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Semi-device-independent random number generation with
flexible assumptions
Matej Pivoluska 1,2✉, Martin Plesch 1,2✉, Máté Farkas3,4,5✉, Natália Ružičková6, Clara Flegel7, Natalia Herrera Valencia 7,
Will McCutcheon7, Mehul Malik 7,8✉ and Edgar A. Aguilar 4,8,9

Our ability to trust that a random number is truly random is essential for fields as diverse as cryptography and fundamental tests of
quantum mechanics. Existing solutions both come with drawbacks—device-independent quantum random number generators
(QRNGs) are highly impractical and standard semi-device-independent QRNGs are limited to a specific physical implementation and
level of trust. Here we propose a framework for semi-device-independent randomness certification, using a source of trusted
vacuum in the form of a signal shutter. It employs a flexible set of assumptions and levels of trust, allowing it to be applied in a wide
range of physical scenarios involving both quantum and classical entropy sources. We experimentally demonstrate our protocol
with a photonic setup and generate secure random bits under three different assumptions with varying degrees of security and
resulting data rates.
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INTRODUCTION
Randomness is an important resource in modern information
science. It has a great number of applications, ranging from
randomized sampling, simulations, randomized algorithms, and
above all, cryptography. Many of these applications critically
depend on the quality of random numbers, and therefore the
design of high-quality random number generators (RNGs) is of
utmost importance. There are many different sources of entropy
that can be utilized for RNG designs. These range from simple to
generate but hard to predict computer data (such as the
movement of a mouse cursor on a computer screen or the time
between user keystrokes) to seemingly random physical phenom-
ena (such as thermal noise or the breakdown in Zener diodes1,2).
In this regard, quantum mechanics offers the possibility of truly
random events, such as nuclear decay or photons traveling
through a semi-transparent mirror (see ref. 3 for a review on
quantum RNGs).
The quality of RNGs is traditionally assessed with the help of

statistical tests, or, more recently, machine learning4,5, which can
verify that the produced string is virtually indistinguishable from a
truly random string. In essence, however, such an approach to
analyzing RNGs is problematic, because the statistical tests do not
assume anything about the origin of the data they test. As an
example, take the binary expansion of the number e—although
the string created in this manner would pass many of the
conventionally used statistical tests, it is obviously not suitable for
cryptographic purposes. This ignorance of the process used to
generate the tested random string opens a window to various
security risks. Aside from malicious attacks on the RNG, such as
inserting back-doors6 or displaying a simple bias towards certain
strings7,8, its functioning can be compromised by a simple
hardware malfunction, which is often hard to detect9.

Considerations such as these have recently resulted in a
different approach to RNG designs based on quantum phenom-
ena, where stronger forms of randomness certificates are
possible10. Such quantum RNGs, introduced in ref. 11 and
developed in refs. 12–21, are called device independent (DI-RNGs),
because they assume very little about the hardware they use. The
security proof for these devices is usually based on Bell-type
arguments: the RNG is composed of several non-communicating
parts and runs a set of randomness-generation rounds, which
involve a predetermined quantum measurement. In a small,
randomly chosen fraction of the run-time, the device is tested. In
these test rounds, the ability of the devices to violate Bell-type
inequalities is verified22,23. The violation of local-realism can be
seen as a certificate that the devices use quantum measurements
and their outcomes are fundamentally unpredictable. Since Bell-
type arguments do not assume anything about the devices
used apart from space-like separation, this approach can truly
be seen as device-independent. The disadvantage of DI-RNGs
lies in their implementation—loophole-free Bell violations have
been achieved only recently and under very strict laboratory
conditions24–26.
In an attempt to retain the randomness certification capabilities

of DI-RNGs with less stringent experimental requirements, many
semi-device-independent random number generators (SDI-RNGs)
have been proposed27–39. Similar to DI-RNGs, SDI-RNGs include
test rounds that are designed to certify the randomness of their
output. However, to make the RNGs experimentally more feasible,
reasonable assumptions about the functioning of some compo-
nents of the RNG are made, such as a trusted source27–34 or
measurement device37–39.
In this paper we present an approach to semi-device-

independent randomness certification that allows for flexible
assumptions about the workings of an RNG. What sets our work
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apart from other SDI-RNG proposals is that our framework is
formulated in a high-level abstract language of trusted random-
ness sources. This allows us to certify randomness in a large
number of practical implementations utilizing both quantum and
classical entropy sources. Additionally, our framework can work
with different levels of trust in particular parts of the RNG, without
changing the protocol itself. This is in contrast to existing SDI-
RNGs, where the protocol relies on a fixed set of assumptions
about specific parts of the device. We showcase this flexibility
using a photon source and a beam splitter as the source of
entropy. Changing the assumptions on the photon source—
whether it produces either single photons, coherent/thermal
states, or is an unknown source characterized only by its average
photon production rate—is possible in our framework, at the cost
of changes in the amount of certifiable entropy. Unlike previous
SDI-RNG designs, our implementation therefore comes with a
user-defined security/production rate trade-off.
The paper is organized as follows. In the “General framework”

section we introduce our general framework, which consis ts of
three abstract models of entropy sources, and a general protocol
to extract perfect randomness from them. We discuss methods to
lower bound the entropy of strings obtained from our protocol in
the section “Entropy estimation”. The section “Example: a photon
through a beam-splitter” is devoted to a particular experiment
implementing the described entropy sources with the use of a
photon source and a beam splitter. Here we also discuss
how different assumptions on the experimental setup change
its description within our framework, which results in trade-off
between security and randomness production rate. Finally, in the
section “Experimental realization and results” we experimentally
implement the entropy source described in the section “Example:
A photon through a beam-splitter” and post-process its outcomes
with three different sets of assumptions, based on the amount of
trust placed on the photon source.

RESULTS
General framework
In this section we introduce three different abstract models of
randomness, with a decreasing level of trust and describe a
protocol, which uses a trusted shutter to extract randomness from
such sources.
Our basic assumption about the entropy source is that at

regular time intervals, it produces a signal with probability p, and
with probability 1− p, no signal is produced. Such an assumption
on the source is conceptually simple, very natural, and in fact
many conventional entropy sources mentioned above, such as
Geiger counters, thermal noise, or the breakdown in Zener diodes
can be modeled in this way. One might argue that such an
assumption on the source is too strong, because if one also
assumes perfect and trusted signal detectors, extracting random-
ness from such a source is trivial—click events can be interpreted
as "1” and no-click events as "0”. Entropy of such an output string
is easily calculable and it can be post-processed into a perfectly
random string. Indeed, early trusted commercial quantum RNGs
can be described this way (e.g. IDQuantique40 using a photon
source and a beam splitter as an entropy source). The main result
of this work is that the above assumption on the entropy source
can be made sufficient even in the case of partially untrusted
measurement device.
In order to achieve this, we add an additional component to the

setup—a movable shutter, which can block the signal being
sent from the source to the measurement device (see Fig. 1). We
call this scenario a simple scenario and the source of entropy a
simple source.
Taking the simple entropy source as a building block, we can

generalize to a scenario referred to as a mixed source scenario,

where the entropy source is a probabilistic mixture of multiple
simple sources. Formally, we define a discrete (potentially infinite)
probability distribution, γ= {γi}, γi ≥ 0∀i, ∑iγi= 1. We associate a
simple source Si with each γi. In the mixed source scenario, the
simple source Si is chosen with probability γi and subsequently a
signal is sent with probability pi (see Fig. 2).
The value of the random variable γ in each round is assumed to

