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Abstract
We study the density of rational points on a higher-dimensional orbifold (Pn−1,�) when �

is a Q-divisor involving hyperplanes. This allows us to address a question of Tanimoto about
whether the set of rational points on such an orbifold constitutes a thin set. Our approach
relies on the Hardy–Littlewood circle method to first study an asymptotic version ofWaring’s
problem for mixed powers. In doing so we make crucial use of the recent resolution of the
main conjecture in Vinogradov’s mean value theorem, due to Bourgain–Demeter–Guth and
Wooley.
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1 Introduction

This paper is about the arithmetic of rational points on higher-dimensional orbifolds, in
the spirit of Campana [4]. We shall be concerned with orbifolds (Pn−1,�), where � is a

B Shuntaro Yamagishi
s.yamagishi@uu.nl

Tim Browning
tdb@ist.ac.at

1 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

2 Mathematisch Instituut, Universiteit Utrecht, Budapestlaan 6, Utrecht NL 3584CD, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-021-02695-w&domain=pdf


T. Browning, S. Yamagishi

Q-divisor that takes the shape

� =
r∑

i=0

(
1 − 1

mi

)
Di ,

for irreducible divisors D0, . . . , Dr on P
n−1 and integersm0, . . . ,mr ≥ 2. The arithmetic of

Campana-points on orbifolds interpolates between the theory of rational and integral points
on classical algebraic varieties, thereby opening up a new field of enquiry.

The orbifold (Pn−1,�) is said to be smooth if the divisor
∑r

i=0 Di is strict normal cross-
ings and it is said to be log-Fano if −KPn−1,� is ample, where KPn−1,� = KPn−1 + �.
Very recent work by Pieropan, Smeets, Tanimoto and Várilly-Alvarado [11] builds on the
programme of Campana [4], by studying the distribution of Campana-points on vector group
compactifications. Inspired by the Manin conjecture for rational points on Fano varieties
[7], they formulate in [11, Conj. 1.1] a new prediction for the density of Campana-points of
bounded height on arbitrary smooth log-Fano orbifolds.

We shall address this conjecture in the special case (Pn−1,�), when the divisors
D0, . . . , Dr form a set of distinct hyperplanes in P

n−1, all defined over Q. Then (Pn−1,�)

is log-Fano precisely when

n − (r + 1) +
r∑

i=0

1

mi
> 0.

Since mi ≥ 2 this forces us to have r ≤ 2(n − 1). It turns out that the analysis is rather easy
when r ≤ n − 1, a case that is covered as a special case of concurrent work by Pieropan and
Schindler [10] on toric varieties. The first really challenging case is when r = n, in which
case the condition for being log-Fano is

n∑

i=0

1

mi
> 1.

We shall take

Di =
{

{xi = 0} if 0 ≤ i ≤ n − 1,

{c0x0 + · · · + cn−1xn−1 = 0} if i = n,

for a fixed choice of non-zero integers c0, . . . , cn−1. We let

� =
n∑

i=0

(
1 − 1

mi

)
Di ,

for given integers mi ≥ 2. The Campana-points in (Pn−1,�) are defined to be the
rational points (x0 : · · · : xn−1) ∈ P

n−1(Q), represented by primitive integer vectors
(x0, . . . , xn−1) ∈ Z

n�=0 for which xi is mi -full for 0 ≤ i ≤ n − 1 and c0x0 + · · · + cn−1xn−1

is mn-full. Here, we recall that a non-zero integer x is said to be m-full if pm | x whenever
there is a prime p such that p | x .

We employ the height function H : P
n−1(Q) → R, given by

H(x0 : · · · : xn−1) = max
0≤i≤n−1

|xi |,
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Arithmetic of higher-dimensional orbifolds

if (x0, . . . , xn−1) ∈ Z
n is primitive. This is the standard exponential height associated to the

line bundle L = OPn−1(1). The counting function of interest to us here is then

N (Pn−1,�; B) = 1

2
#

⎧
⎨

⎩x ∈ Z
n+1
�=0 :

gcd(x0, . . . , xn−1) = 1
|x| ≤ B, xi is mi -full ∀ i
c0x0 + · · · + cn−1xn−1 = xn

⎫
⎬

⎭ , (1.1)

where x = (x0, . . . , xn) and |x| = max0≤i≤n |xi |. If [L] denotes the divisor class of a
hyperplane section in P

n−1 and �eff is the effective cone of P
n−1, then we define

a = a(L,�) = inf
{
t ∈ R : t[L] + [KPn−1 + �] ∈ �eff

}
.

Moreover, we define b = b(L,�) to be the codimension of the minimal supported face of
�eff that contains the class a[L]+[KPn−1 +�]. With these definitions in mind, the conjecture
[11, Conj. 1.1] predicts that there exists a constant c such that

N (Pn−1,�; B) ∼ cBa(log B)b−1, (1.2)

as B → ∞. (As a matter of fact, [11, Conj. 1.1] allows for the removal of a thin set of
rational points from P

n−1(Q), a topic that we shall return to in our discussion of Theorem 1.2
below.) In our example, the degree function gives an isomorphism Pic(Pn−1) ∼= Z. Under
this isomorphism �eff ∼= R≥0 and the line bundle L has degree 1. Moreover, KPn−1 has
degree −n and � has degree

∑n
i=0(1 − 1

mi
). Hence

a = inf

{
t ∈ R : t + 1 −

n∑

i=0

1

mi
≥ 0

}
=

n∑

i=0

1

mi
− 1.

Furthermore, the minimal supported face of �eff which contains 0 is {0}, which has codi-
mension 1 in �eff, whence b = 1.

In the special case m0 = · · · = mn = 2, work of Van Valckenborgh [14] establishes
an asymptotic formula for N (Pn−1,�; B) for all n ≥ 4, which agrees with (1.2). Drawing
inspiration from this, we have the following generalisation, which is also in accordance with
(1.2).

Theorem 1.1 Assume that m0, . . . ,mn ≥ 2 and

∑

0≤i≤n
i �= j

1

mi (mi + 1)
≥ 1 (1.3)

for some j ∈ {0, . . . , n}. Then there exist constants c ≥ 0 and η > 0 such that

N (Pn−1,�; B) = cB
∑n

i=0
1
mi

−1 + O

(
B
∑n

i=0
1
mi

−1−η
)

.

The implied constant in this estimate is allowed to depend on m0, . . . ,mn, n and
c0, . . . , cn−1, a convention that we shall adopt for all of the implied constants in this paper.
There is an explicit expression for the leading constant c in (3.14) and (3.15), as a convergent
sum of local densities. It can be shown that c > 0 if the underlying equations admit suitable
non-singular solutions everywhere locally.

Let us return briefly to the case m0 = · · · = mn = 2, so that a = n−1
2 and b = 1. When

n = 3 we have the following lower bound, in which the exponent of log B is at odds with
the asymptotic formula (1.2).
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Theorem 1.2 Let n = 3 and m0 = m1 = m2 = m3 = 2. Then

N (P2,�; B) 
 B log B.

As explained by Pieropan, Smeets, Tanimoto and Várilly-Alvarado [11, § 3.5], the points
contributing to the lower bound for N (P2,�; B) in this result actually correspond to rational
points contained in a thin set in P

2(Q). Let X be an integral variety over Q. Recall from
Serre [13, §3.1] that a thin set is a set contained in a finite union of thin subsets of X(Q)

of type I and I I . Here, a type I thin subset is a set of the form Z(Q) ⊂ X(Q), where Z is
a proper closed subvariety, and a type I I thin subset is a set of the form f (Y (Q)), where
f : Y → X is a generically finite dominant morphism with dim Y = dim X , deg f ≥ 2 and
Y geometrically integral. Theorem 1.2 illustrates that it is important to allow the possibility
of removing thin sets of rational points from the statement of [11, Conj. 1.1].

On the other hand, when m0 = m1 = m2 = 2 and n = 2 we expect the counting function
to satisfy an asymptotic formula of the form (1.2) with associated constants a = 1

2 and b = 1.
In fact, Browning and Van Valckenborgh [2] have produced an explicit constant c > 0 such
that

N (P1,�; B) ≥ c(1 + o(1))B
1
2 ,

as B → ∞.
A well-known result of Cohen [5], as expounded by Serre [12, Thm. 13.3], states that

the set P
n−1(Q) is not thin. At the workshop “Rational and integral points via analytic and

geometric methods” in Oaxaca (May 27th–June 1st, 2018), Sho Tanimoto raised the question
of whether the same is true for the set of Campana-points. Our next goal is to provide some
partial evidence in favour of this.

Associated to any type II thin subset � ⊂ P
n−1(Q) coming from a morphism Y → P

n−1

of degree d ≥ 2 is a degree d extension of function fields Q(Y )/Q(t1, . . . , tn−1). We let
Q(Y )Gal be the Galois closure of Q(Y ) over the function field Q(t1, . . . , tn−1) of P

n−1 and
we let Q� ⊂ Q(Y )Gal be the largest subfield that is algebraic over Q. Finally we let P� be
the set of rational primes that split completely in Q�. It follows from the Chebotarev density
theorem that P� has density [Q� : Q]−1 in the set of primes, since Q�/Q is Galois. Next,
let

Qm =
{
p prime : lcm (gcd(m0, p − 1), . . . , gcd(mn, p − 1))

= ∏
0≤i≤n gcd(mi , p − 1)

}
, (1.4)

for any m = (m0, . . . ,mn) ∈ Z
n+1
≥2 . The following result provides an explicit condition on

the possible thin sets in P
n−1(Q) that the Campana-points in (Pn−1,�) are allowed to lie in.

