mechanical model (Fig-

ure S4E). Together, this suggests a simple explanation of how al-

terations in cell-cell adhesion can trigger global cell network to-

pology and rigidity changes, in agreement with the ones

observed during blastoderm fluidization/thickening process.

Meta-synchronous cell cleavages drive uniform tissue
fluidization by triggering random cell connectivity
changes
Although the blastoderm displays hallmarks of criticality, sug-

gesting that small connectivity changes can already trigger a ri-

gidity PT, the actual changes in blastoderm viscosity are highly

uniform, robust, and reproducible (Figure 1C). This implies that

the cell network connectivity within the blastoderm must be

tightly controlled in development. To obtain insight into these

control mechanisms, we turned to the role of the last two rounds

of meta-synchronous blastoderm cell cleavage cycles (�1 h)

(Keller et al., 2008; Olivier et al., 2010), which we have previously

found to trigger a gradual reduction in cell connectivity (Petridou

et al., 2019). Given that cell divisions are randomly and thus ho-

mogeneously distributed throughout the blastoderm due to the

synchrony of the cleavage cycles (Figure 5A, small variance in

the fraction of dividing cells between the quadrants), it is

conceivable that synchronous cell divisions are important for

uniform tissue fluidization within the blastoderm center. To

experimentally address this, we sought to interfere with cell-cy-
1922 Cell 184, 1914–1928, April 1, 2021
cle synchrony in order to create a spatial heterogeneity in the dis-

tribution of dividing cells within the blastoderm and, conse-

quently, break the spatial homogeneity of cell contact loss.

To this end, we overexpressed Chk1, previously shown to

slow down the cleavage cycle oscillator (Zhang et al., 2014),

and we found that it also reduced cell-cycle synchrony (Figures

S5A–S5D), leading to an increase in the heterogeneity of the

spatial distribution of dividing cells within the blastoderm (Fig-

ure 5A’). Consequently, Chk1-overexpressing embryos showed

a highly heterogeneous spatial connectivity profile within the

blastoderm (Figures 5A’ and 5B), altering its structural properties

(Figures 5C–5E). The latter was evidenced by a broader rigid

cluster size distribution than observed in WT embryos and theo-

retically expected for random networks of the same size (Figures

5C and S5E; see STAR Methods). However, by incorporating

local correlations in links/adhesion in our simulations to account

for the experimentally observed heterogeneous spatial connec-

tivity profile (Figure S5F; STARMethods), wewere able to closely

recapitulate the cluster size distribution in Chk1-overexpressing

embryos (Figure 5C, orange-shaded line versus orange circles).

Moreover, consistent with predictions from those simulations,

we experimentally observed that the size of the 2nd biggest clus-

ter after the GC (Figures S5G and S5G’; Figure 5D, orange clus-

ter; Videos S2 and S3) was much bigger in Chk1-overexpressing

embryos than in WT networks (Figures S5G and S5G’). This size

increase partially scaled with the degree of heterogeneity in the

spatial distribution of dividing cells (Figure S5H), thereby directly

linking the randomness in cell divisions, and thus cell-cycle syn-

chrony, to the structural properties of the blastoderm.

Finally, we made use of Chk1-overexpressing embryos to

assess how a heterogeneous spatial connectivity profile within

the blastoderm affects the robustness of blastoderm fluidization.

To this end,wemeasured tissue viscosity inChk1-overexpressing

embryos throughout the period of blastoderm fluidization and

thickening in WT embryos. Strikingly, we found that the blasto-

derm in Chk1-overexpressing embryos did not show one distinct

fluidization and thickening cycle, as seen in WT embryos, but

instead went through several cycles of partial fluidization and

thickening (Figures 5F andS5I), in agreement with the observation

that the GC in these embryos appears and disappears several

times (Figure 5D’; Video S3). Moreover, the variation in viscosity

valuesobtainedatdistinct timepointsduring the fluidization/thick-

ening process was considerably higher in Chk1-overexpressing

compared to WT embryos (Figure S5J). Strikingly, when

comparing thevariation inblastodermviscosity to theheterogene-

ity in the connectivity of these embryos during the meta-synchro-

nous cell cleavages, we detected a clear anti-correlation between

these two features (Figure5G).Collectively, thesefindingssuggest

that cell cleavage synchrony serves as an effectivemechanism for

uniform cell connectivity changes within the blastoderm that is

required for uniform and robust blastoderm fluidization.

DISCUSSION

Our findings demonstrate that the zebrafish blastoderm un-

dergoes a genuine rigidity PT and provides mechanistic insight

into the structural origin and developmental regulation of this

PT within the organism.



Figure 5. Uniformity in blastoderm rigidity transition relies onmeta-synchronous cell divisions generating random cell connectivity changes

(A and A’) Exemplary 2D confocal sections at the 1st–2nd deep-cell layer of the central blastoderm of a WT (A) and a Chk1-overexpressing (Chk1-oe, A’) embryo

during the last round of meta-synchronous cell cleavages. Interstitial fluid is marked by dextran, nuclei by H2B-GFP, andmembranes bymembrane-RFP. The Var

for the fraction of dividing cells (red stars, dc) and normalized connectivity <k> was calculated between the quadrants.

(B) Plot of the spatial heterogeneity in connectivity as a function of the spatial heterogeneity in the fraction of dividing cells, expressed as the Var in <k> and Var in

dc, respectively, between the quadrants (mean ±SEM) shown in (A) and (A’) (WT n = 36 blastoderms, N = 5 embryos; Chk1-oe n = 66 blastoderms, N = 5 embryos;

individual Var values are shown in the overlaid dot plot).

(C) Plot of the distribution of rigid cluster sizes p(s) other than the GC for all range of connectivity values in (i) WT and Chk1-oe experimental networks (circles), (ii)

simulated random networks with size distribution identical to the experimental ones (WT, shaded gray; Chk1-oe, shaded yellow), and (iii) simulated correlated

networks with size distribution identical to the experimental Chk1-oe (shaded orange) (WT n = 103 networks, N = 11 batches, Chk1-oe n = 95 networks, N = 5

batches), showing that Chk1-oe cluster size distribution is wider than the one expected from a model random network, but displays a very good fit if the model

network shows spatial correlations in division/bond loss.

(D andD’) Exemplary 2D confocal sections at the 1st–2nd deep-cell layer of the central blastoderm of aWT (D) and aChk1-oe (D’) embryowith overlaid connectivity

maps (top) and their rigidity profile (bottom) at different time points during the fluidization/thickening process (color coded), marked as in (A). Floppy areas are

illustrated in gray, rigid areas in green, the 2nd GC in orange, and the GC in red. Yellow- and purple-shaded areas indicate floppy and rigid blastoderms,

respectively, as judged by the GC relative size.

(E) Exemplary 2D confocal sections at the 1st-2nd deep-cell layer of the central blastoderm of a WT (top) and a Chk1-oe (bottom) embryo, marked as in (D), at a

fluidized state with marked mitotic cells (red stars) and overlaid connectivity maps.

(E’) Their rigidity profile is color coded for the size of the rigid clusters (fraction occupied in the total network).

(legend continued on next page)
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The major challenge in probing the structural basis of a PT—

which we have addressed in this study—is to link microscopic

control parameters to macroscopic rheological changes, an

approach requiring combined measurements of local cell

behavior with direct tissue-scale rheological measurements. In

previous studies on confluent monolayers, material properties

were indirectly inferred from a simple criterion derived from ver-

tex or Voronoi models, the normalized cell perimeter (which

coarse-grains details of the cell contact mechanics; Bi et al.,

2015; Farhadifar et al., 2007; Krajnc et al., 2018; Merkel and

Manning, 2018; Popovi�c et al., 2020), as direct rheological mea-

surements were difficult (Angelini et al., 2011; Garcia et al., 2015;

Miroshnikova et al., 2018; Park et al., 2015; Tetley et al., 2019),

hampering the characterization of a bona fide PT in those tis-

sues. Recent in vivo studies in zebrafish have managed to probe

tissue fluidization during development, specifically within the

presomitic mesoderm (PSM) and early blastoderm, via direct

rheological measurements (Mongera et al., 2018; Petridou

et al., 2019), allowing to experimentally probe tissue PTs. How-

ever, a theoretical framework for modeling and inferring PTs in

such non-confluent tissues was lacking. By applying rigidity

percolation, a theoretical concept widely used in material sci-

ence, to biological tissues, we provide a simple criterion readily

testable in any non-confluent tissue, without requiring knowl-

edge of the detailed microscopic properties (which are coarse-

grainedwithin the cell-cell contact topology). Importantly, the ze-

brafish blastoderm provides a system in which a direct rheolog-

ical transition can be monitored in both space and time, a key

prerequisite for testing our framework and pinpointing hallmarks

of PTs. We show that rigidity percolation accurately predicts the

material properties of the system throughout morphogenesis as

well as acrossmultiple experimental perturbations of cell fate, di-

vision, contractility, and adhesion. Furthermore, we demonstrate

hallmarks of criticality in vivo, such as power-law exponents and

its associated discontinuities of macroscopic observables at

criticality. Given that those hallmarks have not yet been clearly

demonstrated in biological settings—mostly due to difficulties

in parameter fine-tuning, measurement precision, and finite

size statistics—their identification provides additional strong

support for biological tissues undergoing material PTs.

Our findings suggest that analyzing cell-cell contact topology

is sufficient to explain tissue PTs during morphogenesis. But

how is this coarse-grained observable mechanistically regu-

lated? For instance, our MPA experiments indicate that the blas-

toderm behaves largely as a simple viscous fluid, while classical

rigidity percolation of spring networks provides information

about elasticity. We have addressed this apparent discrepancy

by showing that viscous networks, where contacts can break

and heal, qualitatively change their response to external defor-

mations at the same critical point of connectivity as elastic
(F) Plot of blastoderm tissue viscosity as a function of time for measurements from

Chk1-oe (showing heterogeneous phases of fluidization/thickening) embryos.

(G) Plot of normalized connectivity <k> variability, expressed as the Var in normaliz

as a function of a robustness viscosity factor, expressed as the inverse of coeffic

cycle meta-synchrony.