be known to the adversary and the measurement device, but
unknown to the user. In order to derive bounds on the entropy
produced, the variable γ has to be at least partially characterized.
This characterization takes the form of a (potentially infinite)
sequence of constraints, {fj(γ)= cj}. The strongest of such
constraint sets is describing γ completely by specifying each γi.
We study this special case separately; however, we show that the
entropy of the RNG output can be lower bounded even for weaker
characterizations of γ. In fact, this is possible already if the
constraint set contains only a single (smooth) function (see section
“Entropy estimation”).
Using such a high-level abstraction of the entropy sources is

deliberate. It makes the extraction protocol presented below
usable for a plethora of different experimental setups. The only
requirement is that trusted randomness is produced in the form of
a signal with probability p. The reason why the signal is
unpredictable to the adversary varies from implementation to
implementation. This makes the presented framework usable with
both quantum sources of randomness, where randomness is
guaranteed from inherent non-determinism of certain quantum
measurements and classical sources, where some assumption
about unavailability of certain data to the adversary must be
made. In the particular experimental realization presented in
section “Example: A photon through a beam-splitter”, the trusted
randomness is obtained from the path a single photon takes

Fig. 1 The simple scenario. A simple entropy source, S, emits a
random signal with probability p. This signal is assumed to be
unpredictable to any potential adversary. The signal can be blocked
with the help of a movable shutter, A, controlled via a binary
variable x. The measurement device, D, is assumed to be dishonest.

Fig. 2 Mixed source scenario. In the second scenario, the entropy
source S (depicted by a dashed rectangle) is a probabilistic mixture
of several (potentially infinitely many) simple sources S1; ¼ ;Sn.
A random variable γ is used to choose a simple source Si , which
emits a random signal with probability pi. The choice of source Si in
a given round is known to the measurement device D and the
adversary, but not to the user. The random variable γ is constrained
either by a fixed probability distribution or in a more general
scenario by more general constraints (e.g. mean value).
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traveling through a beam splitter, which is a genuinely random
quantum event.
Before we describe our protocol for extracting perfect random-

ness from the sources described above, we list a number of
required technical assumptions.

● The shutter (A) can be reliably controlled by the user through
their inputs x.

● The user has access to a uniform random seed X uncorrelated
to the devices. For example, this can be a private randomness
source. Note that in this case we also naturally require that the
output randomness HminðYjEÞ of the device is longer than ∣X∣.
This can be always achieved by increasing the block size N and
decreasing the testing rate q accordingly. Particularly, the
protocol requires jXj ¼ NOð�q log qÞ bits to choose the test
rounds and their shutter settings. With large enough N it is
sufficient to set q ¼ 1ffiffiffi

N
p , which leads to jXj ¼ Oð ffiffiffiffi

N
p

log
ffiffiffiffi
N

p Þ
bits which are used to choose the test rounds, while a much
longer output string of length HminðYjEÞ ¼ OðNÞ is being
produced. Another random string is required for final hashing.
This string can however be re-used (see section “Experimental
realization”); thus, randomness needed for its selection is
negligible for large N or public randomness beacon41.

● The entropy source ðSÞ is a passive element which does not
change from round to round.

● The measurement device (D) is memoryless, which together
with the previous assumption implies that each round is
identical and independently distributed. Note that the
assumption of memoryless measurement devices is rather
standard (and often hidden) in the literature, and appears in
many contexts (e.g. QKD42, randomness generation32, and
more generally, Bell inequality violations43). Nevertheless,
methods have recently appeared (e.g. refs. 44 or 45), which
allow to leave out this assumption. In particular, using these
tools it is often possible to show that the amount of produced
private entropy is almost the same as in the memoryless case.

● In case of quantum entropy sources ðSÞ in which the signal
state is in a superposition with no-signal state, the measure-
ment device ðDÞ is described by a projector onto a basis that
contains the no-signal state (see section “Example: A photon
through a beam-splitter” for an example with coherent
photon sources).

● There is no communication between the devices besides the
signal channel, and the laboratory is shielded from external
eavesdroppers. In particular, neither the measurement device
nor the source receive direct information about the shutter
settings x.

As in any cryptographic protocol, if any of these assumptions
cannot be met, the security of the final string cannot be
guaranteed. The assumptions imply that the measurement device
is left mostly uncharacterized; in particular, it may still be
classically correlated with an adversary.
Now we are ready to present the protocol, which consists of

two parts: data collection and post-processing. For practical
purposes, the protocol is run in large batches of N rounds. For the
full description, see Fig. 3. As is seen from the protocol, the user
will use the testing rounds to obtain a statistical estimation of the
workings of the device.

S ¼ Pð click jx ¼ 0Þ; Pð click jx ¼ 1Þð Þ ¼ ðα; βÞ: (1)

More precisely, the user will create a vector Ŝ as an estimate for
S in Eq. (1), which will be filled out with observed experimental
frequencies. This introduces an estimation error εe, which can be
made arbitrarily small by increasing the number of rounds in a
batch N, and the testing rate q. To keep the main text easier to
read, we assume that the experimentalist has access to the actual
probabilities in Eq. (1), and elaborate on the sampling error in
Supplementary Note 1.

In the following section we describe the post-processing
procedure. The goal is to estimate min-entropy HminðYjEÞ of the
output string Y conditioned on the knowledge of the adversary E.
Min-entropy HminðYjEÞ roughly describes the length of a perfectly
random string obtainable from Y with the help of randomness
extractors46. The lower bound on min-entropy is obtained by
upper bounding the probability of the adversary to guess the
outcome of a single randomness generating round (shutter open),
denoted g*. The obtained upper bound depends on observed S,
the type of the entropy source used—simple or mixed, with or
without the full characterization of γ. Finally, guessing probability
is related to min-entropy of the outcome Y as

HminðYjEÞ � �jYjlog 2ðg�Þ; (2)

where ∣Y∣ is the number of randomness generating rounds.

Entropy estimation
In this section we give a procedure to estimate the entropy of the
data collected in the protocol described in the previous section.
This is split into three parts based on the type of entropy
source used.
The simplest case uses a simple entropy source S which sends a

signal with probability p. Based on the assumptions introduced
earlier, the strategy of the measurement device to click (i.e.
behave as if it detected the signal) in a given round can be based
only on whether the signal arrived or not, (i.e. a single bit of
information). The response of a detector (whether to click or not
to click) can also be described by a single bit. Therefore, the
possible deterministic response functions, called deterministic
detector strategies, can be described by a function S: {0, 1}↦ {0,
1}, which maps a bit to a bit. There are only four functions of this
type, which we call “Never Click” (SN) (both input bits are mapped
to 0), “Always Click” (SY) (both input bits are mapped to 1), “Click
Honestly” (SH) (0 is mapped to 0 and 1 is mapped to 1), “Click
Dishonestly” (S¬H) (0 is mapped to 1 and 1 is mapped to 0). We
represent these strategies by the observable behaviors of the
measurement device using them, which can be expressed as