Theorem 1.3 Assume that m0, . . . ,mn ≥ 2 and (1.3) holds. Let � be a thin set contained in
a finite union

⋃
i �i , where each �i ⊂ P

n−1(Q) is a thin subset of type I or II. Assume that

lim inf
x→∞

#{p ∈ P�i ∩ Qm : p ≤ x}
π(x)

> 0 (1.5)

whenever �i is type II. Then

N�(Pn−1,�; B) = o�(B
∑n

i=0
1
mi

−1
),

where N�(Pn−1,�; B) is defined as in (1.1), but with the additional constraint that the point
(x0 : · · · : xn−1) ∈ �.
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Assuming that (1.3) holds, we may combine this result with Theorem 1.1 to deduce that
the Campana-points in (Pn−1,�) are not contained in any thin subset of P

n−1(Q) satisfying
the hypotheses of the theorem.

The statement of this result is rather disappointing at first glance, but in fact the conclusion
is false when the condition (1.5) is dropped. To see this, take m0 = · · · = mn = 3 and
n ≥ 12. Then

∑n
i=0

1
mi

− 1 = n−2
3 and (1.3) holds in Theorem 1.1. Consider the thin set

�0 ⊂ P
n−1(Q) that arises from the morphism

Z → P
n−1, (x0 : · · · : xn) → (x0 : · · · : xn−1),

where Z ⊂ P
n is the cubic hypersurface x30 + · · · + x3n−1 = x3n . Then the counting function

N�0(P
n−1,�; B) has exact order B

n−2
3 for sufficiently large n. However, (1.5) fails in this

case. Indeed, Qm is the set of primes p �≡ 1 mod 3, whereas P�0 is the set of primes
p ≡ 1 mod 3, since Q�0 = Q(

√−3). This shows that it is hard to approach Tanimoto’s
question in full generality through counting arguments alone.

The hypothesis (1.5) is a little awkward to work with. If one restricts attention tom such
that

gcd(m j ,m j ′) = 1 for 0 ≤ j < j ′ ≤ n, (1.6)

then Qm is equal to the full set of rational primes. Moreover, it follows from the Chebotarev
density theorem that P� has density [Q� : Q]−1, for any type II thin subset �. Thus the
conditions of Theorem 1.3 are met for any thin set. However, the assumption (1.3) is too
stringent to cope with a sequence of integers ≥ 2 that satisfies (1.6).

Our proof of Theorems 1.1–1.3 relies on an explicit description of m-full integers x . For
such integers every exponent of a prime appearing in the prime factorisation of x can be
written km + (m + r), for integers k ≥ 0 and 0 ≤ r < m. Thus any non-zero m-full integer
x can be written uniquely in the form

x = sign(x) um
m−1∏

r=1

vm+r
r , (1.7)

for u, v1, . . . , vm−1 ∈ N, such that μ2(vr ) = 1 for 1 ≤ r ≤ m − 1 and gcd(vr , vr ′) = 1 for
1 ≤ r < r ′ ≤ m − 1.

It may be instructive to illustrate this notation by discussing the special case m0 = · · · =
mn = 2, in which case Campana-points in (Pn−1,�) correspond to vectors u, v ∈ N

n+1 and
ε ∈ {±1}n+1 with each v j square-free, for which

ε0c0u
2
0v

3
0 + · · · + εn−1cn−1u

2
n−1v

3
n−1 = εnu

2
nv

3
n .

When n = 3 we can clearly find vectors v ∈ N
4 with square-free components and ε ∈ {±1}4

in such a way that

−ε0 · · · ε3c0c1c2v30 · · · v33 = �.

Fixing such a choice and applying [8, Thm. 7] to estimate the residual number of u ∈ N
4

that lie on the split quadric, with u j ≤
√
B/v3j for 0 ≤ j ≤ 3, we readily deduce that

N (P2,�; B) 
 B log B, as claimed in Theorem 1.2
Returning now to the case of general m0, . . . ,mn ≥ 2, we summarise the structure of the

paper. Under the representation (1.7) it follows that Campana-points on (Pn−1,�) can be
viewed through the lens of Waring’s problem for mixed exponents. Given its proximity to
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Vinogradov’s mean value theorem, this is an area that has received a radical new injection of
ideas at the hands of Wooley [16,18,19] and Bourgain, Demeter and Guth [1]. Based on this,
in Sect. 2 we shall give a completely general treatment of the counting function associated
to suitably constrained integer solutions to the Diophantine equation

∑

0≤ j≤n

c jγ j u
m j
j = N ,

for given N ∈ Z and non-zero c j , γ j ∈ Z, in which the vectors u are asked to lie in a
congruence class modulo H . In this part of the argument we shall need to retain uniformity
in the coefficients γ j and in the modulus H . It is here that the condition (1.3) arises. The
resulting asymptotic formula is recorded in Theorem 2.7. In Sect. 3 we shall use Theorem
2.7 to establish the version of orbifold Manin that we have presented in Theorem 1.1. One
of the chief difficulties in this part of the argument comes from dealing with the coprimality
conditions implicit in the counting function N (Pn−1,�; B). Next, in Sect. 4we shall combine
Theorem 2.7 with information about the size of thin sets modulo p (for many primes p) to
tackle Theorem 1.3.

Finally, when H = 1 and c j = γ j = 1 for all 0 ≤ j ≤ n, it is easy to derive fromTheorem
2.7 an asymptotic formula for the mixed Waring problem. The following result may be of
independent interest.

Theorem 1.4 Assume that m0, . . . ,mn ≥ 2 and (1.3) holds. Let R(N ) denote the number of
representations of a positive integer N as

N = xm0
0 + · · · + xmn

n .

Then there exists η > 0 such that

R(N ) =
∏n

i=0 	(1 + 1
mi

)

	(
∑n

i=0
1
mi

)
S(N )N

∑n
i=0

1
mi

−1 + O(N
∑n

i=0
1
mi

−1−η
),

where S(N ) is given by (2.19).

There is relatively little in the literature concerning asymptotic formulae for R(N ) for
mixed exponents. The best result is due to Brüdern [3] who obtains an asymptotic formula
for R(N ) when m0 = m1 = 2, under some further conditions on the exponents, the most
demanding of which is that

n∑

i=2

1

mi
> 1.

Theorem 1.4 is not competitive with this, although it does not suffer from the defect that 2
must appear twice among the list of exponents. It remains an interesting open challenge to
prove an asymptotic formula for R(N ) for any value of n, when mi = 2 + i for 0 ≤ i ≤ n.

When m = m0 = · · · = mn , which is the traditional setting of Waring’s problem, the
condition in (1.3) reduces to n ≥ m2 + m. This shows that our approach is not completely
optimal in the equal exponent situation, since as explained in [19, Cor. 14.7], we know that
n ≥ m2 −m + O(

√
m) variables suffice to get an asymptotic formula in Waring’s problem.

It seems likely that by combining methods developed by Wooley in [17] and [19, §14], one
can recover this loss. (The authors are grateful to Professor Wooley for this remark.)
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2 The Hardy–Littlewood circle method

We shall assume without loss of generality that 2 ≤ m0 ≤ m1 ≤ · · · ≤ mn . Our assumption
(1.3) translates into

∑

0≤ j<n

1

m j (m j + 1)
≥ 1. (2.1)

In what follows it will be convenient to set

	 =
n∑

j=0

1

m j
− 1. (2.2)

Let N ∈ Z and let c = (c0, . . . , cn) ∈ (Z\{0})n+1. Let H ∈ N, γ ∈ N
n+1 and let h ∈

{0, 1, . . . , H − 1}n+1. The main results in this paper are founded on an analysis of the
counting function

Mc;γ (B;h, H ; N ) = #

⎧
⎪⎨

⎪⎩
u ∈ N

n+1 :
γ j u

m j
j ≤ B, for 0 ≤ j ≤ n

u ≡ h mod H∑
0≤ j≤n c jγ j u

m j
j = N

⎫
⎪⎬

⎪⎭
. (2.3)

We shall view c as being fixed, once and for all, but γ can grow and so we will need all of
our estimates to depend explicitly on it. In Theorems 1.1 and 1.3 we shall take N = 0 and
cn = −1, whereas in Theorem 1.4 we take H = 1, c j = γ j = 1 and B = N .

We let e(z) = exp(2π i z) for any z ∈ R. Let

Bj = (B/γ j )
1/m j ,

and

S j (α) =
∑

1≤u≤Bj
u≡h j mod H

e
(
αc jγ j u

m j
)
,

for 0 ≤ j ≤ n. Then we may write

Mc;γ (B;h, H ; N ) =
∫ 1

0
Sγ (α)dα, (2.4)

where

Sγ (α) = e(−αN )

n∏

j=0

S j (α).

Note that we may freely assume that γ j ≤ B for 0 ≤ j ≤ n, since otherwise
Mc;γ (B;h, H ; N ) = 0. Let δ be such that

0 < δ <
1

(2n + 5)mn(mn + 1)
. (2.5)

We define the major arcs M to be

M =
⋃

0≤a≤q≤Bδ

gcd(a,q)=1

M(a, q),
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where

M(a, q) = {α ∈ [0, 1) : |α − a/q| < B−1+δ}.
We define the minor arcs to be m = [0, 1)\M.

2.1 Contribution from themajor arcs

In the standard way we shall need to show that on the major arcs our exponential sums can
be approximated by integrals, with acceptable error. The following result is a straightforward
adaptation of familiar facts.

Lemma 2.1 Let h, H ∈ N ∪ {0} with 0 ≤ h < H. Let X ≥ 1. Let a ∈ Z, q ∈ N, β ∈ R and
α = a/q + β. Then

∑

1≤u≤X
u≡h mod H

e(αum) = X

qH

q−1∑

k=0

e

(
a(Hk + h)m

q

) ∫ 1

0
e(βXmzm)dz

+ O
(
q + qXm |β|) .

Proof Let X ′ = (X−h)/H . If X ′ < q then the absolute value of the left hand side is trivially
bounded by q + 1, and so we may proceed under the assumption that X ′ ≥ q . We write

∑

1≤u≤X
u≡h mod H

e(αum) =
∑

0<x≤X ′
e(α(Hx + h)m) + O(1)

=
q−1∑

k=0

e

(
a(Hk + h)m

q

) ∑

0<x≤X ′
x≡k mod q

e(β(Hx + h)m) + O(1).