Kruskal-Wallis test (B), r Spearman correlation test (B and G). Scale bars: 50 mm

See also Figure S5, Table S1, and Video S3.
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ones. This suggests that using rigidity percolation theory is

appropriate to describe the viscosity changes observed within

the blastoderm, although quantitative understanding of the ab-

solute value of viscosity will require more detailed modeling of

the nonlinear and time-dependent properties of the cell con-

tacts. Indeed, for the jamming of sphere packings, spring

network models, such as the ones we used, can only predict

the critical point and linear response upon shear (van Hecke,

2010), while other responses such as bulk modulus or nonlinear

rheology would require further extension of the theory to include

mechanical elements such as re-arrangements (David et al.,

2014), cell-fluid interaction (Recho et al., 2019), and cell-cell fric-

tion (Liu et al., 2019). The influence of adhesion, for instance, has

been probed experimentally using a biomimetic system of

attractive emulsion droplets (Jorjadze et al., 2011; Pontani

et al., 2012). Adhesion is theoretically predicted to markedly

change the nature of the jamming transition, leading to a slow

growth of the rigid cluster as a function of sphere fraction around

criticality (Koeze and Tighe, 2018; Lois et al., 2008), closely

matching our findings (Figure S4D).

Interestingly, decreasing adhesion in 2D vertex models of fully

confluent tissues has been shown to increase tissue rigidity (Bi

et al., 2015). However, such an effect would only apply up to

the point where loss of adhesion breaks tissue confluency and

where cell-cell connectivity then becomes key. To gain insight

into this process, we have analyzed the microscopic basis of

this framework, via a model of cell-cell contacts arising from

minimization of cell-cell and cell-fluid surface energy, suggesting

that changing the ratio of both tensions (absolute values of adhe-

sion) is enough to transit between rigid and floppy network con-

figurations. Similarly, Kim et al. (2020) have extended the vertex

model to incorporate fluid pockets, cell-cell adhesion, and active

fluctuations in order to describe a fluidization transition within the

PSM, as assessed via local micro-rheology and a caged-to-

diffusive transition in the MSRD of cells. This fluidization transi-

tion in PSM has further been proposed to arise from changes

in cell-cell tension/adhesion fluctuations, together with some

changes in the absolute values of these tensions influencing

cell-cell connectivity. Intriguingly, our functional experiments,

where MSRD and cell-cell tension/adhesion fluctuations were

reduced by partial inhibition of myosin II activity without affecting

cell-cell connectivity changes (Figures S3G and S3J), showed no

effects on rheological tissue properties (Figures S3I, I’, S3J, S5K,

and S5K’’), consistent with the observation in WT embryos that

contact fluctuations do not correlate well with changes in blasto-

derm tissue viscosity (Figures S1B and S5K). This suggests that

the specific cellular properties controlling tissue PTs might be

highly context dependent, while the framework of rigidity perco-

lation can provide generic insights into material properties in a

parameter-free manner based on a single coarse-grained
3 independent embryo batches of WT (showing synchronous fluidization) and

ed connectivity <k> between the quadrants (mean ± SEM) shown in (A) and (A’)

ient of Var between the viscosity measurements (see Figure S5J) during cell-

in (A), (A’), (D), (D’), and (E).
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measurable observable. More generally, applying the concept of

rigidity percolation to biological tissues allows importing key

concepts and the multi-faceted toolbox of statistical physics to

understand the universal features of tissue material properties,

although the specific properties of different tissues are likely,

as in material science, to depend on different microscopic pa-

rameters within this framework.

Finally, being close to a PT has been proposed to be advan-

tageous (Krotov et al., 2014), allowing a tissue to change its

material properties rapidly and drastically. However, it also

might pose a risk as the tissue, when placed close to criti-

cality, could ectopically change its material properties due to

noise. To avoid ectopic PT, cell-cell contact loss must there-

fore be tightly controlled in space and time. Our findings sug-

gest that the meta-synchrony of the cell cycle provides such

control mechanisms, where largely synchronous cell divisions

lead to random and thus homogeneously distributed contact

loss throughout the tissue. This is consistent with previous

findings that have linked cell divisions to tissue fluidity (Firmino

et al., 2016; Petridou et al., 2019; Ranft et al., 2010; Saadaoui

et al., 2020). We also show that cellular fate modulates cell-

cell connectivity and thus distance to the critical point, hinting

at an intricate relationship between cell division, fate specifi-

cation, and tissue material properties in development, with po-

tential application in pathological processes such as tumor in-

vasion (Douezan et al., 2011; Gonzalez-Rodriguez et al., 2012;

Haeger et al., 2014; Hannezo and Heisenberg, 2019; Oswald

et al., 2017).

Limitations of study
In our pipette aspiration assays (Figure 1B), we have restricted

ourselves to the study of the regime where the deformation dis-

tance grows linearly in time (consistent with a simple Newtonian

fluid), which allows us to extract a unique rheological quantity,

i.e., viscosity (Figure 1C). In the future, it would be important to

probe different regimes systematically with different pipette

aspiration pressures, to understand potentially more complex

rheological behaviors, such as yield stress or viscoelasticity.

Moreover, while we have shown that the transition in rheological

property of the blastoderm is well predicted by rigidity percola-

tion (Figure 1H), a more quantitative understanding on what

sets the absolute values of rheological quantities would require

an extension of the model, taking into account cellular shape

but also the mechanics of cell contacts, including frictional dissi-

pation and re-arrangements. To complement this experimen-

tally, it would be important to further qualify what constitutes a

cell-cell contact. Here, we have relied on a binary definition

(presence or absence of interstitial fluid between two mem-

branes; see Figure 2A) and have assessed average contact

strength at a given time point via junctional angle measurements

(Figure 4), but studying the heterogeneities of contact strength

both in time and space might help in better understanding the

overall tissue material properties.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish (Danio rerio) were maintained under a 14 h light/10 h dark cycle (Detrich et al., 1999). The following zebrafish strains were

used in this study: wild-type (WT) AB and slb/wnt11 f2 (Heisenberg et al., 2000). Zebrafish embryos were grown at 25-28.5�C in E3

embryo medium and staged as previously described (Kimmel and Law, 1985). For precise staging before and during blastoderm

spreading, the last rounds of meta-synchronous cleavages and resulting changes in cell size were used as temporal hallmarks

defining developmental time relative to the onset of doming. Chk1-overexpressing (oe) embryos displayed approximately 1 h of

developmental delay, thus we extended their analysis by 1 h. Onset of doming (t = 0 min) was defined as the time when during

the viscosity measurements the first embryo within an egg-lay/batch underwent fluidization. All animal experiments were carried

out according to the guidelines of the Ethics and Animal Welfare Committee (ETK) in Austria.

METHOD DETAILS

Embryo microinjections
Zebrafish embryos were injected using glass capillary needles (30-0020, Harvard Apparatus, MA, USA), which were pulled by a nee-

dle puller (P-97, Sutter Instrument) and attached to a microinjector system (PV820, World Precision Instruments). Microinjections of

mRNAs andmorpholinos (MOs) were performed at the one-cell stage. mRNAswere synthesized usingmMACHINE SP6 kit (Ambion).

The following mRNAs were injected: 70 pgmembrane RFP (Iioka et al., 2004), 70 pg H2B GFP (Keller et al., 2008), 200 pg CAMypt1

(Schwayer et al., 2019), and 72 pg chk1 (Shamipour et al., 2019). The following MOs were injected: 4 ng e-cadherinMO, 4 ng control

MO for e-cadherin (Babb andMarrs, 2004). To inducemesodermal progenitor cell fate, the following combination ofmRNAs andMOs

was injected: 100 pg ndr2l cyclops mRNA and 2 ng casanova MO (Krieg et al., 2008). To label the interstitial fluid, 1 nL of 0.6 mg/ml

dextran Alexa Fluor 647 (10,000 MW; D22914, Invitrogen) was injected in the blastoderm of 1k-stage embryos (�3 hpf).

Micropipette aspiration and viscosity measurements
Blastoderm viscosity was measured by micropipette aspiration based on previously established protocols (Guevorkian et al., 2010;

Petridou et al., 2019). Briefly, embryos were placed on 3% methylcellulose coated glass coverslips in 1x Danieau’s solution on an

inverted Leica SP5 microscope. A fire-polished, passivated (with heat inactivated FBS) micropipette of 35 mm inner diameter, 30�

bent, with a spike end (Biomedical Instruments) was inserted into the blastoderm center or margin, just below the EVL. The micro-

pipette movements were controlled by motorized micromanipulators (Eppendorf Transferman, Nk2). Upon insertion of the pipette in

the blastoderm, an aspiration pressure of 150 Pa was immediately applied using a Microfluidic Flow Control System Pump (Fluigent,

Fluiwell) (with negative pressure ranging from 7-750 Pa, a pressure accuracy of 7 Pa and change rate of 200 Pa.s-1) and the Dikeria

micromanipulation software. The value of the applied pressure for the measurements at all stages during blastoderm fluidization/re-

solidification (150 Pa) was set according to prior test aspiration experiments, where the applied pressure was continuously increased

in a stepwise process (10 Pa / 20 s) until the aspirated tissue started flowing into the pipette. For creep and recovery experiments,

pressure was applied until the tissue flew into the pipette at a constant velocity (for �3 min, except the cases where the tissue was

fluidized and the deformation was too fast) and then pressure was immediately released. Constant tissue flow velocity was similar for

aspiration times of 3, 4, 5, and 6 min, and experiments were thus performed with 3min aspiration time (Figure S1A). Images for moni-

toring the aspiration and relaxation of the tissue were acquired every 500 ms. Viscosity calculations were performed as previously

described (Guevorkian et al., 2010; Petridou et al., 2019). Briefly, the tongue length for each time point wasmeasured using a custom-

ized Fiji macro, and changes in tongue length during aspiration and relaxationwere then plotted over time (Figure 1B). The slope of the

aspiration curve at the point of constant flow depends on the viscosity h, Lasp =
Rp ðDP� PcÞ

3ph with R being the radius of the pipette, DP

the applied pressure and Pc the critical pressure.When the pressure is set to zero during the relaxation, the tissue retracts at a velocity

Lret =
Rp ð PcÞ

3ph . From the aspiration and retraction rates, viscosity can be calculated as h=
RpDP

3pðLasp +LretÞ. In case the retraction rates are

very low, then the major determinant of viscosity is the aspiration rate.