Fig. 3 Randomness extraction protocol. For post-processing, note
that the estimation depends on the assumptions made on the
entropy source used. The output of the protocol Z (of length
HminðYjEÞ) is a random variable whose distribution deviates at most ϵ
in variational distance from a uniform random variable.
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vectors Pð click jx ¼ 0Þ; Pð click jx ¼ 1Þð Þ:
SN ¼ 0; 0ð Þ;
SY ¼ 1; 1;ð Þ
SH ¼ p; 0ð Þ;
S:H ¼ 1� p; 1ð Þ;

(3)

General non-deterministic strategies can be described by
response functions which, except for the information about the
arriving photon, take an additional randomized input. It is easy to
see that it is sufficient to consider a random input λ of 2 bits,
which specifies which of the deterministic functions described
above is being used in a given round. The observable statistics of
such non-deterministic strategies can be therefore expressed as a
convex combination of observable statistics of four deterministic
strategies described in Eq. (3). The convex combination is
described by a hidden variable λ. We assume that the value of λ
is shared between the measurement device and the adversary in
each round. Further, we assume that the values (Y, N, H, or ¬H) of
the hidden variable λ are identically distributed throughout the
rounds according to a probability distribution λY, λN, λH, λ¬H ≥ 0;
λY+ λN+ λH+ λ¬H= 1. The adversary tries to guess whether the
measurement device clicked or not in each given round based on
their knowledge of λ, and thus to guess the outcomes of the RNG.
Let us highlight the importance of the trusted movable shutter

in our design. If the design did not contain it, then setting the
random variable λ to be uniformly distributed over the strategies
SN and SY would lead to the output of the RNG being uniformly
random as well. It would therefore pass any statistical test with
high probability, even though the adversary would posses its
perfect copy, rendering it useless for any cryptographic purpose.
In order to safely bound the amount of the entropy produced,

the user must assume that any deviation from the idealized
honest scenario SH is correlated with information gained by the
adversary. We measure the information gain by the adversary’s
optimal guessing probability, g*, which is related to the min-
entropy via g� ¼ 2�HminðYjEÞ . If in a given round the measurement
device is following the strategies SN or SY, then the adversary can
be certain of the output, but if SH or S¬H is used, the guessing
probability is reduced to g :¼ maxð1� p; pÞ.
Without loss of generality, let us assume that P(click∣x= 0) > P

(click∣x= 1) (the other case can be treated similarly, due
to the symmetry of the measurement device strategies). Then,
Se= (α, β) can be written as the convex combination
1
2 ð2β; 2βÞ þ 1

2 ð2α� 2β; 0Þ. Note that the (2β, 2β) part can be
obtained by the measurement device by using only the strategies
SN or SY, i.e. without decreasing the adversary’s guessing
probability. On the other hand, the (2α− 2β, 0) part can be
obtained by using strategy SH only. In particular, this means that
whenever our assumption holds, the adversary’s optimal strategy
is to set λ¬H= 0, and their guessing probability can be obtained by
solving the following optimization problem:

g� ¼ max
fλg

λN þ λY þ λH � g
s:t: λY þ λH � p ¼ α

λY ¼ β

λN þ λY þ λH ¼ 1

λN;Y;H � 0:

(4)

Since the first three constraints contain only three variables and
take the form of equalities, we can directly solve them for λ{N,Y,H} to
obtain

λY ¼ β; λH ¼ α� β

p
; λN ¼ 1� β� α� β

p
:

In order to satisfy the last constraint, λN,Y,H ≥ 0, the following

needs to hold:

0 � β � 1 β � α � βþ p α � pþ βð1� pÞ � αþ p:

These six conditions are not independent, but they can be
reduced to three conditions which are required for the existence
of the solution (see Supplementary Note 2 for a geometric
interpretation):

0 � β � α � pþ βð1� pÞ: (5)

If these conditions are satisfied, the result of the optimization is

g� ¼ 1� α� βð Þ 1� g
p

� �
; (6)

and HminðYjEÞ � �log 2 1� α� βð Þ 1�g
p

� �h i
jYj, where ∣Y∣ is the size

of the output string Y.
Let us now turn to the more involved case of a probabilistic

mixture of countably many simple sources. Recall that in this case
the source S is a mixture of simple sources Si , characterized by a
known probability distribution γ. Since the measurement device
knows which source Si is being used in a given round, it can
produce different statistics Si for each source, and the overall
observed statistics can be written as S= ∑iγiSi. Just like in the case
of a single simple source, without loss of generality we assume
that S= (α, β) satisfies α ≥ β. This assumption also implies (see the
Supplementary Note 3) that in the optimal solution each Si= (αi,
βi) satisfies αi ≥ βi, as well as the full set of conditions in Eq. (5).
Thus, for each source Si the produced statistics can be written as
Si ¼ λi;YSY þ λi;NSN þ λi;HSHi , with SY= (1, 1), SN= (0, 0) being the
constant strategies and SHi ¼ ðpi; 0Þ the honest strategy of the
source Si . Since each source Si produces entropy according to
gi :¼ maxðpi ; 1� piÞ and contributes to the overall guessing
probability g* by g�i ¼ λi;Y þ λi;N þ λi;H � gi weighted by γi, we have

g� ¼
X
i

γig
�
i : (7)

Hence, the bound to the adversary’s guessing probability is given
by the solution to the following linear program:

max
fλg

P
i
γiðλi;N þ λi;Y þ λi;H � giÞ

s:t:
P
i
γi λi;Y þ λi;H � pi
� � ¼ αP

i
γi � λi;Y ¼ β

λi;N þ λi;Y þ λi;H ¼ 18i
λi;fN;Y;Hg � 0:

(8)

In order to formulate the solution to this optimization problem,
let us introduce some notation. We start by dividing the set of all
entropy sources S into two sets, Sþ and S�. The source Si
belongs to Sþ if and only if pi>

1
2, otherwise it belongs to S�. Let

us also define N+ as the number of sources in the set Sþ
(including the possibility that N+ represents ∞). We will use
positive integers i ≥1 to label the elements of Sþ, and negative
integers i ≤− 1 to label the elements of S�. This allows us to
define N� ¼ �jS�j, where jS�j is the cardinality of S� (again,
potentially infinite). Then, without loss of generality, we will use
the ordering of the sources in the set S such that ∀i > j, pi ≥ pj. We
use the convention that unless specified otherwise, ∑i denotes the
sum over all sources from S. Last but not least, note that we
deliberately left out the index i= 0, as it is used in a formulation of
the solution and its proof.
Using the above notation, the solution of the optimization

problem presented in Eq. (8) reads (see section “Known
distribution analysis” for proof):

g� ¼ 1� ðα� βÞ 1� pN
pN

� �
þ
XNþ

i¼Nþ1

γi
pi
pN

� 1

� �
: (9)
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Here, if
P

i2Sþγipi � α� β, then N= 0 and pN ¼ 1
2, and

otherwise N is defined to be the largest natural number such thatXNþ

i¼N

γipi � α� β: (10)