The inner sum is
∑

0<x≤X ′
x≡k mod q

e(β(Hx + h)m) =
∑

−k/q<y≤(X ′−k)/q

e(β(qHy + h + Hk)m).

An application of the Euler–Maclaurin summation formula to this sum now yields the result.
��

Now let α = a/q + β ∈ M(a, q). We apply Lemma 2.1 with X = Bj , and α (resp. a)
replaced by αc jγ j (resp. ac jγ j ). Thus αc jγ j − ac jγ j/q = βc jγ j and

q + qB
m j
j |βc jγ j | � q + qB|β| � B2δ.

Put

Jc(L) =
∫ L

−L
e(−λN/B)

n∏

j=0

∫ 1

0
e
(
λc j z

m j
)
dzdλ

and set Sc;γ (L;h, H ; N ) to be

∑

q≤L

1

qn+1

∑

0≤a<q
gcd(a,q)=1

e

(
−aN

q

) n∏

j=0

∑

0≤k<q

e

(
a

q
c jγ j (Hk + h j )

m j

)
,
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for any L > 1. Then it follows from Lemma 2.1 that

∫

M
Sγ (α)dα = Sc;γ (Bδ;h, H ; N )Jc(B

δ)

∏n
j=0 Bj

Hn+1B
+ O (E1(γ ; H)) , (2.6)

where

E1(γ ; H) = B−1+δ
∑

q≤Bδ

q
n∑

y=0

(B2δ)n+1−y max
j1<···< jy

y∏

i=1

(
Bji

H
+ 1

)
.

Taking H ≥ 1 and observing that Bj ≥ 1 for all 0 ≤ j ≤ n we see that

max
j1<···< jy

y∏

i=1

(
Bji

H
+ 1

)
�
(

1

B0
+ · · · + 1

Bn

) n∏

j=0

Bj .

On executing the sum over q we therefore conclude that

E1(γ ; H) �
∏n

j=0 Bj

B

(
1

B0
+ · · · + 1

Bn

)
B(2n+5)δ. (2.7)

It remains to analyse the terms Sc;γ (Bδ;h, H ; N ) and Jc(Bδ) .
Beginning with the singular series, it follows from [15, Theorem 7.1] that

∣∣∣∣∣∣

∑

0≤k<q

e

(
x(Hk + h)m

q

)∣∣∣∣∣∣
� gcd(x, q)1/mHq1−1/m+ε (2.8)

for any ε > 0. Therefore

∣∣∣
∑

X<q≤Y

1

qn+1

∑

0≤a<q
gcd(a,q)=1

e

(
−aN

q

) n∏

j=0

∑

0≤k<q

e

(
a

q
c jγ j (Hk + h j )

m j

) ∣∣∣

� E2(γ ; H ; X , Y ),

where

E2(γ ; H ; X , Y ) = Hn+1
∑

X<q≤Y

q−	+ε
n∏

j=0

gcd(γ j , q)1/m j .

Put

E2(γ ; H) = Hn+1
∞∑

q=1

q1−	+ε
n∏

j=0

gcd(γ j , q)1/m j . (2.9)

Clearly E2(γ ; H ; Bδ,∞) ≤ B−δE2(γ ; H) and E2(γ ; H ; 0,∞) ≤ E2(γ ; H).
In view of (2.1), we have

n∑

j=0

1

m j
> 3. (2.10)
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Let us define

Sc;γ (h, H ; N ) =
∞∑

q=1

1

qn+1

∑

0≤a<q
gcd(a,q)=1

e

(
−aN

q

)

×
n∏

j=0

∑

0≤k<q

e

(
a

q
c jγ j (Hk + h j )

m j

)
.

(2.11)

This is absolutely convergent, since (2.10) yields

Sc;γ (h, H ; N ) � E2(γ ; H ; 0,∞) � E2(γ ; H) � Hn+1
n∏

j=0

γ
1/m j
j . (2.12)

Moreover,

Sc;γ (Bδ;h, H ; N ) = Sc;γ (h, H ; N ) + O
(
B−δE2(γ ; H)

)
. (2.13)

Turning to the singular integral, it follows from [15, Lemma 2.8] that

∫ 1

0
e
(
λc j z

m j
)
dz � min{1, |λ|−1/m j }.

Thus, in view of (2.10), we deduce that

∫

|λ|≥Bδ

n∏

j=0

∣∣∣∣
∫ 1

0
e
(
λc j z

m j
)
dz

∣∣∣∣ dλ �
∫

|λ|≥Bδ

|λ|−
∑n

j=0
1
m j dλ � B−δ	.

Hence

Jc =
∫ ∞

−∞
e(−λN/B)

n∏

j=0

∫ 1

0
e
(
λc j z

m j
)
dzdλ

is well-defined, and we have

|Jc − Jc(B
δ)| � B−δ	 ≤ B−δ. (2.14)

We are now ready to conclude our treatment of the major arcs. Note that

∏n
j=0 Bj

Hn+1B
= B	

Hn+1
∏n

j=0 γ
1/m j
j

.

On combining (2.6), (2.12), (2.13) and (2.14), we therefore obtain the following result.

Lemma 2.2 Assume that (2.10) holds. Then

∫

M
Sγ (α)dα = Sc;γ (h, H ; N )Jc

Hn+1
∏n

j=0 γ
1/m j
j

B	 + O

⎛

⎝E1(γ ; H) + B	−δE2(γ ; H)

Hn+1
∏n

j=0 γ
1/m j
j

⎞

⎠ .
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2.2 Contribution from theminor arcs

According to work of Wooley [19, Eq. (1.8)], the main conjecture in Vinogradov’s mean
value theorem asserts that for each ε > 0 and t, k ∈ N, one has

∫

[0,1)k

∣∣∣
∑

1≤x≤X

e(αk x
k + αk−1x

k−1 + · · · + α1x)
∣∣∣
2t
dα � Xt+ε + X2t− k(k+1)

2 . (2.15)

This result was established recently by Bourgain, Demeter and Guth [1] using �2-decoupling
and also byWooley [18,19] using efficient congruencing. The following mean value estimate
is a straightforward consequence of their work.

Lemma 2.3 Let k ∈ N and let s be a real number satisfying s ≥ k(k + 1). Let A, H ∈ Z\{0}
and h ∈ Z. Then we have

∫ 1

0

∣∣∣
∑

1≤x≤X

e(αA(Hx + h)k)

∣∣∣
s
dα � Xs−k,

where the implied constant does not depend on A, H or h.

Proof Let 2t be the largest even integer such that 2t ≤ s. Then it follows that t ≥ k(k+1)/2.
Hence

∫ 1

0

∣∣∣∣∣∣

∑

1≤x≤X

e(αA(Hx + h)k)

∣∣∣∣∣∣

s

dα ≤ Xs−2t
∫ 1

0

∣∣∣∣∣∣

∑

1≤x≤X

e(αA(Hx + h)k)

∣∣∣∣∣∣

2t

dα.

On considering the underlying equations of the integral on the right hand side using the
orthogonality relation, we deduce that the integral on the right hand side is the number of

1 ≤ x1, . . . , xt , y1, . . . , yt ≤ X (2.16)

such that

t∑

i=1

A(Hxi + h)k =
t∑

i=1

A(Hyi + h)k . (2.17)

It therefore follows that

∫ 1

0

∣∣∣∣∣∣

∑

1≤x≤X

e(αA(Hx + h)k)

∣∣∣∣∣∣

s

dα ≤ Xs−2t
∑

n=(n1,...,nk−1)∈Z
k−1

−t X j<n j<t X j

I (n),

where I (n) is the number of (2.16) satisfying (2.17), for which

t∑

i=1

x j
i −

t∑

i=1

y j
i = n j ,

for 1 ≤ j < k. We may clearly write

I (n) =
∫

[0,1)k

∣∣∣
∑

1≤x≤X

e(αk A(Hx + h)k + αk−1x
k−1 + · · · + α1x)

∣∣∣
2t
e
(−n.α′) dα,
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where α = (αk, . . . , α1) and α′ = (αk−1, . . . , α1). Summing trivially over n, the right hand
side of our estimate is

� X
k(k−1)

2

∫

[0,1)k

∣∣∣∣∣∣

∑

1≤x≤X

e(αk A(Hx + h)k + αk−1x
k−1 + · · · + α1x)

∣∣∣∣∣∣

2t

dα

= X
k(k−1)

2

∫

[0,1)k

∣∣∣∣∣∣

∑

1≤x≤X

e(αk x
k + αk−1x

k−1 + · · · + α1x)

∣∣∣∣∣∣

2t

dα,

where the last equality is an immediate consequence of the fact that

I (0) = #

{
1 ≤ x1, . . . , xt , y1, . . . , yt ≤ X :

t∑

i=1

x j
i =

t∑

i=1

y j
i (1 ≤ j ≤ k)

}
.

An application of (2.15) now yields our result. ��
We also require the following Weyl type estimate, which is another consequence of the

recent work on Vinogradov’s mean value theorem. We omit the proof since it is obtained by
invoking the main conjecture (2.15) in the proof of [16, Theorem 1.5].

Lemma 2.4 Let k ≥ 2 and let αk, . . . , α1 ∈ R. Suppose there exist a ∈ Z and q ∈ N with
gcd(a, q) = 1 satisfying |αk − a/q| ≤ q−2 and q ≤ Xk. Let

0 ≤ σ ≤ 1

k(k − 1)
.

Then
∑

1≤x≤X

e(αk x
k + αk−1x

k−1 + · · · + α1x) � X1+ε(q−1 + X−1 + qX−k)σ ,

for any ε > 0.

Using this result we obtain the following bound for the exponential sum on the minor arcs.

Lemma 2.5 Let ε > 0. Then

sup
α∈m

|Sn(α)| � B
1
mn

− δ
mn (mn+1) +ε

γ
− 1

mn+1
n .