Immunostaining
Embryos were fixed in 2% paraformaldehyde (PFA) for 4 h at RT. After fixation, embryos were washed in 0.5% Tween-20 (in 1x PBS)

overnight at 4�C, dechorionated and washed in 0.5% Tween-20, 0.5% Triton X-100, 0.1 M glycine (in 1 x PBS) for 1 h at RT. Embryos

were then incubated in blocking solution (0.5%Tween-20, 0.5%Triton X-100, 1%DMSO, 1%BSA in 1 x PBS) for 3-4 h at RT and then

incubated with primary antibody (rabbit E-cadherin anti-zebrafish (Petridou et al., 2019), 1:200, generated at MPI-CBG) diluted in

blocking solution overnight at 4�C. Embryos were subsequently washed 43 20min in 0.5%Tween-20 and incubated with secondary

antibody (goat Alexa Fluor 546 anti-rabbit, 1:500, A11010 ThermoFisher Scientific) diluted in blocking solution overnight at 4�C.
Finally, embryos were washed 4 3 20 min in 0.5% Tween-20, post-fixed in 4% PFA for 30 min at RT and imaged (Figure S3B).

In situ hybridization
In situ hybridization was performed as previously described (Thisse et al., 1994). Briefly, 4.3 hpf embryos were fixed in 4% PFA over-

night and then dehydrated and stored for at least 1 day in 100%Methanol at – 20�C. Embryos were then rehydrated, permeabilized

and incubated in hybridization buffer and with the RNA probes overnight. Embryos were washed in serial dilutions of SSC, incubated
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with an Alkaline phosphatase anti- digoxigenin (DIG) antibody overnight (A2237, Sigma), then washed and stained with a mixture of

4-Nitro blue tetrazolium chloride (NBT) (11383221001, Roche) and 5-brome-4-chloro-indolyl-phosphate (BCIP) (11383221001,

Roche). Antisense RNA probes were synthesized from cDNA for ntl, gsc and wnt11 (Heisenberg et al., 2000), using SP6, T7 or T3

RNA polymerase from mMessage mMachine kits (AM1344, ThermoFisher) with DIG RNA-labeling kit (11 277 073 910, Sigma)

(Figure S3D).

Image acquisition
Dechorionated embryosweremounted in 0.5% lowmelting point agarose (16,520-050, Invitrogen) on a glass bottomdish (P35G-1.5-

14-C, MatTek Corporation). Mounted embryos were kept in an incubation chamber at 28.5�C throughout acquisition. Whole embryo

single plane bright-field/fluorescence imaging was performed on a Nikon Eclipse inverted wide-field microscope equipped with CFI

Plan Fluor 10x/0.3 objective (Nikon) and a fluorescent light source (Lumencor). For high magnification confocal imaging of deep cells

to reconstruct connectivity maps, a Zeiss LSM880 invertedmicroscope, equippedwith a Plan-Apochromat 40x/NA 1.2water-immer-

sion objective (Zeiss), GaAsP and multialkali PMT detectors was used. The Fast Airyscan super-resolution module was used for high

magnification confocal imaging of cell-cell contact length fluctuations. For imaging the micropipette aspiration experiments, a Leica

SP5 inverted microscope equipped with a resonant scanner and a HC Plan-Apochromat 10x/NA 0.4 objective (Leica) was used. For

imaging the immunofluorescence experiments on E-cadherin levels, a Zeiss LSM880 uprightmicroscope, equippedwith a Plan-Apo-

chromat 20x/1.0 water immersion DIC objective was used. For imaging the in situ hybridization experiments, an Olympus SZX 12

stereo-microscope, equipped with a QImaging Micropublisher 5.0 camera was used.

Reconstruction of connectivity maps and rigidity analysis
Cell connectivity was defined on 2D confocal sections of the 1st-2nd or 3rd-4th deep-cell layer, in which the nuclei, cell–cell contacts

and interstitial fluid accumulations were differentially labeled. The image from the interstitial fluid channel was converted to a binary

image and processed by a median filter of 2-pixel width in Fiji, to emphasize the interstitial fluid gaps. Cell nuclei of cells within the

same focal plane that had no interstitial fluid between them were considered as contacting cells. By using the multi-point tool in Fiji,

the coordinates of each nuclei and their contacting-neighbors were marked and plotted using standard python package matplotlib.

Due to the manual identification of connections, the connectivity of each image was corrected twice by overlaying the connectivity

map on top of the blastoderm image. The rigidity analysis to identify floppy and rigid areas, Giant and 2nd Giant clusters, and

cluster size distributions were performed on the connectivity maps using a python version of the pebble algorithm pebble.py

(Key resources table).

Numerical construction of model networks
In this section we present the precise method used to generate the lattices that serve as a model of the cell contact networks

analyzed in this study.

We worked in general with random triangular lattices, GðV ;EÞ, embedded in a flat 2D space (see Figure S1H). Throughout the text,

we will refer indistinctly to them as networks or lattices. V = fv1; :::; vNg is the set of N nodes and E = fe1; :::; eMg is

the set ofM links connecting nodes of V. We call average connectivity CCD the average number of edges connected to a given node,

defined as:

CCD =
2M

N
:

A fully connected triangular lattice contains all possible links betw
een the nodes, and is typically used to model packing problems

(Jacobs and Hendrickson, 1997; Jacobs and Thorpe, 1995, 1996). For triangular 2D lattices, in the limitN/N, CCDMax;N/6. For finite

lattices, the low number of links connecting the nodes in the boundary implies a reduction of this maximum connectivity, CCDMax;N < 6,

and the specific number will depend on the exact value of N and the node arrangements. Considering that nodes are arranged in a

square with sides L � ffiffiffiffi
N

p
(corresponding to the shape of experimental networks), CCDMax;N can be very well approximated as:

CCDMax;N � 8+ 16ðL� 2Þ+ 6ðL� 2Þ2
N

:

Square geometries are commonly used in the study of rigidity per
colation (Jacobs and Thorpe, 1995, 1996), where finite size effects

are well understood (Goodrich et al., 2013). Our data fits satisfactorily with the square-geometry assumption, although an exception

is found in the networks belonging to themargins, since, in these networks, nodes are disposed along irregular geometries. We there-

fore focused our rigidity analysis to the networks located in the center, since for them we could construct model networks with a uni-

fied criterion, thereby reducing the potential effects of the boundaries and enabling fair comparison. As discussed in themain text, we

restricted the rigidity analysis to 2D networks, which are more tractable both experimentally and computationally (Chubynsky and

Thorpe, 2007). However, the 2D connectivity of the embryo was identical at different z-slices (Figures S1K and S1K’), meaning

that no anisotropy in the packing is expected, and that one expects to be able to predict 3D average connectivity from these 2D sec-

tions. To test this more directly, we have also measured the local average number of contacts per cell both in 2D and 3D for a subset
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of randomly selected cells (see Figure S1L’ for further details on themethods of measurement), and confirmed that we also observed

a drastic decrease of average connectivity CkD in 3D measurements at the fluidization point (Figure S1L). As expected for triangular

lattices, the average number of contacts in 3D was around the double of the average number of contacts in 2D at all time points.

Further extension to 3D would require a closer quantification of the exact structure of 3D connectivity, and in particular the type

of packing of the blastoderm cells in 3D, which would impact on the threshold. In addition, in order to compare systems with different

cellular numbers (which increases as a function of time due to division in the blastoderm), we worked instead with the normalized

connectivity of a given finite lattice GðV ;EÞ CkD defined as:

CkD =
CCD

CCDMax;N

:

CkD corresponds to the probability that a link exists in the triangula
r lattice of a given size. In Figure S1H we provide an example of a

fully connected lattice and a lattice with average connectivity 3.6.

Numerical construction of random triangular lattices
The methods described here are implemented in the python package Lattice.py. In brief, in silico random triangular lattices are

constructed based on two parameters L and CCD. The construction steps are:

d Start from a fully connected triangular lattice made of� L2 nodes arranged uniformly in a square with links of equal length l0 = 1

d Remove links at random until the average connectivity value CCD is achieved.
Numerical construction of correlated triangular lattices
In the study of Chk1 overexpression (oe) tissues, we needed to generate spatially correlated lattices, implying that the presence/

absence of links is not purely random throughout the tissue, but spatially correlated. In silico correlated triangular lattices are con-

structed following four parameters: L, CCD, [ and l. [ is the correlation length, which we fixed to be [= l0 = 1 a.u. l˛½0;1� is the param-

eter accounting for the strength of spatial correlations. Before starting the description of the algorithm, we defined the vicinity of a link

e as all the links whose middle point is located at a distance %[ of the middle point of e. The construction steps are:

d Start from a fully connected triangular lattice made of � L2 nodes uniformly arranged in a square with links of equal length

d Choose a link at random and remove it. Call this link e.

d With probability l, choose a link in the vicinity of the previously chosen link e and repeat the step. With probability 1� l go to the

previous step.

d If the links in the vicinity of e have been all removed, randomly chose a link e0 from those that have been removed in the vicinity of

e, call it e= e0 and go to the previous step.

d keep the process running until the average connectivity value CCD is achieved.

Effectively, this process removes links sequentially creating holes in some areas of the network while leaving other areas highly

dense. Holes represent sets of links that have been sequentially removed, and its average size follows a Poisson statistics with

average hole size of order 1=ð1 � lÞ. In Figure S5F the method is schematically outlined. As shown in Figures 5C and S5E, this re-

produced well the network statistics observed in Chk1 oe embryos, while random networks reproduced well the network statistics of

WT embryos. From a biological perspective, such correlations are expected from heterogeneities in cell divisions, which are linked to

cell contact loss (Petridou et al., 2019). Given that cells mix relatively little during early morphogenesis, this means that some regions

of the embryo will have clusters of ‘‘delayed’’ cells sharing a common ancestor, and which will remove their bonds in a correlated

manner, given the experimentally determined correlation between cell division and contact loss.