Again, the guessing probability g* allows us to lower bound the
min-entropy of the output string Y of length ∣Y∣ as
HminðYjEÞ � �jYjlog 2ðg�Þ.
In the more general case, the probability distribution γ, which

chooses the simple source Si to use in a given round, is not fully
characterized, but is constrained by a set of functions, {fj(γ)= cj}.
Formally, all the arguments from the previous case remain the
same, except now the optimization needs to be done over the
parameters γi as well. The maximization task can be stated as
follows:

max
fλg;fγg

P
i
γi λi;N þ λi;Y þ λi;H � gi
� �

s:t: f jðγÞ ¼ cj 8jP
i
γi ¼ 1P

i
γi λi;Y þ λi;H � pi
� � ¼ αP

i
γi λi;Y þ λi;H
� � ¼ β

λi;N þ λi;Y þ λi;H ¼ 1 8i
λi;fN;Y;Hg � 0

γi � 0:

(11)

Since the functions fj are in principle arbitrary, the constraints
might not be linear anymore and thus it might not be possible to
efficiently solve the problem, even numerically. However, if the
functions fj are smooth, for every fixed distribution γ, we are able
to optimize over the variables {λ} according to the previous
section. Therefore we can use the solution in Eq. (9) as the
objective function, and the optimization problem becomes

max
fγg

1� ðα� βÞ 1�pN
pN

� �
þ PNþ

i¼Nþ1
γi

pi
pN
� 1

� �
;

s:t: f jðγÞ ¼ cj 8jP
i
γi ¼ 1

γi � 0:

(12)

Note that this is still not an easy optimization problem, because
even if the functions fj are smooth, a minor change in the
distribution of γi might lead to a change in the starting point of
the summation in Eq. (10), as N is implicitly dependent on γi via
Eq. (10).
To address this problem, let us change the perspective on N.

Instead of N being an implicitly defined value dependent on γ, we
will interpret it as a free parameter. Additionally, it can be shown
(see section “Known distribution analysis”) that the maximum is
obtained when the condition in Eq. (10) for γ is satisfied
with equality. In such a case the objective function can be written
in a simpler form (see Eq. (55)) and the optimization problem
becomes

max
fγ;Ng

1� ðα� βÞ þPNþ

i¼N
γið2pi � 1Þ;

s:t: f jðγÞ ¼ cj 8jP
i
γi ¼ 1

γi � 0PNþ

i¼N
γipi ¼ ðα� βÞ:

(13)

Note that if we fix the value of N, this maximization problem
becomes much easier, because the target function is linear in γ.
This yields a simple algorithm to find the solution of Eq. (13). One
can simply solve the problem for each possible N∈ {1,…, N+}, and
take the overall maximum over the solutions as the final outcome.
This algorithm of course involves a potentially infinite number

of optimization problems to solve, but for simple (e.g. linear)
constraint functions fj it can be shown that there is a threshold
value Nmax, such that it is not possible to satisfy both the
conditions given by fj and

PNþ
i¼N γipi ¼ ðα� βÞ, whenever

N >Nmax. Last but not least, note that if the functions fj are linear,
for each fixed value of N the optimization problem described in
Eq. (13) is a linear program and thus can be solved efficiently.
Additionally, in Appendix 4.3 we show that in case of a single
linear constraint function f, feasible values of N are constrained to
a small finite interval, which renders the optimization efficient. The
solution to this optimization problem again yields the probability
g* of the adversary to guess the outcome of a single generating
round, which is related to min-entropy of output string Y as
HðYjEÞ � �jYjlog 2ðg�Þ.

Example: A photon through a beam splitter
In this section we describe a simple optical setup for randomness
generation and analyze it with the help of our framework. The
entropy source S consists of a photon source PS emitting
photons through a beam splitter BS with reflection probability π.
Transmitted photons are coupled to a photon detector D and
their path can be blocked by a movable shutter A, which can be
reliably controlled via a binary variable x. Reflected photons
are discarded (see Fig. 4). We use this physical setup to showcase
the assumption flexibility our framework allows for. First of all, the
model that describes the entropy source in this setup depends on
the assumption we place on the photon source PS.
Single photon. If the photon source PS produces a single

photon on demand, the entropy source S is a simple entropy
source with the probability p= 1− π of sending a signal.
Known photon distribution. If the photon source PS produces i

photons with known probability γi, the source S is a mixture of
simple sources Si with pi= 1− πi and mixing probability γ= {γi}.
Known mean number of photons. If the photon source is

characterized only by the mean photon number μ, the setup
corresponds to a source S which is a mixture of simple sources Si
with pi= 1− πi and the mixing probability γ is constrained by
∑iiγi= μ.
While the single-photon source case can be easily seen to be a

simple source, the other two cases require further explanation.
Assume that the source produces an n-photon event, where n ≥ 2.

Fig. 4 Photonic setup. The photonic entropy source S (depicted by
a dashed rectangle) consists of a photon source PS coupled to a
beam splitter BS with the probability of reflection π and the
probability of transmission 1− π. Transmitted photons are inter-
preted as a random signal emitted from the entropy source, while
the reflected photons are discarded. In order to extract randomness
from such a source, we use a mostly uncharacterized and untrusted
measurement device and a trusted shutter controlled by a binary
variable x. According to the assumptions we place on the photon
source PS, this photonic setup is able to realize all three different
general scenarios that we introduced in the section “General
framework”.
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Since the number of photons transmitted through the beam
splitter can vary between 0 and n, the information available to the
(photon-counting) measurement device is more complex than just
binary information about receiving the signal or not. The response
function of the measurement device is therefore potentially more
complex than the four deterministic functions described in Eq. (3).
In fact, there are 2n+1 different deterministic response functions
assigning click/no-click measurement device events to the
number of transmitted photons. In Supplementary Note 4, we
show that in spite of this exponential increase, for each n there are
only four response functions that yield the optimal guessing
probability for the adversary. The first two are "Never Click" and
"Always Click", which are fully deterministic and do not depend on
the number of received photons. The third response function is
labeled "Click Honestly". Using this response function, the
measurement device clicks when a positive number of photons
arrive and does not click when no photons arrive. The last
response function is called "Click Dishonestly", and the measure-
ment device clicks only when no photons arrive. These are exactly
the four strategies that characterize a simple entropy source, since
the measurement device decides only on the binary information
whether it received a signal (i.e. non-zero number of photons) or
not. Therefore, known photon distribution case can be character-
ized as a mixed source with known mixing probability γ and the
known mean number of photons case as a mixed source with
mixing probability constrained by mean photon number μ.
Note that in the setup described above we do not assume

anything about the coherence of the photon source PS. In fact, in
order to be able to describe the strategies available to the
measurement device as in the above paragraph, the setup needs
to fulfill one out of two assumptions. Either PS produces states
which are diagonal in the Fock basis (e.g. thermal states), or the
measurement device is measuring in the Fock basis. In both cases,
the mapping to the abstract mixed entropy sources is straightfor-
ward. Assuming that the state is diagonal in the Fock basis implies
that the whole setup can be implemented with the use of classical
sources of light. On the other hand, the Fock basis measurement
assumption is very well motivated from the practical point of view
and it allows us some leeway in the description of the PS. Namely,
we do not require the source to produce a specific photonic
state; it can be characterized solely by a probability distribution γ
or its mean.
Now we are ready to formulate the upper bounds on the

guessing probability g* of a single generating round in case of the
known photon distribution and known mean number of photons,
which can be related to min-entropy of the output string Y of the
RNG protocol as HminðYjEÞ � �jYjlog 2ðg�Þ.
Let us first deal with the case of known photon distribution.