Proof It will be convenient throughout the proof to write

σ(mn) = 1

mn(mn + 1)
.

Let α ∈ m and let β = αcnγnHmn . We put

B̃ = min

{
2B1−δ,

B

|cn |γnHmn2mn

}
.

When B̃ ≤ 1 it is clear that Sn(α) � 1. Since γn ≤ B we have

B1/mn−δσ (mn)+εγ
−1/mn+σ(mn)
n ≥ 1 
 Sn(α)

in this case. Thus we may suppose that B̃ > 1.
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By Dirichlet’s theorem on Diophantine approximation we know there exist b ∈ Z and
1 ≤ r ≤ B̃ such that gcd(b, r) = 1 and

|β − b/r | ≤ 1/(r B̃) ≤ 1/r2.

Note that b �= 0 since α ∈ m. For simplicity let us write A = cnγnHmn . We claim that
bA > 0. But if bA < 0 then

|β − b/r | = |αA − b/r | = α|A| + |b|/r > 1/r ,

since α > 0, which is a contradiction. This establishes the claim. Let A′ = A/ gcd(A, b) and
b′ = b/ gcd(A, b).

Let X = (Bn − hn)/H . First suppose Bn/2H > X . Then Bn < 2hn < 2H . In this case
we clearly have Sn(α) � 1, which is satisfactory. Thus we suppose Bn/2H ≤ X . In this
case r ≤ B̃ ≤ Xmn and Lemma 2.4 yields

Sn(α) =
∑

1≤x≤X

e

(
β

(
x + h

H

)mn
)

+ O(1)

� X1+ε(r−1 + X−1 + r X−mn )σ(mn),

(2.18)

for any ε > 0. Next, we note that

1

|A|r B̃ ≥ 1

|A|
∣∣∣β − b

r

∣∣∣ =
∣∣∣α − b

r A

∣∣∣ =
∣∣∣α − |b′|

r |A′|
∣∣∣.

If 2B1−δ ≤ B/|cnγnHmn2mn | it follows that
∣∣∣α − |b′|

r |A′|
∣∣∣ ≤ 1

|A|r B̃ ≤ 1

B̃
< B−1+δ.

On the other hand, if 2B1−δ > B/|cnγnHmn2mn | then
∣∣∣α − |b′|

r |A′|
∣∣∣ ≤ 1

|A|r B̃ ≤ |cn |γnHmn2mn

|A|B � 1

B
.

We now verify that 1 ≤ |b′| ≤ r |A′|. We’ve already seen that |b′| ≥ 1, so we suppose that
|b′| > r |A′|. Since α ∈ [0, 1) we have

1

r |A′| ≤
∣∣∣α − |b′|

r |A′|
∣∣∣ ≤ 1

|A|r B̃ ,

whence 1 < B̃ ≤ |A′|/|A| ≤ 1. This is a contradiction, so that we do indeed have 1 ≤ |b′| ≤
r |A′|. We also have gcd(r |A′|, |b′|) = 1. Finally, α ∈ M if r |A′| ≤ Bδ and B exceeds an
appropriate constant. But this is a contradiction, so that r |A′| > Bδ and (2.18) becomes

Sn(α) � B1/mn+ε

|A|1/mn
(|A′|/Bδ + (B/|A|)−1/mn + |A|/Bδ)σ(mn)

� B1/mn+ε

|A|1/mn
((B/|A|)−1/mn + |A|/Bδ)σ(mn)

� B1/mn−δσ (mn)+ε |A|σ(mn)−1/mn .

This completes the proof of the lemma, since σ(mn) − 1/mn = −1/(mn + 1). ��
We now have the tools in place to establish the following bound for the minor arc con-

tribiution.
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Lemma 2.6 Assume that (2.1) holds and let ε > 0. Then

∫

m

∣∣∣
n∏

j=0

S j (α)

∣∣∣dα � B	− δ
mn (mn+1) +ε

n∏

j=0

γ
− 1

m j+1

j .

Proof Let �n = mn(mn + 1) and let �0, · · · , �n−1 > 0 be such that

∑

0≤ j<n

1

� j
= 1.

In the light of (2.1) we can assume that � j ≥ m j (m j + 1) for all 0 ≤ j ≤ n − 1. It now
follows from Hölder’s inequality and Lemma 2.3 that

∫

m

∣∣∣∣∣∣

n∏

j=0

S j (α)

∣∣∣∣∣∣
dα ≤ sup

α∈m
|Sn(α)| ·

∫ 1

0

∣∣∣∣∣∣

n−1∏

j=0

S j (α)

∣∣∣∣∣∣
dα

≤ sup
α∈m

|Sn(α)| ·
n−1∏

j=0

(∫ 1

0
|S j (α)|� j dα

)1/� j

� Bε · sup
α∈m

|Sn(α)| ·
n−1∏

j=0

(
B

γ j

) � j−m j
m j � j

,

since H ≥ 1 and γ j ≤ B for all 0 ≤ j ≤ n − 1. We apply Lemma 2.5 to estimate Sn(α).
Finally, observing that

− 1

m j
+ 1

� j
≤ − 1

m j
+ 1

m j (m j + 1)
= − 1

m j + 1
,

for all 0 ≤ j ≤ n − 1, we obtain

∫

m

∣∣∣∣∣∣

n∏

j=0

S j (α)

∣∣∣∣∣∣
dα � B

1
mn

− δ
mn (mn+1) +ε

γ
− 1

mn+1
n ·

n−1∏

j=0

B
1
m j

− 1
� j γ

− 1
m j+1

j

� B	− δ
mn (mn+1) +ε

n∏

j=0

γ
− 1

m j+1

j ,

as required. ��

2.3 Final estimate

We may now bring together Lemmas 2.2 and 2.6 in (2.4), in order to record the following
estimate for the counting function (2.3).

Theorem 2.7 Assume that 2 ≤ m0 ≤ · · · ≤ mn and (2.1) holds. Let δ satisfy (2.5) and let
ε > 0. Then
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Mc;γ (B;h, H ; N )= Sc;γ (h, H ; N )Jc

Hn+1
∏n

j=0 γ
1/m j
j

B	 + O

⎛

⎝E1(γ ; H) + B	−δE2(γ ; H)

Hn+1
∏n

j=0 γ
1/m j
j

⎞

⎠

+O

⎛

⎝B	− δ
mn (mn+1) +ε

n∏

j=0

γ
−1/(m j+1)
j

⎞

⎠ ,

where E1 and E2 are given by (2.7) and (2.9), respectively.

We end this section by indicating how this implies Theorem 1.4, for which we observe that
Mc;γ (B;h, H ; N ) = R(N )when H = 1, B = N and c j = γ j = 1 for 0 ≤ j ≤ n. The error
term is clearly in the desired shape and recourse to (2.11) shows thatSc;γ (h, H ; N ) = S(N ),
with

S(N ) =
∞∑

q=1

1

qn+1

∑

0≤a<q
gcd(a,q)=1

e

(
−aN

q

) n∏

j=0

∑

0≤k<q

e

(
a

q
km j

)
. (2.19)

Finally, the standard arguments described in Chapter 4 of Davenport [6] readily yield

Jc =
∫ ∞

−∞
e(−λ)

n∏

j=0

∫ 1

0
e
(
λzm j

)
dzdλ =

∏n
i=0 	(1 + 1

mi
)

	(
∑n

i=0
1
mi

)
.

This therefore completes the proof of Theorem 1.4.

3 Orbifold Manin: proof of Theorem 1.1

We now turn to the task of proving an asymptotic formula for the counting function
N (Pn−1,�; B) in Theorem 1.1. We shall assume without loss of generality that 2 ≤ m0 ≤
· · · ≤ mn , so that (1.3) implies (2.1). The counting function can be written

N (Pn−1,�; B) = 1

2
#

⎧
⎨

⎩x ∈ Z
n+1
�=0 :

gcd(x0, . . . , xn) = 1
|x| ≤ B, xi is mi -full ∀ 0 ≤ i ≤ n
c0x0 + · · · + cn−1xn−1 + cnxn = 0

⎫
⎬

⎭ ,

where we henceforth follow the convention that cn = −1. In view of (1.7), we may write

N (Pn−1,�; B) = 1

2
#

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ Z

n+1
�=0 :

gcd(x0, . . . , xn) = 1, |x| ≤ B

x j = ±u
m j
j

∏m j−1
r=1 v

m j+r
j,r ∀ 0 ≤ j ≤ n

μ2(v j,r ) = 1, gcd(v j,r , v j,r ′) = 1
c0x0 + · · · + cnxn = 0

⎫
⎪⎪⎬

⎪⎪⎭
.

Suppose that we are given vectors s and t with coordinates s j ∈ N and t j,r ∈ N for
0 ≤ j ≤ n and 1 ≤ r ≤ m j − 1. It will be convenient to introduce the set

Nc(B; s, t) =

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ (N ∩ [1, B])n+1 :

x j = u
m j
j

∏m j−1
r=1 v

m j+r
j,r ∀ 0 ≤ j ≤ n

μ2(v j,r ) = 1, gcd(v j,r , v j,r ′) = 1
c0x0 + · · · + cnxn = 0
s j | u j and t j,r | v j,r ∀ j, r

⎫
⎪⎪⎬

⎪⎪⎭
.
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Given ε ∈ {±1}n+1 let εc denote the vector with coordinates ε j c j . Then

N (Pn−1,�; B) = 1

2

∑

ε∈{±1}n+1

#(Nεc(B; 1, 1) ∩ Z
n+1
prim), (3.1)

where 1 is the vector with all coordinates equal to 1.
We need to develop an inclusion-exclusion argument to cope with the coprimality condi-

tion in this expression. To ease notation we replace εc by c. Let x ∈ Nc(B; 1, 1). It is clear
that gcd(x0, . . . , xn) > 1 if and only if there exists a prime p and a subset I ⊆ {0, . . . , n}
for which p | u j for all j ∈ I and also p | ∏m j−1

r=1 v j,r for all j /∈ I . (Note that I is allowed
to be the empty set here.)