Generic rigidity analysis
Themain theoretical concept underlying the present study is rigidity. Rigidity is a property related only to the connectivity pattern of

the nodes (i.e., it is a topological property), but it has direct impact on the material response of the net. Rigidity is a property of a

subgraph of a given network, and this is why we refer to rigid clusters. Following (Jacobs and Thorpe, 1995), a rigid cluster is

defined as ‘‘A collection of nodes form a rigid cluster when no relative motion within that cluster can be achieved without a

cost in energy.’’

In that context, energy costs arise from the stretching or compression of links after a node rearrangement. We will consider only

maximal rigid clusters: Given a lattice GðV ;EÞ, a subgraphG0ðV 0;E0Þ4GðV ;EÞ is amaximal rigid cluster if i) it is rigid, according to the

above definition, and ii) there is no subgraph of GðV ;EÞ that is rigid and contains properly G0ðV 0;E0Þ. In other words, there is no

G00ðV 00;E00Þ4GðV ;EÞ such that G0ðV 0E0Þ3G00ðV 00;E00Þ and G00ðV 00;E00Þ is rigid. In addition, we consider that clusters are induced sub-

graphs of a given lattice GðV ;EÞ. An induced subgraph is a subgraph G0ðV 0;E0Þ4GðV ;EÞ if all the connections between the nodes V 0

present inG are also present inG0. Therefore, we take this working definition for our purposes and, for the sake of clarity, adapt all the

theory to the framework of 2D triangular lattices:
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Given a triangular latticeGðV ;EÞ over a 2D plane, a rigid cluster is a maximally induced subgraphG0ðV 0;E0Þ4GðV ;EÞ by which any

movement over the plane of any proper subset of nodes of it will unavoidably result into a stretching or compression of at least

one link.

Importantly, the above definition does not exclude i) the presence of more than one rigid cluster in a network – in general, there is a

number of them– and ii) the fact that a node participates in more than one rigid cluster. Rigid clusters as defined above are identified

using the Pebble game algorithm.

As pointed out above, a triangular latticeGðV ;EÞmay contain an arbitrary number of rigid clusters, constrained only by the fact that

the minimum number of nodes for a rigid cluster is 3, as a triangle configuration is the minimal rigid structure. If we name R0ðV 0;E0Þ4
GðV ;EÞ a given rigid cluster, we define the set of all rigid clusters of G asR = {R1(V1,E1), . . .,Rk(Vk,Ek)}. Given a clusterRkðVk ;EkÞ, its size
is the number of nodes it contains Sk = jVk j:
A particularly relevant element of the set R is the largest or giant rigid cluster, GCG, of the lattice, due its prominent role in the ma-

terial response of the network (Koeze and Tighe, 2018). Since the size of the GCG may diverge with the size of the lattice, the most

relevant quantity is the relative size of the giant cluster gcG relative to the total number of nodes of the whole lattice, N:

gcG =
SgcG

N
:

The second largest rigid cluster, which we refer to as the second
 giant cluster (also referred to simply as second cluster in the text),

also plays an important role in our analysis (in particular to identify spatial correlations and heterogeneities in connectivity patterns, as

discussed in Figures 5D, 5D’, 5E, S5G, S5G’, and S5H), but it is less relevant in order to understand the material response of the

system.

Generic rigidity phase transition for triangular lattices
At low/mid values of connectivity, the expected fraction of nodes belonging to the largest rigid cluster is negligible. However, when

the connectivity crosses a critical value, the size of the largest cluster experiences an abrupt jump from the previous negligible value

to almost all the network. This phenomenon is a second order phase transition and has, as an order parameter, the size of the largest

rigid cluster and, as a control parameter the connectivity (Jacobs and Thorpe, 1995; Maxwell, 1864; Moukarzel and Duxbury, 1999).

This phase transition has important consequences on the rheological properties of the network.

Specifically, in the limit of infinite triangular lattices, the value of gcG tends to 0 for any value 0%CkD< 2=3. For CkD> 2=3, gcG expe-

riences a sharp growth close to 2=3 until it saturates at gcG = 1. We call CkcD= 2=3 the critical point of the rigidity phase transition for

triangular networks, also known as the isostatic point for rigidity (Jacobs and Thorpe, 1995; Maxwell, 1864). At the critical point, we

observed the emergence of a rigid cluster that spans a finite fraction of the lattice in a second order phase transition (Jacobs and

Thorpe, 1995; Moukarzel and Duxbury, 1999). Standard analysis of signatures of criticality are based on the study of the behavior

of the correlation length x close to the critical point, showing a scaling behavior x � jCkD� CkcDjn, with n � 1:16.

Signatures of criticality in experimental data
Finding traces of criticality within our data using this classical metric can be problematic: To grasp this kind of behavior, one needs to

deal with very large systems arbitrarily close to the critical point. The number of networks available and their intrinsic small sizes

makes this approach impracticable. However, there are other traces of criticality in percolation phenomena that revealedmore robust

when looking at real systems, such as the cluster size distribution (Bollobas, 1998; Brière et al., 2007; Koeze and Tighe, 2018; New-

man et al., 2001). For example, in standard percolation in random graphs, cluster size distribution near the critical point displays a

clearly defined power-law pattern pcðsÞ � s�g with exponent g= 3=2. As a consequence, the average cluster size – excluding the

giant cluster in the computations – diverges at the critical point (Newman et al., 2001). For the specific study of rigidity transitions,

these markers of criticality were also explored, but in slightly different network processes (Brière et al., 2007; Koeze and Tighe,

2018). We took this approach in order to elucidate whether the experimental data had traces of criticality. Numerical explorations

with square lattices with side size L= 35, containing N= 1208 nodes show that, close to the critical point (found around CCcDz
3:92, CkcDz0:68 for lattices of this size), the probability distribution of rigid cluster sizes other than the GCG,

pcðsÞhpðSk = sjCkD = CkcDÞ, follows a well defined power law:

pcðsÞfs�g;
with g � 2:5, fitted with the method of maximum likelihood es
timation, as described in (Hanel et al., 2017) (see Figure S3K).

Furthermore, computing the rigid cluster size distribution for smaller graphs (of the same average size as experimental graphs),

predicted similar exponents although with a finite-size correction, both features providing excellent fit to the data (Figures 3G

and S3N).

This critical exponent implies, as opposed to standard percolation in random graphs, that the average cluster size converges in a

value independent of the network size and connectivity around CsD � 4 for the interval of connectivities under study, whereas at the

critical point, the variance of the cluster size, s2c = Cs2cD� CscD
2
, is expected to diverge with the size of the lattice (see Figure S3L). In

particular, given the value of the exponent, one expects s2cðsÞ to grow as a function of the system size, N, as:
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s2
c �

1

3� g

ffiffiffiffi
N

p
� CscD

2 � 2
ffiffiffiffi
N

p
� CscD

2
; (1)
where CscD � 4, which agrees with our computational findings (Figu
re S3M). Importantly, turning to experimental cell-contact network

revealed a behavior fully consistent with these results, with both the position and amplitude of the peak of s2cðsÞ well-fitted by the

rigidity percolation model in the absence of adjustable parameters.

It should be noted that previous works had also computed cluster size exponents, for slightly different phenomena, and found

slightly different values of g � 2:1 for non-deformable adhesive spheres (Koeze and Tighe, 2018; Lois et al., 2008) and subcritical

(g � 2:2) or supercritical (g � 2:7) regimes of self-organized, less stochastic network growth (Brière et al., 2007).

Rigidity phase transition and response of the system against deformations
An important insight of the rigidity percolation is its prediction on the rheological properties of the tissue. In particular, at the rigidity

percolation critical point, networks acquire a non-zero elastic modulus upon deformation (matching the shear response of sphere

packings) (van Hecke, 2010). Below the critical point of rigidity, small deformations of the network may be performed at no energy

cost. On the contrary, beyond the critical point of rigidity, the network as a whole, starts exerting non-negligible force against any

deformation. Similarly, work on the influence of weak attractive forces on the rheology of colloidal suspension predict a divergence

of viscosity at a critical particle fraction (Krishnamurthy and Wagner, 2005), after which elasticity should be observed. In our exper-

imental system, however, the tissue behaves as a viscous fluid even for very high connectivity values (Figure 1F, or alternatively very

high cellular fractions, Figure S1E). In fact, beyond the rigidity percolation critical point, viscosity varies relatively little with further

increase of connectivity (Figure 1F), so that even fully connected graphs display viscous rheology under micropipette aspiration.

Given that such transition from elasticity to viscosity is frequent for biological material undergoing turnover (Ranft et al., 2010) or un-

dergoing passive or active topological re-arrangements (T1 transitions), and that re-arrangements and finite contact times were

observed in our system (Petridou et al., 2019), we explored the idea that incorporating in a toymodel turnover would result in viscosity

behaving similarly as elasticity (i.e., below the percolation transition, neither elastic or viscous network can resist deformation while

above both can). We start by recapitulating the response of a purely elastic network as previously described, using a large triangular

lattice with the bottom layer fixed in space with links as springs of elastic constant K = 1. Given that l0 is the rest length of the spring,

force balance on a given (overdamped) node vi at position n
!

i leads to the following differential equation:

X
j

ðlij � l0Þ r!ij + r
d n!i

dt
= 0;
where r is the damping parameter of the spring, j is an index summ
ing over all neighbors of i, lij the length of the link connecting nodes

vi and vj and r!ij the unit vector associated to this link. The N nodes therefore define a system of N coupled differential equations

determining the evolution of the network under potential external forces or deformations. To infer the linear response of the lattice

against deformations, we complement this with two boundary conditions: i) we quasi-statically apply a small lateral displacement

of the top layer by dx (see Figure 1H) small enough to grasp the linear response against this deformation performed by the network

and ii) we fix the position of the bottom layer, to calculate the force F0 exerted by this layer, against the imposed displacement at the

top. This is similar to rheological assays with controlled strain.