According to the solution of the general case in Eq. (9), ifP1
i¼1 γið1� πiÞ> α� β, we need to find N, that is, the largest

natural number such that
P1

i¼N γið1� πiÞ � α� β. In this case, the
optimal guessing probability is

g� ¼ 1� ðα� βÞ πN

1� πN

� �
þ
X1
i¼Nþ1

γi
1� πi

1� πN
� 1

� �
: (14)

Otherwise, if
P1

i¼1 γið1� πiÞ � α� β, the optimal guessing
probability is

g� ¼ 1� ðα� βÞ þ
X1
i¼1

γið1� 2πiÞ: (15)

Finally, in what follows we assume that the photon source is
characterized only by its mean photon number μ. This assumption
requires us to solve an optimization problem of the form as in

Eq. (13), where now the condition f(γ)= cγ readsX1
i¼0

iγi ¼ μ; (16)

and pi= 1− πi.
In the section “Mean photon number analysis” we show that the

solution to this optimization problem contains only three non-zero
probabilities γi:

γ0 ¼ 1� γN � γNþ1 (17)

γNþ1 ¼
μ� γNN
N þ 1

(18)

γN ¼ ðN þ 1Þðα� βÞ � ð1� πNþ1Þμ
ðN þ 1Þð1� πNÞ � ð1� πNþ1ÞN : (19)

for each feasible value of N= i, i∈ {1, …, N+}. After plugging these
values of γ0, γN, γN+1 into the target function, we obtain the
optimal guessing probability:

g�N ¼ 1þ ðα� βÞ � ðα� βÞ þ μðπNþ1 � πNÞ
ðN þ 1Þð1� πNÞ � Nð1� πNþ1Þ : (20)

The overall solution of Eq. (13) is maxNfg�Ng where the the
maximization is done over all feasible values of N. In the section
“Mean photon number analysis” we show that in general there is
only a finite number of feasible values N, and therefore the
maximum always exists. Although the number of these values can
still be prohibitively large, in the analysis of the data obtained
from the experiment we conducted (see the section “Experimental
realization and results”), only a single feasible value of N was
encountered, making the analysis very efficient.
Last, but not least, in order to emphasize the flexibility of our

framework, we discuss possible modifications of the optical setup
described above. Notice that two probability distributions are
characterized in the above setup. The first one is the photon
number probability distribution γ and the second one is the
beam splitter reflection probability π, or, more generally, binary
distributions with probability of success 1− πi associated with
each photon number. The difference between them is that in our
setup, the randomness resulting from the beam splitter events is
assumed to be private, unlike γ, which is available to the
adversary. Essentially, our framework can be seen as a procedure
to certify randomness originating from the trusted source (in this
case the beam splitter) in a noisy setup, where the noise is only
partially characterized.
One can, however, assume that the photon emission is also a

private random event characterized by γ. This is natural if the
photon source PS is coherent for example, since in this case it is
impossible for the adversary to know the photon number in a
given round before the measurement. In such a case, both the
entropy originating from the beam splitter and the entropy of
the photon source can be combined into a simple source with the
probability of signal p ¼ 1�P1

i¼1 γið1� πiÞ. Or, even more
interestingly, the beam splitter can be left out from the setup
altogether and assuming Fock measurements, the setup can be
analyzed as a simple source with signal probability 1− γ0. Note
that a similar experiment was studied in two recent works32,47, but
was analyzed by different techniques.

Experimental realization and results
We experimentally implemented the optical random number
generation setup described in section “Example: A photon
through a beam-splitter”. In the experimental implementation
(see Fig. 5), the photon source PS is a source of weak coherent
pulses, the shutter AðxÞ is implemented with an electro-optic
intensity modulator (IM), and the detection D is performed by a
single-photon detector (SNSPD) and a counting logic (time tagger)
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to extract the output bit string. The details of the experiment and
post-processing are presented in the section “Experimental
realization”.
The results of the experiment are summarized in Table 1. We

see that while the actual rates of randomness generation depend
on the level of trust into different parts of the experimental setup,
even in the most adversarial scenario one can achieve rates
comparable to less secure settings.

DISCUSSION
In this paper, we have presented a framework to design and
analyze semi-device-independent RNGs. In contrast with previous
approaches, our framework does not require any fixed assump-
tions to be made on the workings of an RNG, can be applied in a
very broad family of physical implementations, and can cover very
different levels of trust placed on different parts of the RNG. The
centerpiece of our approach consists of a shutter that can
trustfully block the transmitted signal. This, in connection with
some limited trust in the source and/or measurement devices,
proves to be enough to certify randomness.
During the certification protocol, sample data are collected in

order to characterize the behavior of the measurement devices
during both shutter settings (open or closed). These sample
data are subsequently used to calculate the probability that the

adversary, who is classically correlated with the measurement
devices, is able to guess the outcome of the measurements with
open shutter. This calculation involves solving a number of
optimization problems expressed as linear programs. The exact
formulation and number of these linear programs depends on the
level of trust we place into the entropy source. Three different
trust levels are possible: (i) a simple source emits a signal with
probability p; or the entropy source is a mixture of multiple such
simple sources governed by a probability distribution γ, which is
either (ii) fully characterized or (iii) partially characterized. The
main benefit of our framework is that all three characterizations
can be used with the same physical setup and can be seen as
different levels of trust placed onto the entropy source.
We showcase the applicability of the framework by implement-

ing a RNG using a weak coherent optical source and a beam
splitter. This implementation allowed us to demonstrate an
important property of our framework: flexibility in the assump-
tions made about specific parts of the device. We have data
analyzed from a single experiment under three very different sets
of assumptions on the source—true single photons, coherent
states, and an unknown source characterized only by its average
photon production rate. In all cases, we were able to extract high-
quality random strings, but with significantly different rates. This is
natural, as stronger assumptions on the source allow for better

Fig. 5 Experimental implementation. The proposed protocols are tested in an optical setup where weak coherent pulses of 8 ns duration at
5 MHz are generated by driving a laser diode with a signal generator (Pulse Streamer), and attenuating its power to ~1 photon per pulse. The
photons (represented by the solid red line) are incident on a fiber beam splitter (BS) that discards the reflected photons. The transmitted
photons are fast-switched via a fiber electro-optic intensity modulator (IM) that is driven by the digital output of the pulse streamer which
provides the uniform random seed. The pulses at the output of the shutter (composed of the IM) are sent to a superconducting nanowire
single-photon detector (SNSPD). The counts of the detector and a clock signal from the pulse streamer are recorded with a counting logic
(quTAG time tagger), which allows one to extract coincidences for each pulse and generate the bit string.

Table 1. Amount of experimental randomness extracted from different scenarios.