LetG denote the set of all possible vectors g ∈ N
n+1 with 1 ≤ g j ≤ m j −1 for 0 ≤ j ≤ n.

Let P = {2, 3, 5, . . .} denote the set of primes and let R be a non-empty finite collection
of triples (g; p; I ) where g ∈ G , p ∈ P and (possibly empty) I ⊆ {0, . . . , n}. Let R(p)
be the subset of R containing all the triples in R with prime p. In what follows we adhere
to common convention and stipulate that a union over the empty set is the empty set and a
product over the empty set is 1. We let

I (R(p)) =
⋃

(g;p;I )∈R (p)

I and J (g;R(p)) =
⋃

(g′;p;I )∈R (p)
g′=g

{0, . . . , n}\I .

Next, we define a(R) to be the vector in N
n+1 with coordinates

a j =
∏

p∈P
j∈I (R (p))

p, (0 ≤ j ≤ n), (3.2)

and we define b(R) to be the vector in N

∑n
j=0(m j−1) with coordinates

b j,r =
∏

p∈P
j∈J (g;R (p)) for some g∈G

satisfying g j=r

p, (0 ≤ j ≤ n, 1 ≤ r ≤ m j − 1). (3.3)

It is easy to see that (a(R),b(R)) �= (1, 1) as soon as R �= ∅. Moreover, when R =
{(g; p; I )} we see that Nc(B; a(g; p; I ),b(g; p; I )) is precisely the set of x ∈ Nc(B; 1, 1)
satisfying p | u j for all j ∈ I and p | v j,g j for all j /∈ I . In particular, it is now clear that

Nc(B; 1, 1) ∩ Z
n+1
prim = Nc(B; 1, 1)\

⋃

g∈G
p∈P

I⊆{0,...,n}

Nc(B; a(g; p; I ),b(g; p; I )). (3.4)

We proceed by establishing the following result.

Lemma 3.1 Given any R �= ∅, we have
Nc(B; a(R),b(R)) =

⋂

(g;p;I )∈R
Nc(B; a(g; p; I ),b(g; p; I )).

Proof Let x belong to the intersection on the right hand side. Then, given any (g; p; I ) ∈ R,

we have p | u j for all j ∈ I and p | v j,r if j /∈ I and r = g j , where x j = u
m j
j

∏m j−1
r=1 v

m j+r
j,r .
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Therefore, p | u j for all p such that j ∈ I (R(p)) and p | v j,r for all p such that

j ∈
⋃

(g;p;I )∈R (p)
g j=r

{0, . . . , n}\I .

Thus (3.2) and (3.3) imply that a j | u j and b j,r | v j,r , whence it follows that
x ∈ Nc(B; a(R),b(R)). On the other hand, if x ∈ Nc(B; a(R),b(R)) then we may
reverse the argument to deduce that x also belongs to the intersection of all the sets
Nc(B; a(g; p; I ),b(g; p; I )) for (g; p; I ) ∈ R. This completes the proof of the lemma.

��
Given vectors s and t composed from positive integers, let

�(s, t) =
∞∑

k=1

(−1)k #{R : #R = k, (s, t) = (a(R),b(R))}.

We henceforth set

�(1, 1) = 1.

Then, on combining the inclusion-exclusion principle with Lemma 3.1, we obtain

#
⋃

g∈G
p∈P

I⊆{0,...,n}

Nc(B; a(g; p; I ),b(g; p; I )) = −
∞∑

k=1

(−1)k
∑

#R=k

#Nc(B; a(R),b(R))

= −
∑

(s,t)�=(1,1)

�(s, t) · #Nc(B; s, t).

Note that #Nc(B; a(R),b(R)) = 0when #R is sufficiently largewith respect to B. Bringing
this together with (3.4), we conclude that

#Nc(B; 1, 1) ∩ Z
n+1
prim =

∑

s,t

�(s, t) · #Nc(B; s, t). (3.5)

It remains to asymptotically estimate these quantities.
We collect together some properties of the function �(s, t).

Lemma 3.2 Let (s, t) �= (1, 1) and let p ∈ P. We let s[p] be the vector whose j th coordinate
is s[p]

j = pvalp(s j ) and t[p] be the vector whose ( j, r)th coordinate is t [p]j,r = pvalp(t j,r ). Then
the following are true:

(i) �(s, t) = ∏
p∈P �(s[p], t[p]);

(ii) �(s, t) = 0 if one of the coordinates of s or t is divisible by p2;
(iii) �(s, t) = 0 if one of the coordinates of s or t is divisible by p, but there exists 0 ≤ j ≤ n

with s[p]
j = t [p]j,1 = · · · = t [p]j,m j−1 = 1; and

(iv) �(s[p], t[p]) � 1.

Proof It follows from the definitions of a(R) and b(R) that

a(R) =
∏

p∈P
a(R(p)) and b(R) =

∏

p∈P
b(R(p)),
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where we define multiplication of vectors by multiplying the corresponding coordinates. We
clearly have (s, t) = ∏

p∈P(s[p], t[p]) and #R = ∑
p∈P #R(p). Thus

∏

p∈P
(s[p],t[p])�=(1,1)

�(s[p], t[p]) =
∏

p∈P

∞∑

k′=1

(−1)k
′
Tp(k

′),

where

Tp(k
′) = #

{
R ⊆ G × {p} × {0, . . . , n} : #R = k′

(s[p], t[p]) = (a(R),b(R))

}
.

It follows that

∏

p∈P
(s[p],t[p])�=(1,1)

�(s[p], t[p]) =
∞∑

k=1

(−1)k
∑

∑
kp=k

∏

p∈P
kp>0

Tp(kp) = �(s, t),

which thereby establishes (i).
To prove (ii) we note that it is not possible for p2 to divide any coordinate of a(R(p)) or

b(R(p)) for any prime p and R �= ∅. Thus �(s[p], t[p]) = 0 if one of the coordinates of
s[p] or t[p] is divisible by p2.

Next, to prove (iii) let (s, t) �= (1, 1) and assume without loss of generality that p |
s1t1,1 . . . t1,m1−1 and s[p]

2 = t [p]2,1 = · · · = t [p]2,m2−1 = 1. Suppose there exists R such that
(s, t) = (a(R),b(R)). Then we have R(p) �= ∅, and also

2 ∈ {0, . . . , n} = I (R(p)) ∪
⋃

g∈G
J (g;R(p)).

If 2 ∈ I (R(p)) then p | s2. On the other hand, if 2 ∈ J (g;R(p)) then p | t2,g2 . In either
case we have a contradiction, whence �(s, t) = 0.

Finally, to prove (iv) we note there are only O(1) options for R(p) for any fixed p ∈ P.
It now follows from the definition that

|�(s[p], t[p])| ≤
∞∑

k=1

#{R(p) : #R(p) = k} � 1,

as required. ��
Given ε > 0, it follows from Lemma 3.2 that

�(s, t) �
n∏

j=0

sε
j

∏

1≤r≤m j−1

tεj,r . (3.6)

We now proceed by studying
∑

s,t

�(s, t) · #Nc(B; s, t).

Let

γ j = s
m j
j

m j−1∏

r=1

t
m j+r
j,r v

m j+r
j,r .
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Then

Nc(B; s, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
x ∈ N

n+1 :
x j = u

m j
j

∏m j−1
r=1 v

m j+r
j,r , γ j u

m j
j ≤ B

μ2
(
v j,r t j,r

) = 1
gcd

(
v j,r t j,r , v j,r ′ t j,r ′

) = 1∑
0≤ j≤n c jγ j u

m j
j = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,

where the indices run over 0 ≤ j ≤ n and 1 ≤ r < r ′ ≤ m j − 1. For each s and t we let

∑(1)

v

denote the sum over all v satisfying γ j ≤ B , gcd
(
v j,r t j,r , v j,r ′ t j,r ′

) = 1 andμ2
(
v j,r t j,r

) =
1. (If there is no v which satisfies the above conditions then the sum is considered to be 0.)
We may now write

#Nc(B; s, t) =
∑(1)

v

Mc;γ (B),

where Mc;γ (B) = Mc;γ (B; 0, 1; 0), in the notation (2.3). Guided by Lemma 3.2, we let

∑(2)

s,t

denote the sum over s, t satisfying s
m j
j

∏m j−1
r=1 t

m j+r
j,r ≤ B and gcd

(
t j,r , t j,r ′

) = 1, together

with the condition that none of the coordinates of s or t is divisible by p2 for any prime
p and if one of the coordinates of s or t is divisible by p then p | s j t j,1 . . . t j,m j−1 for all
0 ≤ j ≤ n.

We want to apply Theorem 2.7 with H = 1 and N = 0. Let δ > 0 satisfy (2.5) and let
Sc;γ = Sc;γ (0, 1; 0). Then, on appealing to Lemma 3.2 and (3.6), we deduce that

∑

s,t

�(s, t) · #Nc(B; s, t) = M(B) + O

(
B	+ε

3∑

i=1

Fi (B)

)
, (3.7)

for any ε > 0, where

M(B) = B	
∑(2)

s,t

�(s, t)
∑(1)

v

Sc;γ Jc
n∏

j=0

γ
−1/m j
j .

Moreover, in view of (2.7) and (2.9), the error terms are given by

F1(B) = B(2n+5)δ
n∑

k=0

B−1/mk
∑(2)

s,t

∑(1)

v

n∏

j=0
j �=k

γ
−1/m j
j ,

F2(B) = B−δ
∑(2)

s,t

∑(1)

v

∞∑

q=1

q1−	+ε
n∏

j=0

gcd(γ j , q)1/m j

γ
1/m j
j

,

F3(B) = B− δ
mn (mn+1)

∑(2)

s,t

∑(1)

v

n∏

j=0

γ
−1/(m j+1)
j .
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We now need to estimate these three error terms. In doing so it will be convenient to set

w j = v
m j+1
j,1 . . . v

2m j−1
j,m j−1 and τ j = s

m j
j

∏m j−1
r=1 t

m j+r
j,r .