In rigidity percolation, elastic networks cannot transmit forces below the critical point. Numerical experiments testing F0 against CkD
confirmed this, showing that F0 displays negligible values until CkcD (Figure S1J). For connectivity values above the rigidity percolation

threshold CkcD, the transmitted force F0 (i.e., elastic modulus) increases linearly with CkD, again as expected from rigidity percolation in

networks, as well as sphere packing under shear (van Hecke, 2010).

We now include the dynamic nature of cell-cell contacts to a permanent energy dissipation that will provide the network a viscous

behavior. In general, viscosity h can be defined as:

h � F0

v
; (2)
where F0 is the force exerted over the system to deform it and v th
e velocity of the part of the network where this force is applied, as a

response to it. In networks with turnover, energy is released spontaneously, enabling the network to be deformed irreversibly. The

simplest way to implement such energy dissipation is to consider breaking and healing of bonds at a constant rate 1=t in our system,

which will give rise to viscous networks as measured experimentally. In this framework, a bond with rest length l0 with actual length l

may break and heal again with timescale t, resetting the rest length to l00 = l. In the case the network is subject to some external force/

deformation, these dynamics will result in an irreversible deformation. In the case the network is subject to a constant force F0 e.g.,

pushing up the top layer, the network will reach a regime where it will flow at constant speed y depending on t. Let us analyze this

situation and how it projects into viscosity. Now assume that energy is dissipated due to a relaxation of the rest length of the springs

occurring stochastically with an average timewindow of t. In this case, there is a constant,ChDt=t = 1=t, that determines the relation

between velocity and t, leading to Equation 2 to read h � t F0

CDy: Since F0 =KDy, one can rewrite the above expression as h � t K
C,

which relates the relaxation time and the viscosity, providing therefore a very simple framework to explain viscous behaviors
e6 Cell 184, 1914–1928.e1–e10, April 1, 2021



ll
Theory
observed in our experiments. A crucial point is that, at the linear order, we expect the response to be similar to elastic networks with

respect to the critical point, which we proceeded to check. To that end, we followed the following modeling criteria:

d We consider random triangular latticesGðV ;EÞwith increasing connectivity and we deformed them by displacing all the nodes

of the upper layer a distance dx (imposed shear), keeping the y coordinate constant for this layer.

d The total number of integration time steps Te was chosen such that a fully connected, elastic lattice of the same size than the

ones used by the simulation reached a stationary state in terms of force propagation through the whole network under the

displacement of dx of the nodes belonging to the upper layer.

We performed numerical tests under the above considered conditions. We generated random triangular lattices of size N � 248,

L= 16, l0 = 1,K = 1, andweperformed a permanent displacement of the top layer of dx = 0:01. CkD ranged from 0:2 to 1 in 20 equidistant

connectivity intervals, and we performed 200 replicas per connectivity value. Assuming that the equilibration time of the elastic

network is Te, we considered three cases: i) elastic network ii) A viscous network whose links have an average lifetime of t � 2Te

and iii) a viscous network whose links have an average lifetime of t � Te (Figures 1H and S1J). Calibration was performed under

the criteria that force distribution should reach a stationary pattern in the fully connected elastic network of this size. Under that

criteria, we found that Te = 600dt was enough.

Modeling of the biophysics of cell-cell contacts in rigidity transitions
To quantify the adhesive properties of the cells, we compute the ratio between cell-cell and cell-fluid surface tensions (gcc and gcf ,

respectively) following the methodology developed in (Maı̂tre et al., 2015; Turlier et al., 2014). Let us suppose two cells, whose ge-

ometry in isolation is spherical with identical radius Rc. When we put them in contact, the balance of surface tensions will create a

circular region of contact, and the contact point will define an angle q between the two cell membranes and the fluid (Figure 4A) of the

main text for a schematic. Following Maı̂tre et al., 2015, the area of contact between cells is:

Acc = p
h
Rcsin

�qe
2

�i2
:

In turn, the area of the cells in contact with the fluid is related to
 the contact angle as:

Acf = 2pR2
c

h
1 + cos

�qe
2

�i
:

According to these two equations, the energy of these two cells
 in contact is given by:

E = 2gcfAcf +gccAcc:
From the above relation, it can be shown (Maı̂tre et al., 2015) that
 the relation between surface tensions when the system reached an

energy minimum is given by:

gcc

2gcf

= cos
�qe
2

�
;

Therefore, by defining the relative cell-cell tension a (which decre
ases for increasing cell adhesion) as:

ah
gcc

2gcf

;

one has a single parameter depicting the relation between surfa
ce tensions, which can be extracted from experimental data by

computing the angle of contact between cells at the fluid interface. This analysis shows that relative cell-cell tension a (resp. cell-

cell adhesion) decreases (resp. increases) at the fluidization point (Figure 4B and B’), and displayed a strong anti-correlation with tis-

sue viscosity across time and conditions (Figure 4D).

To relate these changes to the changes of cell connectivity observed from blastoderm network reconstruction, we generalized this

doublet model to configurations of arbitrary cell numbers. In particular, we used a two-dimensional toy model of 4 cells with equal

volumes and tension, organized spatially into a rhombus with 4 links. This mirrored one of the simplest floppy topologies sketched in

Figure 4A. We started from non-adhesive spheres (a = 1Þ, and gradually decreased cell-cell tension (increased adhesion). This

caused an expansion of cell-cell doublet contacts, which above a critical threshold in relative cell-cell tension a merged to form

tri-cellular vertices, triggering the spontaneous creation of a cell contact that makes the system to transit from floppy to rigid, in to-

pological terms (Figure 4A). The trigger of rigidity is found at around az0:85–0:9, although this value depends on the exact initial

configuration used, and displays hysteresis upon increasing again a above the threshold. Finally, we also considered disordered

arrangement of cells, and found that the threshold value toward rigidity was located around the same ranges of a (Figure S4E). Sim-

ulations to compute equilibrium arrangements of cells have been performed using the free available software ‘Surface Evolver’

(Brakke, 1992).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Processing and quantifications of experimental data
All acquisition data were processed using Fiji (NIH) and/or Imaris 9.0.

Cell connectivity (< C > )was calculated in each confocal section as total number of contacts (defined as described in connectivity

map reconstruction) divided by the total number of cells in the image.Normalized connectivity (< k > )was calculated in each confocal

section as connectivity C divided by the maximum potential connectivity (kmax) (computed as described in Supplementary Informa-

tion Text). 3D number of contacts per cellwas calculated in Imaris by randomly choosing blastoderm cells, followed by manual iden-

tification of the cell-cell contacts using the ‘‘Ortho-slice’’ and ‘‘measurement’’ tools (Figures S1L and S1L’).

The mean squared relative displacement (MSRD) was calculated from individual 3D cell trajectories following the nuclei position in

Imaris of two cells (CellA, CellB) that were in contact at the first time point. The relative xyz position between the CellA and CellB was

defined as:

prel = O
�
xrel

2 + yrel
2 + zrel

2
�

where xrel = xA � xB, yrel = yA � yB, zrel = zA + zB. The MSRD was d
efined as:

MSRD = ðprelt1 � prelt0Þ2;
with t0 being the first time point and t1 3 min later (Figures S3I and
 S3I’). MSRD for the different time periods was defined as t1 =�30

and t0 =�60 for t-60min, t1 = 0 and t0 =�30 for t-30min, t1 = 30 and t0 = 0 for t0 min, t1 = 60 and t0 = 30 for t30 min and t1 = 90 and t0 =

60 for t 60min (Figures S1B and S1B’).

Cell fraction (cf.) was calculated as:

cf = 1� ff ; where ff is fluid fraction:
ffwas calculated from2Dconfocal sections at the 1st-2nd deep cell
 layers, where the interstitial fluid channel (labeledwith Alex Fluor 647

Dextran)was first converted into a binary image and thenprocessedbyamedian filter of 2-pixel radius in Fiji. A signal intensity histogram

analysis of thewhole binary imagewas performed in Fiji (range of 256 different signal intensities,with 256 being themaximum), and the ff

was obtained by the average gray value of the histogram normalized to the max signal intensity of the histogram (256) (Figure S1E).

Cell shape index (q) analysis was calculated from 2D confocal sections at the 1st-2nd deep cell layers, where the cell perimeter P

and cell area Awere obtained using the freehand selection tool to draw the cell perimeter and q was defined as previously described

(Bi et al., 2016) with q=

�
Pffiffiffi
A

p
�
(Figure S1C). Cell area analysis shown in Figure S5C was also performed using the freehand selection

tool to draw the cell perimeter in Fiji. Cell area variability shown in Figure S5D was expressed as the coefficient of variation CV = sd=

mean of the cell area measurements shown in Figure S5C.

E-cadherin expressionwas quantified by the fluorescent intensity of E-cadherin levels as judged by antibody staining. Control-mor-

phant and e-cadherin-morphant embryos were processed for immunofluorescence within the same tube. The average fluorescence

intensity was calculated in Fiji within an ROI covering the central deep-cell blastoderm (Figure S3C).