# Assumptions Cutoff Hmin Batches used Extracted randomness (Mbits)

(i) Single-photon source pn ~ δ1,n 0.458 985 37.2

(ii) Poisson photon number distribution pn ~ Pois(μ) 0.167 975 13.2

(iii) Unknown distribution, mean constraint E½n� ¼ μ 0.043 948 3.19

In our experiment we have used μ= 1.06. The same raw data (1000 batches consisting of 100,000 rounds each) was used in each case. For comparison, a
hypothetically ideal experiment, with beam splitter transmittance p= 1/2, single-photon source PS, and perfect observed statistics S ¼ 1=2; 0ð Þ, would
produce 69.5 Mbits from the same data. This takes into account that the data still has to be tested, and the estimator Ŝ is always taken in a conservative way.
Only batches with entropy larger or equal to cutoff Hmin were post-processed. Number of such batches for each set of assumptions is stated in column
Batches used.
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extraction rates at the cost of giving the adversary more
possibilities to attack.
Our approach provides significant practical benefits for secure

randomness generation. Using the same simple device, a user can
make their own choice of the level of secrecy or production rate,
just by choosing the appropriate post-processing strategy. Very
interestingly, our results show that even for the most adversarial
assumption on the source, i.e. trust only in the mean number of
photons, rates of the same order of magnitude were achieved as
with the rather strong assumption of a coherent source. The
average number of photons produced by a source is testable in
principle via its energy consumption, which provides a possible
means to further strengthen the security of our framework. Our
results pave the way towards practical and experimentally feasible
semi-device-independent RNGs, which play a crucial role in the
ongoing quantum information revolution.

METHODS
Experimental realization
In this section we provide details for the experimental realization and post-
processing. Recall that the experiment consists of a source of weak
coherent pulses, electro-optic IM implementing the shutter, a single-
photon detector (SNSPD) and a counting logic (see Fig. 5). In real-world
network applications, clock synchronization of optical pulse trains and
detectors would be straightforward. However, for the purposes of this
demonstration, all electrical signals are generated by a Swabian instru-
ments Pulse-Streamer 8/2. We drive a laser diode with 0.8 V analog pulses
of 8 ns duration (limited by analog output bandwidth) at 5 MHz (limited by
single-photon detection amplifier deadtime ~150 ns), attenuate the weak
coherent pulses to ~1 photon per pulse, and are then incident through a
fiber beam splitter with power transmission 0.5118 ± 0.0005. These pulses
are fast-switched via a fiber lithium niobite electro-optic IM (EOSpace,
Model AZ-0S5-10-PSA-SFA) driven by a digital output of the signal
generator, which with probability q= 8/100 blocks the channel (i.e. TEST
rounds with x= 1). A typical extinction ratio of 1/100 is observed and a
slight thermal drift is calibrated for each 100,000 rounds of the experiment.
The pulses are then routed to the detectors through a channel with
lumped efficiency from switch to detectors of 0.9339 ± 0.00005. Detection
is made by superconducting nanowire single-photon detectors with
efficiency 0.9231 ± 0.0007. A QuTools QuTAG counting logic records time-
tags from the detectors along with a clock signal from the signal generator,
allowing coincidences for each pulse to be extracted using a 10 ns
coincidence window, and the output bit string to be recovered.

Once the data are collected, we begin the post-processing on batches of
size N= 100, 000. With probability 8/92 we randomly select some of the
non-blocked rounds to be TEST rounds with x= 0 (such that the expected
number of test rounds with x= 0 is the same as the expected number of
test rounds with x= 1). Given the large number of total test rounds (~16,
000), we use the Chernoff–Hoeffding bound to calculate the test statistic Ŝ,
see Eq. (1) with sampling error ε= 10−6. In particular, we give a
conservative estimate of S and the probability that either α or β falls
outside of the desired interval is 2ε (see Supplementary Note 1 for details).
For each batch, we used Ŝ to calculate an upper bound on the adversary’s
guessing probability g*. We have performed separate estimations for the
three scenarios; (i) a single-photon source, (ii) the photon number
distributed according to a Poisson probability distribution with mean μ,
and (iii) the photon number being μ on average. For cases (ii) and (iii), we
used μ= 1.06 since it is an upper bound on the observed average photon
number per pulse, and that yields the least amount of entropy.
For simplicity, the length of the output string Y was chopped to a

constant size of ∣Y∣= 83,000 per batch, which leads to a final
lower bound on the entropy of the string Y, expressed as
HminðYjEÞ � �83; 000 � log 2ðg�Þ. To extract the final random string Z from
Y (see the protocol description in Fig. 3), a hashing function, in our case a
random binary Toeplitz matrix, has been applied to Y. To keep the
discussion clear, we shall focus on case (ii) of a known (Poisson)
distribution. The remaining cases follow an analogous post-processing
strategy. In order to reduce the amount of randomness needed, we only
generated one Toeplitz matrix and re-used it for every batch. Indeed, the
Leftover Hashing Lemma guarantees that when using a Toeplitz matrix of
dimensions jYj ´ ð�log 2ðg�Þ þ 2log δÞ, the output string Z is at most δ-far
in ℓ1-distance from being uniformly distributed48. We take δ= 2−100 ≈
10−31, which implies that we can re-use the Toeplitz matrix ~1020 times
and still maintain a ℓ1-distance from the uniform distribution of no
more than 10−10.
Note that the estimates of entropy HminðYjEÞ � �83; 000 � log 2ðg�Þ

differ for different batches of data. This is because the entropy per bit
�log 2ðg�Þ is estimated separately for each batch, with different results.
The experimental distribution of estimated min-entropies (per bit) can be
seen in Fig. 6. However, in order to re-apply the same hash function to
each batch, it is important to guarantee that all batches have their min-
entropy lower bounded by the same value—this is because the output
length of the hash function must be smaller than the total min-entropy of
the input. If all batches were used, the total min-entropy in each string
would have to be bounded by the min-entropy of the worst batch which
can be rather low. Therefore it is advantageous to discard a (small) number
of batches with low certified min-entropy, which increases the amount of
min-entropy we can extract per batch, but decreases the number of
batches. One can optimize the cutoff threshold min-entropy for each case
in order to extract the maximum amount of randomness.
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Fig. 6 Distribution of min-entropy estimates. The assumptions on the photon source used for 1000 experimental batches. From left to right,
the assumptions are: (iii) mean photon number μ= 1.06, (ii) Poisson probability distribution with μ= 1.06, and (i) single-photon source.
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In the known photon number distribution scenario (ii), we chose a
cutoff of 0.167 bits of entropy per physical bit, i.e., any batch whose
estimated min-entropy was lower was simply discarded. Therefore, the
Toeplitz matrix generated was of size 83,000 × 13,661. For demonstration
purposes, we collected data from 1000 batches with each batch on
average having an estimated 0.185 bits of entropy per physical bit. In all,
97.5% of the batches were calculated to be above the set threshold,
resulting in a total of 13.2 Mbits of extracted randomness. All results are
summarized in Table 1.
Finally, we carried out the industry-standard NIST randomness tests

using an improved implementation presented in ref. 49. As expected, the
processed output performed well in all of these tests.