Now for any τ ≥ 1, we have

∑

vm+1
1 ···v2m−1

m−1 ≤B/τ

1 �
∞∑

v2,...,vm−1=1

(
B/τ

vm+2
2 . . . v2m−1

m−1

)1/(m+1)

�
(
B

τ

)1/(m+1)

.

Similarly,

∑

vm+1
1 ...v2m−1

m−1 ≤B/τ

(
1

vm+1
1 . . . v2m−1

m−1

)1/m

� 1.

Using these estimates it follows that

F1(B) � B(2n+5)δ
n∑

k=0

B−1/mk
∑(2)

s,t

(
B

τk

)1/(mk+1) n∏

j=0
j �=k

τ
−1/m j
j

� B−1/mn(mn+1)+(2n+5)δ
∑(2)

s,t

n∏

j=0

τ
−1/(m j+1)
j ,

where we recall that τ j = s
m j
j

∏m j−1
r=1 t

m j+r
j,r . Lemma 3.2 now yields

∑(2)

s,t

n∏

j=0

τ
−1/(m j+1)
j ≤

∏

p

⎛

⎝1 +
n∏

j=0

(2m j − 1)p−m j /(m j+1)

⎞

⎠ � 1, (3.8)

since
∑n

j=0 m j/(m j + 1) > 1. (Note that the factor 2m j − 1 on the right hand side comes
from taking into account the 2m j − 1 possibilities where the factor p appears in s j or t j .)
We have therefore shown that

F1(B) � B−1/mn(mn+1)+(2n+5)δ.

Turning to the estimation of F2(B), we may write

F2(B) ≤ B−δ
∞∑

q=1

q1−	+ε f1(q) f2(q),

where

f1(q) =
∑(2)

s,t

n∏

j=0

⎛

⎝
gcd(s

m j
j t

m j+1
j,1 . . . t

2m j−1
j,m j−1, q)

s
m j
j t

m j+1
j,1 . . . t

2m j−1
j,m j−1

⎞

⎠
1/m j

,

f2(q) =
∑

w j≤B
μ2(v j,r )=1

n∏

j=0

gcd(w j , q)1/m j

w
1/m j
j

.

We first show that
∑

x≤B1/(m+r)

μ2(x) gcd(xm+r , q)1/m

x (m+r)/m
� qε, (3.9)
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if r ≥ 1. To see this we note that the left hand side is at most

∑

d|q
d1/m

∑

x≤B1/(m+r)

d|xm+r

μ2(x)

x (m+r)/m
.

When μ2(x) = 1, any d | xm+r admits a factorisation d = d1d22 . . . dm+r
m+r such that

d1 . . . dm+r | x , where μ2(di ) = 1 and gcd(di , d j ) = 1 for i �= j . If we write
x = x ′d1 . . . dm+r , then this sum is

≤
∑

d|q
d=d1...d

m+r
m+r

(d1 . . . dm+r
m+r )

1/m

(d1 . . . dm+r )(m+r)/m

∑

x ′≤B1/(m+r)/(d1...dm+r )

1

x ′(m+r)/m
.

The inner x ′-sum is absolutely convergent since r ≥ 1. The remaining sum over d | q
is O(qε) for any ε > 0, by the standard estimate for the divisor function. This therefore
establishes (3.9).

An application of (3.9) immediately yields

f2(q) ≤
n∏

j=0

m j−1∏

r=1

∑

v j,r≤B1/(m j+r)

μ2(v j,r ) gcd(v
m j+r
j,r , q)1/m j

v
(m j+r)/m j
j,r

� qε, (3.10)

for any ε > 0. Next, let

f1,T (q) =
∑(2)

s,t
max{τ0,...,τn}≥T

n∏

j=0

τ ε
j

(
gcd(τ j , q)

τ j

)1/m j

for any ε > 0 and T ≥ 1, where τ j = s
m j
j

∏m j−1
r=1 t

m j+r
j,r . In particular we have f1(q) ≤

f1,1(q). We claim that

f1,T (q) � q6ε(m0+···+mn)T−ε (3.11)

for any sufficiently small ε > 0. Once achieved, it will follow that

F2(B) � B−δ,

since (2.10) implies that 	 − 1 > 1.
To check the claim we let T denote the set of vectors (τ0, . . . , τn) ∈ N

n+1 with the
property that for any prime p we have valp(τ j ) ∈ {0,m j , . . . , 3m j − 1} and, furthermore, if
p | τ0 . . . τn then valp(τ j ) > 0 for all 0 ≤ j ≤ n. Associated to any (τ0, . . . , τn) ∈ T is a
unique choice for s, t. Thus we find that

f1,T (q) � 1

T ε

∑

(τ0,...,τn)∈T

n∏

j=0

τ 2εj

(
gcd(τ j , q)

τ j

)1/m j

� 1

T ε

∏

p

⎛

⎝1 +
n∏

j=0

∑

m j≤α j≤3m j−1

pmin(α j ,valp(q))/m j−α j /m j+2εα j

⎞

⎠ .

When p � q the corresponding local factor takes the shape

1 + O(p−n−1+2ε(m0+···+mn)).
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Alternatively, when p | q the factor is O(p6ε(m0+···+mn)) Assuming that ε is sufficiently
small this therefore concludes the proof of (3.11).

Finally we must analyse

F3(B) = B− δ
mn (mn+1)

∑(2)

s,t

∑(1)

v

n∏

j=0

γ
−1/(m j+1)
j .

We note that

∑

vm+1
1 ...v2m−1

m−1 ≤B

(
1

vm+1
1 . . . v2m−1

m−1

)1/(m+1)

� log B.

Applying (3.8) to handle the resulting sum over s and t it easily follows that

F3(B) � B− δ
mn (mn+1) +ε

,

for any ε > 0.
We substitute our bounds for the error terms back into (3.7). This yields

∑

s,t

�(s, t) · #Nc(B; s, t)

= M(B) + O
(
B	+ε

{
B− 1

mn (mn+1) +(2n+5)δ + B− δ
mn (mn+1)

})
.

(3.12)

Remark 3.3 Let us rerun the above argument, with the special choice (s, t) = (1, 1), since it
will be used again in the proof of Theorem 1.3. The starting point is to write

#Nc(B; 1, 1) =
∑(1)

v

Mc;γ (B),

where now γ has components γ j = ∏m j−1
r=1 v

m j+r
j,r . Tracing through the argument, this

ultimately leads to the conclusion

#Nc(B; 1, 1) = M̃(B) + O
(
B	+ε

{
B− 1

mn (mn+1) +(2n+5)δ + B− δ
mn (mn+1)

})
, (3.13)

for any ε > 0, where

M̃(B) = B	
∑(1)

v

Sc;γ Jc
n∏

j=0

γ
−1/m j
j .

We are now ready to complete the proof of Theorem 1.1. Repeating the arguments used in

(3.11) during our analysis of F2(B), it is easy to remove the constraint s
m j
j

∏m j−1
r=1 t

m j+r
j,r ≤ B

from the summationover s, t in themain termM(B). The total error in doing this isO(B	−η1),
for some η1 > 0. We proceed under the assumption that (2.1) holds and δ satisfies (2.5). We
may combine (3.1) and (3.5) with (3.12) in order to conclude that N (Pn−1,�; B) is

cB B
	 + O

(
B	+ε

{
B− 1

mn (mn+1) +(2n+5)δ + B− δ
mn (mn+1) + B−η1

})
,

for any ε > 0, where

cB = 1

2

∑

ε∈{±1}n+1

Jεc

∑

s,t

�(s, t)
∑(1)

v

Sεc;γ
∏n

j=0 γ
1/m j
j

.
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The error term is of the shape claimed in Theorem 1.1 and so it remains to analyse the quantity
cB .

The dependence on B in the factor cB arises from the definition of the sum
∑(1). A

straightforward repetition of our arguments above suffice to show that

cB = c + O(B−η2)

for some η2 > 0, where c is the constant that is defined as in cB , but with the summation
conditions γ j ≤ B removed from

∑(1), for 0 ≤ j ≤ n. This shows that N (Pn−1,�; B) =
cB	+O(B	−η) for an appropriate η > 0, as claimed in Theorem 1.1. To go further, we adopt

the notation smw = (sm0
0 w0, . . . , s

mn
n wn), where we recall that w j = v

m j+1
j,1 . . . v

2m j−1
j,m j−1 for

0 ≤ j ≤ n. Changing the order of summation, we may write

c = 1

2

∑

ε∈{±1}n+1

Jεc

∑

v∈N

∑n
j=0(m j−1)

∏n
j=0 μ2(v j,1 . . . v j,m j−1)

∏n
j=0 w

1/m j
j

∑

s,t
t|v

�(s, t)
Sεc;smw∏n

j=0 s j
, (3.14)

with the understanding that t | v means t j,r | v j,r for all j and r . We claim that

∑

s,t
t|v

�(s, t)
Sεc;smw∏n

j=0 s j
=
∏

p

(
lim

T→∞
Mε,T (v, p)

pnT

)
, (3.15)

where

Mε,T (v, p) = #

{
k mod pT :

∑n
j=0 ε j c jw j k

m j
j ≡ 0 mod pT

∃ j such that p � k jv j,1 . . . v j,m j−1

}
. (3.16)

This will complete our analysis of the leading constant c in Theorem 1.1.
To check the claim we put c′

j = ε j c j for 0 ≤ j ≤ n. It follows from (2.11) and
multiplicativity that

Sc′;smw∏n
j=0 s j

=
∏

p

1
∏n

j=0 s
[p]
j

(
1 +

∞∑

t=1

Bsmw(pt )

)
,

where

Bsmw(pt ) = 1

pt(n+1)

∑

0≤a<pt

gcd(a,pt )=1

n∏

j=0

∑

0≤k<pt

e

(
a

pt
c′
j s

m j
j w j k

m j

)
.