The cell-cell contact angle, qe, was calculated in degrees from 2D confocal sections using the angle tool in Fiji, as indicated in Fig-

ure 4B, and then converted to radians. The cell-cell tension a was then calculated as:

a = cosðqe =2Þ:
The spatial heterogeneity in cell connectivity (k ) and fraction of d
het ividing cells (fdhet) (Figures 5A and 5A’) was analyzed by computing

the variance of the two parameters between the quadrants of the 2D confocal sections used for the tissue rigidity analysis. For khet, in

each quadrant (Area I, II, III, IV), the normalized connectivity was calculated as described above (kI, kII, kIII, kIV) and then the variance

was calculated between kI, kII, kIII, kIV. For fdhet, in each quadrant the fraction of dividing cells was calculated as the number of mitotic

nuclei (excluding cytokinesis stage) divided by the total number of nuclei in the plane (fdI, fdII, fdIII, fdIV). In order to compare the vari-

ance in fd between WT and Chk1 overexpressing (oe) embryos displaying different number of cells, the standard deviation between

the quadrants was first normalized using a binomial test. The probability q of a cell dividing was approached as q= n=N, with n, total

number of mitotic nuclei andN, total number of nuclei. This defines the null model underlying the statistical test. The probability that a

dividing cell is in a given quadrant is 1/4. The probability that Ni cells in quadrant i from which ni are dividing, p(Ni, ni) is then given by:

pðNi;niÞ = pðNiÞpðnijNiÞ:
Here, pðNiÞ is a binomial distribution with parameter 1/4 and numb
er of trials N. pðnijNiÞ is a binomial distribution with parameter q and

number of trials Ni. The expected average number of dividing cells per quadrant is then <n> = qN
4 = n=4. The expected standard de-

viation of dividing cells per quadrant is:

stdðnullmodelÞ =
�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqð1� qÞ

p
=

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� qÞ

p
:
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The absolute value of the z-score for each quadrant and the num
ber of dividing cells is:

Zi = ðKi � <n > Þ=stdðnullÞ, with Ki, the observed number of dividing cells in quadrant Qi. The spatial heterogeneity coefficient,

SHC, is then SHC= varðZI;ZII;ZIII;ZIV Þ, plotted in Figure 4B.

The fraction of dividing cells shown in Figure S5A’ was calculated as the number of mitotic nuclei (except cytokinesis phase),

divided by the total number of nuclei in the 2D confocal sections. The relationship between connectivity and fraction of dividing cells

was analyzed during the meta-synchronous cell cleavage cycles (�60 to 0 min for WT embryos,�60 to 60 min for Chk1 oe embryos)

in higher magnification 2D confocal sections by following every 5 min a randomly selected cell and its direct neighbors (presence of a

cell-cell contact). The increase in the fraction of dividing cells and the reduction in the relative number of contacts every 10 min was

plotted in Figure S5B.

The quantification of differences in the viscosity fold-change between WT and Chk1 oe embryos over time was calculated from

viscosity measurement experiments where all embryos originate from the same batch. The relative change in the viscosity value

was calculated as hrel = ht1=ht2, with h being the viscosity values and the time interval between t1 and t2 being < 10 min. From

each batch the percentage of embryos exhibiting hrel 0-1, 1-5, 5-10 and > 10 was calculated for each time point (Figure S4I).

The variability in the viscositywas expressed as the coefficient of variationCV = sd=mean for each time point of viscosity measure-

ments for the same number of embryos between WT and Chk1 oe embryos (Figure S5J).

The robustness viscosity factor was expressed as the inverse of the coefficient of variation (Figure 5G).

Cell-cell contact length fluctuations were calculated from 2D confocal time series acquired using the Fast Airyscan mode (10 s in-

terval, 10 min time lapse duration). For each time point, the contact length was measured using the free-hand line tool in Fiji (Fig-

ure S5K). Then, contact lengths were normalized to the average of the contact lengths during the 10 min duration and the frequency

distribution (in percentage) was calculated inGraphPad prism (contact lengthswere binned in 0.1 intervals) (Figure S5K’). The contact

length fluctuations in Figure S5K’’ was expressed as the coefficient of variation, CV = sd=mean, for each contact during the 10 min

measurement, and the average of CV of 10 contacts per time point and condition was plotted. The kymographs shown in Figure S5K

were generated in Fiji, using the KymoResliceWide plugin.

Statistical analysis of experimental data
The statistical analyses were performed with GraphPad Prism 6.0. Statistical details of experiments are reported in the figures and

figure legends. Sample size is reported in the figure legends, and no statistical test was used to determine sample size. The biological

replicate is defined as the number of embryos or independent batches of embryos, as stated in the figure legends. No inclusion/

exclusion or randomization criteria were used and all analyzed samples are included. Unless differently stated in the figure legends,

the graphs show mean ± sem and the error bars are calculated and shown based on the number of cells or embryos, as indicated.

The statistical test used to assess significance is stated in the figure legends and was chosen after testing each group with the

normality distribution test D’Agostino. For comparing two groups, a two- tailed Student’s t test for parametric distributions and a

Mann–Whitney U-test for non-parametric distributions were used. To compare more than two groups, either an analysis of variance

(ANOVA) or Kruskal–Wallis test for parametric and non-parametric distributions, respectively, was used. No blind allocations were

used during the experiments or in the analysis. At least more than three independent experiments were performed except for the

data shown in Figure S3C (embryos from two different embryo batches, in which an independent experiment was defined as the em-

bryo batch). This information is also stated in the figure legends.

Construction of the universal curves for the GC size
To obtain the universal curve accounting for the expected size of the GC in random triangular lattices along connectivity values, we

first computed the average size of all experimental networks (except theChk1 overexpression networks, whichwe treat separately as

discussed below), leading to CND � 100. We then generated model lattices for 50 equidistant connectivity values from 0:2 to 1 of size

� CND. For every connectivity value, we performed 50 replicas and computed the average and standard deviation of the GC.

To compute the model curve appearing in Figure 1G’, we proceeded exactly as above with different lattice sizes. In particular, we

considered the following network sizes N= 46;N= 116;N= 315;N= 613 respectively.

Average and variance of cluster sizes other than the GC
To obtain the curve accounting for the expected sizes of the clusters other than the GC in real networks along connectivity values, we

considered 50 equidistant connectivity values from 0:2 to 1. We then created, for each connectivity point, 50 lattices with the same

criteria as above, computed the overall cluster size average and variance and compared them to the curve obtained for real networks.

Cluster sizes at criticality
To produce the part corresponding to real data of the plot shown in Figures 3F and 3G, we first considered that, for networks of

size � 100, the peak in the s2cðsÞ – which we take as the indicator of the critical point – was located around CkcD � 0:72. The clus-

ter size analysis near criticality was performed by collecting the cluster sizes other than the GC for all the networks whose CkD laid
in the interval CkcD± 0:015 and then computing the statistics. This interval ensured certain degree of resolution as well as certain

volume of data to perform statistics. According to that criteria, we found that 30 of the studied experimental networks were in the
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critical regime. We then computed the same metrics with the same criteria in computational networks of the same average size.

Modeling global WT cluster size distribution
Cluster size distribution offers a detailed map of the potential heterogeneities and deviations from pure randomness in the connec-

tivity patterns. To avoid confusion, it is worth to emphasize that here we are considering the whole range of connectivity values, not

only those near the critical point. As we see in the results, WT cluster size distribution can be fairly approximated using random lat-

tices as models. However, for Chk1 overexpressing (oe) embryos the case is different: The cluster size distribution departs clearly

from the expected behavior if the underlying null model are random networks. We needed to use, instead, amodel lattice that creates

spatial correlations, as the one defined above. Below we detail the numerical experiments performed for the cluster size analysis.

To perform reliable statistics in order to derive the cluster size distribution, we needed to be more detailed than in the above com-

putations, given the small nature of the system and the fine-grained observable we are dealing with. To that end, we refined the gen-

eration of the null model for lattice structure.

We created SWT = 92 uncorrelated lattices, which is the exact number of WT real networks in the sample. Lattice sizes were picked

at random following the lattice size distribution pWT ðNÞ obtained from real data. The average connectivity of each generated random

lattice was chosen at random uniformly within the interval CkDmin;WT = 2:5 and CkDmax;WT = 4:45.

With the abovemethodology, we create a null model for the topology of (random) lattices belonging to theWT set.We performed 30

replicas of the whole process and plotted the results in Figures 5C and S5E.

Modeling global Chk1 oe cluster size distribution
For themodeling of cluster size distribution of the Chk1 oe data (Figure 5C) of themain text, we used themethod for generating corre-

lated lattices with data parameters L; CkD, defined as above, and l as the single free parameter. We created SChk1 = 95, which is the

exact number of Chk1 oe real networks in the sample. Lattices sizes were picked at random following the lattice size distribution

pChk1ðNÞ obtained from real data. The average connectivity of each generated random lattice was chosen at random uniformly within

the interval CkDmin;Chk1 = 2:87 and CkDmax;Chk1 = 4:58. With the above methodology, we create a null model for the topology of (corre-

lated) lattices belonging to the WT set. We performed 30 replicas of the whole process and plotted the results in Figure S5E.

To find the optimal fit of the parameter l between real data and simulated results we used the method of minimization of the Jen-

sen-Shannon divergence (Cover and Thomas, 2006) between real and numerical data. The global optimum was found in l= 0:47,

implying a spatial correlation in the distribution of cluster sizes of a few cell length, which is quite large given the finite size of the

experimental networks, providing an explanation for the much less uniform viscosities measured experimentally in Chk1 oe embryos

during the studied period.

Analysis of the second cluster size
This analysis was performed identically for theWT andChk1 oe datasets. To check the statistical relevance of the potential deviations

of the size of the second largest cluster, for each real network, we generated 100 replica networks with approximately the same size

and average connectivity and, from this population, we computed the expected value for the second largest cluster. We then aggre-

gated the real networks in their respective different time points and computed the average size and standard deviation of the second

cluster. We did the same operation using the expected second cluster sizes we computed before. Consistent with the deviation from

the expected cluster size distribution observed in Chk1 oe embryos, we observe that, in general, the size of the second cluster is

bigger than the expected cluster size (Figures S5G and S5G’).
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Figure S1. Temporal analysis of blastoderm viscosity and underlying cellular dynamics, related to Figure 1

(A) Plot of exemplary deformation (d) curves from creep and recovery aspiration experiments in the central blastoderm of sphere stage embryos (t-30min) for

different aspiration times and integrated plot of the obtained viscosity values from these experiments, which found to be independent of the aspiration time. The

‘x’ signs indicate the region of the curve where the blastoderm undergoes a viscous deformation and where the slope was used for calculating the viscosity (see

STAR Methods for details). Arrowheads indicate the time point of pressure release.