Known distribution analysis
Here we derive the results presented in the section “Entropy estimation”.
We need to find the solution to the following optimization problem:

max
fλg

P
i
γiðλi;N þ λi;Y þ λi;H � giÞ

s:t:
P
i
γi λi;Y þ λi;H � pi
� � ¼ αP

i
γiλi;Y ¼ β

λi;N þ λi;Y þ λi;H ¼ 18i
λi;fN;Y;Hg � 0:

(21)

Recall that we use the following notation: We start by dividing the set of
all sources of entropy S into two sets, Sþ and S�. The source Si belongs to
Sþ if and only if pi>

1
2, otherwise it belongs to S�. We define N+ as the

number of sources in the set Sþ (including the possibility that N+
represents ∞). We use positive integers i ≥ 1 for indexing the elements of
Sþ , and negative integers i ≤− 1 for indexing the elements of S� . This
allows us to define N� ¼ �jS�j, where jS�j is the cardinality of S� (again,
potentially infinite). Then, without loss of generality, we order the sources
in the set S such that

8i>j : pi � pj : (22)

We use a convention that unless specified otherwise, ∑i denotes the sum
through all sources from S. Last but not least, note that we deliberately left
out the index i= 0, as it is used later in the proof.
Also recall that for the measured parameters to be physical, we require

0 � β � α � pþ βð1� pÞ: (23)

Substituting the equality constrains of Eq. (21) together with Eq. (22), we
can further simplify the optimization problem to

max
fλg

1� ðα� βÞ þ
X
i2Sþ

γiλi;Hð2pi � 1Þ (24)

s:t:
X
i

γiλi;H � pi ¼ α� β (25)

X
i

γiλi;Y ¼ β (26)

λi;N þ λi;Y þ λi;H ¼ 18i (27)

λi;fN;Y;Hg � 0: (28)

It is now easy to see that in order to find the maximum of Eq. (24), we
need to set as many λi,H= 1 as possible, starting with ones with the highest
parameter pi. Of course this needs to be done with the constraints
presented in Eqs. (25)– (28) in mind.
Let us start with the simpler of two possibilities. IfX

i2Sþ

γipi � α� β; (29)

then we can set λi,H= 1 for all i∈ Sþ (and therefore λi,N= λi,Y= 0 for all i∈
Sþ). It remains to show that we can find values for the other λ variables
such that the solution fulfills all the constraints. Let us first treat the case of
both sets S� and Sþ being non-empty. The other two special cases will be
treated separately later. First, let us set for 8i 2 S�

λi;H ¼ Δ ¼ α� β�Pi2SþγipiP
i2S�γipi

: (30)

Let us now show that this is indeed a valid assignment, i.e. 0 ≤ Δ ≤ 1.

Although the positivity of Δ follows trivially from Eq. (29), the second
inequality is a little more involved. In order to show that Δ ≤ 1, let us note
that since Eq. (23) holds for each αi, βi, and pi (this is a necessary condition
for the statistics produced by Si to be physical), due to its linearity it also
holds for α= ∑iαi, β= ∑iβi and p= ∑iγipi. Therefore, from Eq. (23) we get

α� β � p� βp � p ¼
X
i2S�

γipi þ
X
i2Sþ

γipi ; (31)

which proves Δ ≤ 1. Using the values λi,H= 1 for i∈ S+ and λi,H= Δ for i∈
S−, it is straightforward to verify that the constraint in Eq. (25) is satisfied.
In order to satisfy Eq. (26) we need to show that

ð1� ΔÞ
X
i2S�

γi � β: (32)

Note that because of Eq. (27), we have that
8i 2 S�; ð1� ΔÞ ¼ λi;Y þ λi;N . Therefore,

ð1� ΔÞ
X
i2S�

γi ¼
X
i2S�

γið1� ΔÞ ¼
X
i2S�

γiðλi;Y þ λi;NÞ: (33)

If ð1� ΔÞPi2S�γi � β, we can clearly find positive values of λi,Y and
λi,N, such that

P
i2S�γiλi;Y ¼ β and

P
i2S�γiλi;N ¼ ð1� ΔÞPi2S�γi � β is

positive; thus, all the constraints of our optimization problem are satisfied.
The first step to prove Eq. (32) is to show thatX

i2S�

γipi � p
X
i2S�

γi : (34)

We have that

p ¼
X
i

γipi ¼
X
i2S�

γipi þ
X
i2Sþ

γipi ¼ p�
X
i2S�

γi þ pþ
X
i2Sþ

γi ; (35)

where p� ¼
P

i2S� γi piP
i2S� γi

, and pþ ¼
P

i2Sþ
γi piP

i2Sþ
γi
. Notice that p is a convex

combination of p− and p+ with p−≤p+, and therefore p− ≤ p ≤ p+. Then, it
also holds that

P
i2S�γipi ¼ p�

P
i2S�γi � p

P
i2S�γi .

Now using Eq. (34) and (Eq. (23)) again, we get

β
X
i2S�

γipi � βp
X
i2S�

γi � ðp� αþ βÞ
X
i2S�

γi ¼
X
i2S�

γipi þ
X
i2Sþ

γipi � αþ β

 !X
i2S�

γi :

(36)

Since S� is non-empty, we have that
P

i2S�γipi ≠ 0, which leads to

β � 1��Pi2Sþγipi þ α� βP
i2S�γipi

 !X
i2S�

γi ¼ 1� Δð Þ
X
i2S�

γi ; (37)

that is, Eq. (32) holds, which proves that it is possible to satisfy all
conditions presented in Eqs. (25)–(28) while maximizing the guessing
probability by a suitable choice of λ’s. Setting λi;H ¼ 1; 8i 2 Sþ yields

g� ¼ 1� ðα� βÞ þ
X
i2Sþ

γið2pi � 1Þ: (38)

Let us now return to the two special cases. First, assume that Sþ is
empty. In such a case Eq. (35) is not well defined (because in the definition
of p+ we divide by 0). However, the goal of Eq. (35) is to prove Eq. (34),
which in this case holds trivially, since p ¼Pi2S�γipi and

P
i2S�γi ¼ 1.

It remains to solve the case of S� being empty. Then from Eq. (29) we
have that p ≤ α− β. Simultaneously, from Eq. (31) we have that p ≥ α− β.
Therefore, α− β= p, and in order to fulfill Eq. (25), we require λi,H= 1 for all
i. Also, now we can use the identity α= p+ β and Eq. (23) again to d+ β ≤
p+ β(1− p), which allows a solution only for β= 0 (otherwise the
observed point (α, β) is non-physical). With β= 0 it is easy to see that
other constrains are satisfied as well and the maximum is equal to p. Note
that this is in some sense an extreme case, since the observed point such
as this can be obtained only with perfectly error-less devices in the limit of
the infinite number of rounds.
Now we deal with the more interesting case ofX

i2Sþ

γipi > α� β: (39)

In this case we cannot set λi,H= 1 for 8i 2 Sþ , as this would violate
condition of Eq. (25). If we are only concerned with the variables λi,H, it is
clear that in the optimal case we could set

λi;H ¼ 0 8i 2 S�; (40)

as sources in S� does not contribute to the objective function in Eq. (24).
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Using this we can rewrite Eq. (24) into

max
fλg

1þ ðα� βÞ �
X
i

γiλi;H: (41)

Next—still only being concerned with λi,H—we argue that Eq. (41) is
maximized by choosing λi,H= 1 for the largest pi (large i) and zero
elsewhere, except for a single element with 0 < λi,H < 1. This can be seen
from the fact that keeping the sum of ∑iγiλi,H ⋅ pi constant while minimizing
∑iγiλi,H (as it enters the maximization function with a negative sign) is the
same as maximizing ∑iγiλi,H ⋅ pi while keeping ∑iγiλi,H constant, which is
clearly achieved by choosing γiλi,H large for pi large and vice versa. In the
following, we show that it is indeed possible to choose the values of λi,H
according to this procedure, and satisfy all the constraints Eqs. (25)– (28),
by providing an explicit assignment of all the λ variables in Eqs. (47)– (49).
To obtain the explicit assignment, let us first define the natural number

N in the following implicit way

XNþ

i¼N

γipi � α� β; (42)