Letting

N (pT ) = #

⎧
⎨

⎩k mod pT :
n∑

j=0

c′
j s

m j
j w j k

m j
j ≡ 0 mod pT

⎫
⎬

⎭ ,

we deduce that

Sc′;smw∏n
j=0 s j

=
∏

p
p�s0...sn

(
lim

T→∞
N (pT )

pnT

) ∏

p
p|s0...sn

⎛

⎝ lim
T→∞

N (pT )

pnT
∏n

j=0 s
[p]
j

⎞

⎠ .
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Next, we put

Xp,T (s, t) =
{
k mod pT :

∑n
j=0 c

′
jw j k

m j
j ≡ 0 mod pT

p | s j ⇒ p | k j
}

,

for any (s, t) such that (s, t) = (s[p], t[p]). It is clear that N (pT ) = #Xp,T (s, t) when

p � s0 . . . sn and that N (pt )/
∏n

j=0 s
[p]
j = #Xp,T (s, t) when p � s0 . . . sn . It follows that

Sc′;smw∏n
j=0 s j

=
∏

p

Xp(s, t),

where

Xp(s, t) = lim
T→∞

#Xp,T (s, t)
pnT

.

Using the fact that t | v if and only if t[p] | v[p] for all p, it follows from part (i) of Lemma
3.2 that

∑

s,t
t|v

�(s, t)
Sεc;smw∏n

j=0 s j
=
∏

p

( ∑

(s,t)=(s[p],t[p])
t|v[p]

�(s, t) · #Xp(s, t)
)

.

On the other hand, on appealing to the inclusion-exclusion principle and the definition of � ,
for any prime p we return to (3.16) and see that

Mε,T (v, p) = #Xp,T (1, 1) − #
⋃

(g;p;I )
b(g;p;I )|v[p]

Xp,T (a(g; p; I ),b(g; p; I ))

= #Xp,T (1, 1) +
∞∑

k=1

(−1)k
∑

#R=k
R=R (p)
b(R )|v[p]

#Xp,T (a(R),b(R))

=
∑

(s,t)=(s[p],t[p])
t|v[p]

�(s, t) · #Xp,T (s, t).

Dividing by pnT and taking the limit T → ∞, we are now easily led to the proof of the
claim (3.15).

4 Thin sets: proof of Theorem 1.3

Let 	 = ∑n
j=0

1
m j

− 1, as in (2.2). In this section we assume that (1.3) holds and we let

� ⊂ P
n−1(Q) be a thin set. Theorem 1.3 is concerned with an upper bound for the quantity

N�(Pn−1,�; B) = 1

2
#

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ Z

n+1
�=0 :

gcd(x0, . . . , xn−1) = 1
|x| ≤ B, xi is mi -full ∀ 0 ≤ i ≤ n
c0x0 + · · · + cn−1xn−1 = xn
(x0 : · · · : xn−1) ∈ �

⎫
⎪⎪⎬

⎪⎪⎭
,
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under the conditions on � that are stated in the theorem. Let us write N�(B) =
N�(Pn−1,�; B) to ease notation. All of the implied constants in this section are allowed to
depend on the thin set �.

We shall proceed by using information about the size of thin sets modulo p on a set of
primes p of positive density. Our thin set � is contained in a finite union

⋃t
i=1 �i of thin

subsets of type I and type II. We shall abuse notation and write �i (Fp) for the image of
�i in P

n−1(Fp) under reduction modulo p. Similarly, we shall write �̂i (Fp) for the set of
Fp-points on the affine cone over this set of points.

Let�i ⊂ P
n−1(Q) be a thin subset of type I. Then it follows from the Lang-Weil estimates

[9] that there exits C1 > 0 such that

#�i (Fp) ≤ C1 p
n−2, (4.1)

for every sufficiently large prime p. If�i ⊂ P
n−1(Q) is a thin subset of type II, then according

to Serre [13, Thm. 3.6.2] there exists a constant κ ∈ (0, 1) such that

#�i (Fp) ≤ κ pn−1, (4.2)

for every sufficiently large prime p ∈ P�i , in the notation introduced before the statement of
Theorem 1.3.

We take advantage of this information by noticing that

N�(B) ≤
t∑

i=1

#

⎧
⎪⎪⎨

⎪⎪⎩
x ∈ Z

n+1
�=0 :

gcd(x0, . . . , xn−1) = 1
|x| ≤ B, xi is mi -full ∀ 0 ≤ i ≤ n
c0x0 + · · · + cn−1xn−1 = xn
(x0 : · · · : xn−1) mod p ∈ �i (Fp)∀p ∈ Si

⎫
⎪⎪⎬

⎪⎪⎭
,

for any finite subset of primesSi . We stipulate that minp∈S i p is greater than some absolute
constant depending only on

∏n
i=0 |ci |mi and the thin subset �i . Let

Hi =
∏

p∈S i

p

and put

�Hi =
∏

p∈S i

�̂i (Fp).

Given b′ = (b0, . . . , bn−1) we let

bn = c0b0 + · · · + cn−1bn−1 (4.3)

and we put b = (b0, . . . , bn). Appealing to (1.7) and putting cn = −1, we deduce that
N�(B) is

≤
t∑

i=1

∑

b′∈�Hi

#

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ∈ Z
n+1
�=0 :

gcd(x0, . . . , xn) = 1, |x| ≤ B

x j = ±u
m j
j

∏m j−1
r=1 v

m j+r
j,r ∀ 0 ≤ j ≤ n

μ2(v j,r ) = 1, gcd(v j,r , v j,r ′) = 1
c0x0 + · · · + cnxn = 0
x ≡ b mod Hi

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤
t∑

i=1

∑

ε∈{±1}n+1

∑(1′)

v

∑

b′∈�Hi

#

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
u ∈ N

n+1 :
gcd(u0w0, . . . , unwn) = 1
u
m j
j w j ≤ B, 0 ≤ j ≤ n∑
0≤ j≤n ε j c jw j u

m j
j = 0

u
m j
j w j ≡ b j mod Hi , 0 ≤ j ≤ n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
,
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wherew j = ∏m j−1
r=1 v

m j+r
j,r and

∑(1′)
v denotes a sumoverv = (v0, . . . , vn) ∈ N

n+1 satisfying
w j ≤ B and the coprimality conditions

gcd
(
v j,r , v j,r ′

) = 1, μ2 (v j,r
) = 1, gcd(w0, . . . , wn) = 1. (4.4)

(This should not be confused with the notation
∑(1)

v in Sect. 3, in which the condition
gcd(w0, . . . , wn) = 1 does not appear.)

Let us define

�
(i)
w;Hi

=
∏

p∈S i

�
(i)
w;p,

where

�
(i)
w;p =

{
h ∈ F

n+1
p \{0} : h

m j
j w j ≡ b j mod p for 0 ≤ j ≤ n

for someb′ ∈ �̂i (Fp)

}
.

In view of the coprimality conditions we are only interested in b �≡ 0 mod p for all p ∈ Si .
Thus, for each p ∈ Si and h ∈ �

(i)
w;p we have

h
m j
j w j �≡ 0 mod p for some j ∈ {0, . . . , n}. (4.5)

With this notation, we may write

N�(B) ≤
t∑

i=1

∑

ε∈{±1}n+1

∑(1′)

v

∑

h∈�
(i)
w;Hi

#

⎧
⎪⎨

⎪⎩
u ∈ N

n+1 :
u
m j
j w j ≤ B, 0 ≤ j ≤ n∑
0≤ j≤n ε j c jw j u

m j
j = 0

u ≡ h mod Hi

⎫
⎪⎬

⎪⎭
.

Note that #�(i)
w;Hi

≤ Hn+1
i . We now seek to apply Theorem 2.7 to the inner sum, much as

in (3.13). Let η > 0 be sufficiently small and assume that δ is chosen so that (2n + 5)δ =
1

m∗(m∗+1) −3η, where we have found it convenient to setm∗ = max0≤ j≤n m j . This is plainly
satisfactory for (2.5). We take ε = η in the statement of Theorem 2.7 and we assume that Hi

satisfies

Hn+1
i ≤ min{B δ

m∗(m∗+1) −ε−η
, B

1
m∗(m∗+1) −(2n+5)δ−ε−η} = Bη, (4.6)

where the second equality is true provided that η is small enough in terms ofm∗ and n. Under
this assumption it can be verified that the overall contribution from the error term in Theorem
2.7 is O(B	−η). It follows that

N�(B) �
t∑

i=1

B	

Hn+1
i

∑

ε∈{±1}n

∑(1′)

v

∑

h∈�
(i)
w;Hi

Sεc;w(h, Hi ; 0)
∏n

j=0 w
1/m j
j

+ B	−η, (4.7)

since Jεc � 1.
Before proceeding with an analysis of the singular series, we first record some estimates

for the size of �
(i)
w;p , for any i ∈ {1, . . . , t}.

Lemma 4.1 We have #�(i)
w;p ≤ m∗ pn for any p ∈ Si .

Proof Suppose without loss of generality that p � w0 and let h1, . . . , hn ∈ Fp be such that
h
m j
j w j ≡ b j mod p for 1 ≤ j ≤ n, for someb′, where b0 = c−1

0 (bn−c1b1−· · ·−cn−1bn−1).
Then there are at most m0 ≤ m∗ choices for h0. This confirms the lemma. ��
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Lemma 4.2 Assume that p ∈ Si and p � w j for 0 ≤ j ≤ n. Then we have

#�(i)
w;p ≤

{
(p − 1)#�i (Fp) if p ∈ Qm,

mn∗(p − 1)#�i (Fp) otherwise,

where Qm is defined in (1.4).