(B) Plot of central blastoderm tissue viscosity (mean ± sem) as a function of the mean squared relative displacement (MSRD) of the blastoderm cells (mean ±

sem), during 30min intervals from different starting time points during the fluidization/thickening process (B’). Color-code indicates 30min intervals with dark blue

corresponding to viscosity at t-60min and MSRD from t-60min to t-30min, green to viscosity at t-30min and MSRD from t-30min to t0min, yellow to viscosity at

t0min and MSRD from t0min to t30min, red to viscosity at t30min and MSRD from t30min to t60min and purple to viscosity at t60min and MSRD from t60min to

t90min (for viscosity n = 53 embryos, N = 12 embryo batches; for MSRD n = 26 cell doublets, N = 8 embryos). Statistical tests were performed in comparison to

t0min. (B’) Exemplary 2D confocal section at the 1st-2nd deep cell layer of the blastoderm at t-60min (left) and color-coded 3D cell trajectories (right) for five

representative cells. Nuclei are marked by H2B-GFP and membranes by membrane-RFP.

(C) Plot of central blastoderm tissue viscosity (mean ± sem) as a function of the cell shape index (mean ± sem) (n = 390 cells, N = 3 embryos). Overlaid dot plot

shows individual measurements of the cell shape index for each time point. The gray dashed line indicates the theoretical cell shape index value at which a

jamming transition is predicted in epithelial tissues. Statistical tests were performed in comparison to t0min. (C’) Exemplary 2D confocal sections at the 1st-

2nddeep cell layer of the blastoderm marked as in (B’) at t-10min and t0min, with 3 exemplary cell shape index measurements for each.

(D) Plot of central blastoderm tissue viscosity (mean ± sem) as a function of nuclei density (mean ± sem) (n = 103 blastoderms, N = 11 embryo batches). Statistical

test was performed in comparison to t0min. (D’) Exemplary 2D confocal sections at the 1st-2nd deep cell layer of the blastoderm with marked nuclei by H2B-GFP

at t-10min and t0min with indicated number of nuclei (N).

(E) Plot of central blastoderm tissue viscosity (mean ± sem) as a function of cell fraction (mean ± sem) (n = 78 blastoderms, N = 6 embryo batches). Statistical test

was performed in comparison to t0min. (E’) Exemplary binary images from the 2D confocal sections shown in (D) with marked interstitial fluid by dextran at t

�10min and t 0min with indicated cell fraction (cf.) measurements.

(F) Plot of central blastoderm tissue viscosity (mean ± sem) as a function of cell area (mean ± sem) (n = 652 cells, N = 6 embryos) during the fluidization/thickening

process (color-coded for 10min intervals). Statistical test was performed in comparison to t0min. (F’) Exemplary cell area A measurements from the 2D confocal

sections shown in (C) with nuclei marked by H2B-GFP, membranes by membrane-RFP and interstitial fluid by dextran, at t-10min and t0min.

(G) Rigidity analysis of an exemplary network. Two rigid clusters (green, red) and a floppy area (gray) are identified. The shaded areas of the network depict

potential response to deformation forces that would require no energy cost. Adding a single link can change the overall response of the network to deformation

forces due to the sharp increase in the size of the Giant Cluster (GC) (red).

(H) Plot of connectivity < C > (mean ± sem) as a function of cell fraction cf. (mean ± sem) obtained from the same 2D confocal sections of the central blastoderm

during the fluidization/thickening process, color-coded for 10min intervals (n = 78 blastoderms, N = 6 embryo batches). (H’) Exemplary binary images from the 2D

confocal sections shown in (D) with marked interstitial fluid by dextran and overlaid connectivity maps at t-10min and t0min with indicated cf. and < C > values.

(I) Two exemplary triangular lattices of N = 46, L = 7, one fully connected (top panel) with < C > = 4.9, and the other one partially connected (bottom panel) with < C

> 3.6, N, number of nodes, L, side length. Numerical construction of lattices starts with a fully connected lattice of certain L followed by the random removal of

links until the desired average connectivity is achieved.

(J) Plots of the linear regime of the response of the lattice against deformations as a function of normalized connectivity for an elastic lattice (left), viscous lattice

with bonds half lifetime t = 2Te (middle) and t = Te (right), with Te being the simulation time. A permanent displacement of dx = 0.01 a.u. is applied to the top layer

of nodes, while the bottom layer remains fixed - (see Figure 1H). The viscosity for viscous lattices is computed from the force exerted by the bottom layer against

the deformation. The linear increase of the resistance exerted by the network starts at the critical point of the rigidity percolation (shaded area, predicted rigid

regime). Parameters of the simulation are given in STAR Methods.

(K) Dot plot of individual connectivity < C > values obtained from 2D confocal sections of the same blastoderm at the 1st-2nd deep cell layer and at the 3rd-4thdeep

cell layer overlaid with a line plot of the mean ± sem as a function of time (n = 50 blastoderm networks, N = 5 embryos). (K’) Exemplary blastoderm confocal

sections (marked as in F) at the 1st-2nd(top) and the 3rd-4th(bottom) deep cell layer with overlaid connectivity maps and indicated < C > values.

(L) Dot plot of the number of contacts per cell as counted from XY (2D) and XYZ (3D) confocal views (mean ± sem) as a function of time (n = 30 cells, N = 3 embryos

for each time point). (L’) Exemplary XY and XZ blastoderm confocal sections marked as in (F’). Purple circle indicates the cell chosen for counting its cell-cell

contacts, gray circles indicate neighboring cells in contact to the chosen cell.

Kruskal-Wallis test (B, C), Mann-Whitney test (D-F, H), r Spearman correlation (B-F, H). Scale bars, 50 mm (B’, D’, E’, H’, K’), 20 mm (C’, F’, L’).
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Figure S2. Rigidity analysis in WT embryos, related to Figure 2

(A) Confocal images of the central blastoderm of an exemplary WT embryo imaged at 1st-2nddeep cell layer with nuclei marked by H2B-GFP and membranes by

membrane-RFP at consecutive time points during the fluidization/thickening process taken from a time lapse video of a WT embryo.

(B) Same images as shown in (A) with labeled interstitial fluid marked by dextran to reveal the spaces between the cells.

(C) Same images as in (B) with overlaid connectivity maps.

(D) Rigidity analysis of the connectivity maps shown in (C). Floppy areas are illustrated in gray, rigid areas in green, the Giant Cluster (GC) in red and the 2nd GC in

orange.
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Figure S3. Experimental manipulations of connectivity, topological rigidity, and tissue viscosity, related to Figure 3
(A) Exemplary 2D confocal sections at the 1st-2nddeep-cell layer of the central blastoderm of a control-morpholino (MO) injected embryowith overlaid connectivity

maps (top) and their rigidity profile (bottom) at consecutive time points during the fluidization/thickening process. Interstitial fluid is marked by dextran, nuclei by

H2B-GFP and membranes by membrane-RFP. Floppy areas are illustrated in gray, rigid areas in green, the Giant Cluster (GC) in red.

(B) Exemplary 2D confocal sections of the central blastoderm of a control-MO and an e-cadherin-MO injected embryo immunostained for E-cadherin.

(C) Plot of E-cadherin protein levels (mean ± sem) as judged by the fluorescence intensity of the immunostaining experiments as a function of time (control-MO,

n = 18 embryos; e-cadherin-MO, n = 16 embryos, N = 2 embryo batches).

(D) Exemplary top views of ntl, gsc and wnt11 expression in zebrafish WT and mesoderm-induced embryos at the onset of blastoderm spreading (t0min).

(E) Exemplary 2D confocal sections at the 1st-2nddeep-cell layer of the marginal blastoderm of a slb/wnt 11mutant embryo marked as in (A) with overlaid

connectivity maps (top) and their rigidity profile labeled as in (A) (bottom) at consecutive time points during the fluidization/thickening process.

(F) Plot of blastoderm tissue viscosity (mean ± sem) as a function of the fraction of the network occupied by the GC (mean ± sem) for the experimental conditions

described in Figure 3D (for viscosity: central blastoderm of WT n = 129, N = 11; e-cadherin-MO n = 94, N = 6; control-MO n = 71, N = 6; CAMypt1 n = 66, N = 7;

slb/wnt11 f2mutant n = 54, N = 4; mesoderm-inducedWT n = 42, N = 6; mesoderm-induced slb/wnt11 f2mutant n = 13, N = 3 embryos; marginal blastoderms of

WT n = 115, N = 9; slb/wnt11 f2 mutant n = 44, N = 5 embryos; for GC: sample number as described in Figure 3D; n, number of embryos, N, number of embryo

batches).

(G) Plot for normalized connectivity < k > (mean ± sem) as a function of time for central blastoderm of WT (n = 103, N = 11), e-cadherin-MO (n = 54, N = 6), control-

MO (n = 15, N = 3), CAMypt1 (n = 89, N = 13), slb/wnt11 f2mutant (n = 10, N = 2), mesoderm-induced WT (n = 15, N = 3) and for the marginal blastoderm of WT

(n = 15, N = 3) and slb/wnt11 f2mutant (n = 15, N = 3) embryos. n, number of networks, N, number of embryos. Grey dashed line indicates the onset of blastoderm

spreading.

(H) Plot of tissue viscosity values (mean ± sem) as a function of time for central blastoderm of WT (n = 129, N = 11), e-cadherin-MO (n = 94, N = 6), control-MO

(n = 71, N = 6), CAmypt1 (n = 66, N = 7), slb/wnt11 f2mutant (n = 54, N = 4), mesoderm-inducedWT (n = 42, N = 6), mesoderm-induced slb/wnt11 f2mutant (n = 13,

N = 3) and for marginal blastoderm ofWT (n = 115, N = 9), slb/wnt11 f2mutant (n = 44, N = 5) embryos. n, number of embryos, N, number of embryo batches. Grey

dashed line indicates the onset of blastoderm spreading.

(I) Plot of theMSRD (mean ± sem) for blastoderm cells of CAMypt1 overexpressing embryos as a function of time (with�60min as reference time point) during the

fluidization/thickening process and (I’) an exemplary 2D confocal section at the 1st-2nddeep cell layer of a CAMypt1 overexpressing blastodermmarked as in (A) at

t-60min with color-coded (for 30min intervals) 3D cell trajectories (n = 10 cell doublets each, N = 3 embryos each).