Proof Let z ∈ �i (Fp). Either there are no points in �
(i)
w;p corresponding to z, or else we may

assume that there exists h ∈ F
n+1
p \ {0} such that

b j ≡ h
m j
j w j mod p

for 0 ≤ j ≤ n, for some (b0, . . . , bn) ∈ F
n+1
p such that (b0 : · · · : bn−1) = z, in which bn

satisfies (4.3). Then the number of points in �
(i)
w;p associated to z is at most the number of

a ∈ F
∗
p and k ∈ F

n+1
p such that ab j ≡ k

m j
j w j mod p for 0 ≤ j ≤ n. For fixed a ∈ F

∗
p ,

since w j �≡ 0 mod p for 0 ≤ j ≤ n, it follows that the number of k is precisely the number
of solutions to the set of congruences

ah
m j
j ≡ k

m j
j mod p,

for 0 ≤ j ≤ n.
If b j = 0 then it forces h j = 0, and so k j = 0. Suppose without loss of generality that

b j �= 0 for 0 ≤ j ≤ R and bR+1 = · · · = bn = 0. Let us fix a choice of a primitive element
g ∈ F

∗
p and put a = gu , where 1 ≤ u ≤ p − 1. Then

#{k ∈F
n+1
p : ahm j

j ≡ k
m j
j mod p for 0 ≤ j ≤ n}

= #{(x0, . . . , xR) ∈ (F∗
p)

R+1 : xm j = a for 0 ≤ j ≤ R}
= #

{
(�0, . . . , �R) ∈ (Z/(p − 1)Z)R+1 : m j� j ≡ u mod p − 1

for 0 ≤ j ≤ R

}

=
{∏R

j=0 gcd(m j , p − 1) if gcd(m j , p − 1) | u for 0 ≤ j ≤ R,

0 otherwise.
.

In this way we see that
∑

a∈F∗
p
#{k ∈ F

n+1
p : ah

m j
j ≡ k

m j
j mod p for 0 ≤ j ≤ n}

=
∏

0≤i≤n gcd(mi , p − 1)

lcm (gcd(m0, p − 1), . . . , gcd(mn, p − 1))
(p − 1).

The factor in front of (p − 1) is 1 when p ∈ Qm and at most mn∗ in general. The statement
of the lemma now follows. ��

We are now ready to analyse the singular series in (4.7). Let us put c′
j = ε j c j for indices

0 ≤ j ≤ n. We recall from (2.11) that

Sc′;w(h, Hi ; 0) =
∞∑

q=1

1

qn+1

∑

0≤a<q
gcd(a,q)=1

n∏

j=0

∑

0≤k<q

e

(
a

q
c′
jw j (Hik + h j )

m j

)
.
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Put

Bw(pt ) = 1

pt(n+1)

∑

0≤a<pt

gcd(a,pt )=1

n∏

j=0

∑

0≤k<pt

e

(
a

pt
c′
jw j (Hik + h j )

m j

)
,

so that

Sc′;w(h, Hi ; 0) =
∏

p

(
1 +

∞∑

t=1

Bw(pt )

)
. (4.8)

If p � Hi then

1 +
∞∑

t=1

Bw(pt ) = 1 +
∞∑

t=1

1

pt(n+1)

∑

0≤a<pt

gcd(a,pt )=1

n∏

j=0

∑

0≤k<pt

e

(
a

pt
c′
jw j k

m j

)
.

It now follows from (2.8) that

∏

p�Hi

(
1 +

∞∑

t=1

Bw(pt )

)
=

∞∑

q=1
gcd(q,Hi )=1

1

qn+1

∑

0≤a<q
gcd(a,q)=1

n∏

j=0

∑

0≤k<q

e

(
a

q
c′
jw j k

m j

)

�
∞∑

q=1
gcd(q,Hi )=1

q
1−∑n

j=0
1
m j

+ε
n∏

j=0

gcd(q, w j )
1
m j ,

for any ε > 0. Moreover, in the usual way, for any prime p we have

1 +
T∑

t=1

Bw(pt ) = p−nT N (pT ), (4.9)

where

N (pT ) = #

⎧
⎨

⎩k mod pT :
n∑

j=0

c′
jw j (Hik j + h j )

m j ≡ 0 mod pT

⎫
⎬

⎭ .

In order to deal with primes p | Hi , we require the following simple form of Hensel’s lemma.

Lemma 4.3 Let m, y, T ∈ N and let A, B ∈ Z. Assume that p is prime such that p � Amy
and Aym + B ≡ 0 mod p. Then

#{x mod pT : Axm + B ≡ 0 mod pT , x ≡ y mod p} = 1.

Let p | Hi . Then Hi = pH ′
i for some H ′

i ∈ N that is coprime to p. It readily follows that

N (pT ) = pn+1#

⎧
⎨

⎩k mod pT−1 :
n∑

j=0

c′
jw j (pk j + h j )

m j ≡ 0 mod pT

⎫
⎬

⎭ .

If h mod p is a solution to the congruence

c′
0w0h

m0
0 + · · · + c′

nwnh
mn
n ≡ 0 mod p,
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then necessarily it is a non-singular solution by (4.5), since each prime p | Hi is large
enough that p �

∏
j c

′
jm j . Hence for T > 1 it follows from Lemma 4.3 that N (pT ) =

pn+1 pn(T−1) = pnT+1. Bringing this together with (4.8) and (4.9) we conclude that

Sc′;w(h, Hi ; 0) = Hi

∏

p�Hi

(
1 +

∞∑

t=1

Bw(pt )

)

� Hi

∞∑

q=1
gcd(q,Hi )=1

q
1−∑n

j=0
1
m j

+ε
n∏

j=0

gcd(q, w j )
1
m j .

Inserting this into (4.7), our work so far has shown that

N�(B) � B	
t∑

i=1

U (B, Hi ) + B	−η, (4.10)

for any η > 0, where

U (B, Hi ) = 1

Hn
i

∑(1′)

v

∑

h∈�
(i)
w;Hi

∞∑

q=1
gcd(q,Hi )=1

q
1−∑n

j=0
1
m j

+ε
n∏

j=0

gcd(q, w j )
1
m j

w
1/m j
j

.

Let 1 ≤ i ≤ t and recall that Hi = ∏
p∈S i

p. Appealing to (4.1), (4.2), together with
Lemmas 4.1 and 4.2, we deduce that

#�(i)
w;p ≤

⎧
⎪⎨

⎪⎩

C1mn∗ pn−1 if p � w j∀ j and�i is type I,

κ pn if p � w j∀ j,�i is type II andp ∈ P�i ∩ Qm,

m∗ pn otherwise,

for some κ ∈ (0, 1).
Suppose first that �i is type I and let ω(Hi ) = #Si . Then

#�(i)
w;Hi

Hn
i

≤
∏

p|Hi
p�w0...wn

C1mn∗
p

∏

p|Hi
p|w0...wn

m∗ = (C1mn∗)ω(Hi )

Hi

∏

p|gcd(Hi ,w0...wn)

pm∗
C1mn∗

� H−1+ε
i gcd(Hi , w0 . . . wn),

for any ε > 0. But then it follows that

U (B, Hi ) � H−1+ε
i

∑(1′)

v

gcd(Hi , w0 . . . wn)

∞∑

q=1
gcd(q,Hi )=1

q
1−∑n

j=0
1
m j

+ε
n∏

j=0

gcd(q, w j )
1
m j

w
1/m j
j

.

Observe that valp(w j ) ≥ m j + 1 whenever p | w j . In this way we can see that

valp

⎛

⎝gcd(Hi , w0 . . . wn)
∏n

j=0 w
1/m j
j

⎞

⎠ ≤ −1

m∗
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for every prime p such that p | Hi and p | w0 . . . wn . Thus, on removing common factors of
w j with Hi , one easily concludes that

U (B, Hi ) ≤ H−1+ε
i g(Hi )

∑

w j≤B
gcd(w j ,Hi )=1
(4.4) holds

∞∑

q=1
gcd(q,Hi )=1

q
1−∑n

j=0
1
m j

+ε
n∏

j=0

gcd(q, w j )
1
m j

w
1/m j
j

,

where g(Hi ) = ∏
p|Hi

(1 + O(p−1/m∗)). It is an elementary exercise to show that

g(Hi ) ≤ exp

(
C2(log Hi )

1−1/m∗

log log Hi

)
,

for an absolute constant C2 > 0. Taking g(Hi ) � H ε
i for any ε > 0, it now follows from

(2.10) and (3.10) that U (B, Hi ) �ε H−1+2ε
i . Once inserted into (4.10) and choosing Si in

such a way that Hi is a small enough power of B for (4.6), this shows that thin subsets of
type I make a satisfactory overall contribution.

Suppose next that �i is type II. We may assume that p ≥ m∗/κ for each p | Hi . Then

#�(i)
w;Hi

Hn
i

≤
∏

p|Hi
p�w0...wn
p∈P�i ∩Qm

κ
∏

p|Hi
p|w0...wn

m∗ ≤
∏

p|Hi
p∈P�i ∩Qm

κ
∏

p|gcd(Hi ,w0...wn)

m∗
κ

≤ gcd(Hi , w0 . . . wn)
∏

p|Hi
p∈P�i ∩Qm

κ.

We choose Si to be set of primes 1 � p ≤ log B/ log log B drawn from the set P�i ∩ Qm.
In particular Hi satisfies (4.6). Moreover, it follows from our assumption (1.5) that this set
of primes has positive lower density �, say. But then

∏

p|Hi
p∈P�i ∩Qm

κ =
∏

p|Hi

κ ≤
(
1

κ

)− � log B
(log log B)2

.

Feeding this into the argument that we have just given yields

U (B, Hi ) � exp

(
C2(log Hi )

1−1/m∗

log log Hi
− log(1/κ)� log B

(log log B)2

)
� 1

(log B)100
,

from which it follows that the thin subsets of type II make a satisfactory overall contribution
to (4.10) under the assumption (1.5). This completes the proof of Theorem 1.3.
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