(J) Exemplary 2D confocal sections at the 1st-2nddeep-cell layer of the central blastoderm of an embryo overexpressing CAMypt1 marked as in (A) with overlaid

connectivity maps (top) and their rigidity profile labeled as in (A) (bottom) at consecutive time points during the fluidization/thickening process.

(K) Power-law distribution of cluster sizes near the critical point, p(s). The cluster size around the peak of the variance of this distribution, located at around

k = 0.68, was computed from an ensemble of lattices with L = 35, N = 1208 (L, side length; N, number of nodes). The blue line shows the slope of a power law with

exponent �-2.5.

(L) Evolution of variance in rigid cluster size s2ðsÞ (for clusters other than the GC) along the connectivity values for different lattice sizes (L = 11; 12; 15; 19, N = 116;

139; 218; 352). A clear peak is observed close to the critical point, whose strength grows in size, with the peak displaying a small drift toward higher values than

2/3 of < k > for very small systems due to the increasing role of the boundaries containing nodes with less incident links.

(M) Evolution of s2ðsÞ as a function of the lattice size N, showing a well-defined dependence s2ðsÞf ffiffiffiffi
N

p
. The prediction given in Equation 1 of the STARMethods,

is plotted in blue.

(N) Evolution of the average rigid cluster size < s > (for clusters other than the GC) along the connectivity values for the same lattice sizes as in (L). Contrary to what

is observed for s2ðsÞ, < s > has a stable behavior across different connectivity values and displays a convergent behavior as a function of different network sizes.

The average rigid cluster size as a function of their normalized connectivity for experimental networks (described in Figure 3F) is plotted with gray circles, showing

good agreement with the simulated networks and lacking convergence.

Kruskal-Wallis test (G, H), Mann-Whitney test (C, I). Scale bars, 50 mm (A, B, E, I’, J), 100 mm (D).
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Figure S4. Relationship between cell-cell adhesion, rigidity percolation, and cell fraction, related to Figure 4

(A) Dot plot of individual cell-cell tension ameasurements of the experimental conditions described in Figure 4C at consecutive time points during the fluidization/

thickening process (n = 50 cell-cell contact angles per experimental condition and time point).

(B) Plot of the fraction of the network occupied by the GC (mean ± sem) as a function of cell-cell tension a (mean ± sem) for the experimental conditions described

in Figure 4C at different time points during the fluidization/thickening process (for cell-cell tension a: n = 50, N = 4, n, number of cell-cell contact angles, N, number

of embryos per experimental condition and time point; for GC: WT, n = 55, N = 11; E-cadherin-MO, n = 30, N = 6; Marginal blastoderm, n = 15, N = 3; Mesoderm-

induced, n = 15, N = 3, n, number of blastoderms, N = number of embryos).

(C) Plot of the blastoderm cell fraction (mean ± sem) as a function of cell-cell tension a (mean ± sem) for the experimental conditions described in Figure 4C at

different time points during the fluidization/thickening process (for cell-cell tension a: n = 50 cell-cell contact angles per experimental condition and time point; for

cell fraction: n = 4 blastoderms per experimental condition and time point).

(D) Plot of the fraction of the network occupied by the GC as a function of the cell fraction for the experimental conditions described in Figure 4C at different time

points during the fluidization/thickening process (WT n = 78, N = 11; e-cadherin-MO n = 39, N = 3; blastoderm margin n = 15, N = 3; mesoderm-induced n = 15,

N = 3; n, number of blastoderms; N, number of embryo batches).

(E) Numerical simulations and overlaid connectivity and rigidity maps of randomly packed soft spheres of comparable size to the experimental data (N = 100) at

different cell-cell tension a values. Floppy areas are illustrated in gray, rigid areas in green and the GC in red. Yellow and purple shaded areas indicate floppy and

rigid blastoderms, respectively, as judged by the GC relative size.

r Spearman correlation (B, D).
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Figure S5. Effects of Chk1 overexpression in cellular, topological, andmaterial properties of the zebrafish blastoderm and role of cell contact

length fluctuations on tissue viscosity, related to Figure 5

(A) Exemplary highmagnification confocal images at consecutive time points during the fluidization/thickening process (10min interval) of the central blastoderm

in WT (top) and Chk1-overexpressing (oe) (bottom) embryos, during synchronous (all the cells in the field of view are dividing at the same time point) and meta-

synchronous (only a fraction of the cells is dividing) cell cleavages. Nuclei are marked by H2B-GFP, membranes by membrane-RFP, and interstitial fluid by

dextran. Red asterisks indicate mitotic cells, green arrowheads point at contact disassembly in meta-synchronously dividing cells of WT embryos (top) and

contact maintenance in asynchronously dividing cells of Chk1-oe embryos (bottom). (A’) Plot of the fraction of dividing cells (mean ± sem) (left axis) from 2D

confocal sections ofWT (n = 10 blastoderm areas per time point, N = 4) and Chk1-oe (n = 8 blastoderm areas per time point, N = 4) embryos as shown in (A), and of

normalized connectivity < k > (mean ± sem) (right axis) from 2D confocal sections as shown in Figures 5D and 5D’ for WT (n = 11 networks per time point, N = ) and

Chk1-oe (n = 5 networks per time point, N = 5 embryos) embryos, as a function of time during the fluidization/thickening process, lasting until 60 min in WT and

120 min in Chk1-oe embryos (see STARMethods for timing difference). Dashed lines indicate the duration of the 11th, 12thand 13thmeta-synchronous cell cycles

in WT.

(B) Dot plot of the relative reduction in central blastoderm cell connectivity versus the increase in the fraction of dividing cells within 10min intervals determined on

2D confocal sections of WT (n = 63 blastoderm areas, N = 5 embryos) and Chk1-oe (n = 94 blastoderm areas, N = 5 embryos) embryos as shown in (A) over the

time period directly preceding blastoderm fluidization (1h for WT and 2h for Chk1-oe embryos).

(C) Plot of cell area (mean ± sem) as a function of time during the fluidization/thickening process in WT (n = 652 cells, N = 6 embryos) and Chk1-oe (n = 999 cells,

N = 5 embryos) central blastoderms.

(D) Plot of the cell area variability expressed as coefficient of variation (sd/mean) of the data plotted in (C).

(E) Numerical check to discard size and connectivity distribution effects in the discrepancy of Chk1-oe cluster size distribution from its expected random

counterpart (yellow curve in Figure 5C). The blue curve is obtained from a re-scaled version of the cluster size distribution found inWT experimental networks, in a

way that the average size matches the one found in Chk1-oe experimental networks.

(F) Schematic illustration of the model designed to generate spatially correlated link/bond loss, with correlation length [ (at the scale of cell diameter) and

correlation probability l. In step 1, a given state of a lattice of cell contacts is presented. In step 2, a link is chosen at random and removed (orange cross). In step 3,

the links in the neighborhood (orange dashed lines) of the removed link (light gray) are identified (black circle), using as a parameter the correlation length [. In step

4, a biased coin is drawn with probability l to show ‘face’, where ‘face’ removes a link from this neighborhood (orange cross). If ‘tail’ appears, the algorithm goes

back to step 2 and the process is restarted. If all the links in the neighborhood are removed (step 5), a biased coin is drawn again (step 6) and if ‘face’ appears, a

link that was in the neighborhood is chosen at random and the algorithm goes back to step 3, now taking this randomly chosen link as the starting point. If ‘tail’

appears, the algorithm goes back to step 2. The process starts with a complete lattice and endswhen the average connectivity of the networked to be simulated is

achieved (see STAR Methods for details).

(G-G’) Plots of the fraction of the network occupied by the 2ndGiant Cluster (GC) (mean ± sem) in simulated and experimental networks ofWT (G) and Chk1-oe (G’)

central blastoderms as a function of time during the fluidization/thickening process (WT simulated and experimental, n = 103 networks, N = 11 embryos, each;

Chk1-oe simulated and experimental, n = 95 networks, N = 5 embryos).

(H) Plot of the size of the 2ndGC (mean ± sem) as a function of the spatial heterogeneity in the fraction of dividing cells (expressed as the variance in the fraction of

dividing cells between the quadrants shown in Figure 5A, mean ± sem) inWT and Chk1-oe central blastoderms (WT n = 36 blastoderms, N = 5 embryos; Chk1-oe

n = 66 blastoderms, N = 5 embryos; individual blastoderm values are shown in the overlaid dot plot).

(I) Plot of the percentage of central blastoderms from different embryo batches undergoing the indicated fold-changes in their viscosity within 10min intervals

during the fluidization/thickening process for WT (n = embryos, N = 8 batches) and Chk1-oe (n = embryos, N = 9 batches) embryos.

(J) Plot of the central blastoderm viscosity variability expressed as coefficient of variation (sd/mean) from viscosity measurements of 8 independent WT or Chk1-

oe embryo batches.

(K) Exemplary time stills (left) from high magnification confocal time series of cell-cell contact dynamics in WT (top) and CAMypt1 expressing embryos (bottom)

and corresponding kymograph (right) during the fluidization/thickening process. (K’) Plot of the relative frequency of cell-cell contact lengths inWT (solid line) and

CAMypt1 expressing embryos (dashed line) during the fluidization/thickening process (color coded for 30 min intervals) (n = 10 contacts, N = 4 embryos for each

experimental condition and time point). (K’’) Plot of viscosity values (mean ± sem) as a function of contact length fluctuations expressed as coefficient of variation

(sd/mean) from the average contact length over a 10 min period in WT (filled circle) and CAMypt1 (clear circle) expressing embryos during the fluidization/

thickening process (color coded for 30 min intervals) (for contact length fluctuation: n = 10 contacts, N = 4 embryos for each experimental condition and time

point; for viscosity: WT, n = 53, N = 11; CAMypt1, n = 27, N = 7; n, number of embryos, N, number of embryo batches).

Kruskal-Wallis test (G’, H), Mann-Whitney test (C, D, J), r Spearman correlation (H, K’’). Scale bars, 20 mm (A) 10 mm (K).
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