XNþ

i¼Nþ1

γipi < α� β: (43)

In case we have that
PNþ

i¼N γipi>α� β, we perform the following trick:
we formally divide the box labeled N into two boxes, labeled N− 1 and N,
both having the same pN. The new parameters eγN and eγN�1 will be defined
in the following way:

eγN ¼ α� β�PNþ
i¼Nþ1 γipi

pN
(44)

eγN�1 ¼ γN � eγN : (45)

Note that both values are well defined, because γN 2 Sþ , and thus
pN >

1
2. All the boxes labeled by i < N are re-labeled i→ i− 1, utilizing the

so-far unused index i= 0. This new set of boxes will have the same
properties as the old one, it is a mere change of mathematical description.
For this new set it holds that

XNþ

i¼N

eγipi ¼ α� β: (46)

Now we are ready to state the values of the parameters λ that maximize
g* in the following way:

λi;H ¼ 1 8i � N; (47)

λi;H ¼ 0 8i<N (48)

λi;Y ¼ ω 8i<N; (49)

with all other parameters given by the condition for their sum. In the
above formulas, we use the definition

ω ¼ βPN�1
i¼N�

eγi : (50)

Note that this is well-defined, as
PN�1

i¼N�
eγi ¼ 0 would imply that S� is

empty, as well as N= 1 and eγ0 ¼ 0 (i.e. the first non-zero γi is γN, but we
can always start the indexing from the first non-zero element, that is, γN=
γ1). This in turn implies that γ1 ¼ eγ1 and Eq. (46) becomesP

i2Sþγipi ¼ α� β, which contradicts Eq. (39). Now the maximum guessing
probability is

g� ¼ 1þ ðα� βÞ �
XNþ

i¼N

eγi : (51)

The only thing that needs to be shown is that ω ≤ 1, as its positivity is
obvious from its definition presented in Eq. (50). This comes from the facts
that N ≥ 1, p

PNþ
i¼N eγi �PNþ

i¼N eγipi (the argument is analogous to Eq. (34)) in
combination with Eq. (23):

p� p
XN�1

i¼N�

eγi ¼ p
XNþ

i¼N

eγi �XNþ

i¼N

eγipi ¼ α� β � p� βp; (52)

from which we have that

β �
XN�1

i¼N�

eγi ; (53)

and therefore ω ≤ 1.
It remains to join Eqs. (38) and (51) into a single formula. It suffices to

plug Eq. (44) into Eq. (51) and obtain

g� ¼ 1� ðα� βÞ 1� pN
pN

� �
þ
XNþ

i¼Nþ1

γi
pi
pN

� 1
� �

: (54)

Note that if
P

i2Sþγipi > α� β, one needs to calculate N from Eqs. (42)
and (43). In case

P
i2Sþγipi � α� β, we simply set N= 0 and pN ¼ 1

2 and
obtain the solution presented in Eq. (38).
Last but not least, using the modified parameters eγi , the solution can

take the following simple form obtained by plugging Eq. (46) into Eq. (51):

1� ðα� βÞ þ
XNþ

i¼N

eγið2pi � 1Þ; (55)

with N explicitly defined by (46). This form is particularly useful in the
derivation of the case with mixed sources with partially characterized γ,
where we can show that in the optimal solution presented in Eq. (42) holds
with equality and therefore 8i; eγi ¼ γi .

Mean photon number analysis
Here we derive the results presented in the last part of section “Example: a
photon through a beam-splitter”. In the section “Entropy estimation” we
have shown that the optimization problem associated with the scenario
with partial information about the mixed entropy source can be stated as

max
fγg

1� ðα� βÞ þPNþ

i¼N
γið2pi � 1Þ;

s:t: f jðγÞ ¼ cj 8jP
i
γi ¼ 1

γi � 0PNþ

i¼N
γipi ¼ ðα� βÞ:

(56)

We have also argued that the solution to this problem can be obtained
by finding the maximum for each fixed value of N in the range {1, …, N+},
and the overall solution is the largest of these maxima. In order to proceed
with the analytical solution of this problem, let us restrict to a single linear
constraint function, cγ= ∑iaiγi, and reformulate the optimization problem
using the Lagrange function for each fixed N,

LN ¼ 1� ðα� βÞ þ
XNþ

i¼N

γið2pi � 1Þ � τnorm
X
i

γi � 1

 !

�τf
X
i

aiγi � cγ

 !
� τN

XNþ

i¼N

γipi � ðα� βÞ
 !

;

(57)

with the half-plane conditions γi ≥ 0 for all i.
In order to find the maximum, we need to examine partial differentiation

of Eq. (57) over all variables γi, τf, τN, τnorm. While the partial derivatives over
τf, τN, τnorm are the required equality constraints of Eq. (56) for γ, f, and N,
the partial derivatives over all γi have the following form:

∂γiLN ¼ �τnorm � τf ai if i<N (58)

∂γiLN ¼ ð2pi � 1Þ � τnorm � τf ai � τNpi if i � N: (59)

Now we need to examine all the stationary points of Eq. (57). We will
argue that on the stationary points, for each variable γi, the corresponding
partial derivative is either equal to 0, or γi= 0 (so that the variable γi is
actually on the boundary of its allowed interval). We first divide the {γi} into
two sets: ∂γiLN ¼ �τnorm � τf ai if i (note that this set cannot contain
all the variables, because it is impossible to find values of τ{norm, f, N} for
which all partial derivatives presented in Eqs. (58) and (59) vanish), and
Γb= {γi}⧹Γ0. Since by construction the variables in Γb have non-zero
derivatives, by the extreme value theorem the maximum of Eq. (57) must
be attained when these variables are on their boundary. This is when
γi= 0, since all other constraints are taken care of with the derivatives
∂fτf ;τN ;τnormgLN ¼ 0. A maximum may therefore be found if for all γi∈ Γb we
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have ∂γiLN < 0 (i.e. the value of L is increasing towards the boundary of all
γi∈ Γb), and since LN is linear in all γi this maximum would be a global one.
The remaining issue is therefore to find the optimal set Γ0 for which the
derivatives presented in Eqs. (58) and (59) vanish. We proceed to construct
this optimal set by showing how alternative choices cannot be the optimal
solution.
Further analysis now depends on the exact values of ai and pi. In the

section “Experimental realization and results” we have shown that in our
experiment, if we characterize the photon source with the mean number
of photons only, the constraint function is μ= ∑iiγi. Therefore, we will focus
on the case where {ai} is a non-negative, unbounded, and strictly
increasing sequence, with our prime example being {ai= i}. Likewise {pi
= 1− πi} in our experimental section, so we require {pi} to be a non-
negative strictly increasing sequence such that {pi/ai} is strictly decreasing.
Since the sequence {ai} is unbounded, we need to have τf ≥ 0, otherwise
both Eqs. (58) and (59) will become positive for some (large enough) value
of i. One (trivial) solution is choosing τf= 0, which is only possible for
τnorm ≥ 0 by Eq. (58). This would allow to have all γi for i < N potentially non-
zero. But then Eq. (59) will become

∂γiLN ¼ 2� τNð Þpi � 1� τnorm: (60)

If τN ≥ 2, then this equation is always negative, leading to γi= 0 for i ≥ N,
which would violate the last constraint presented in Eq. (56). For smaller τN,
assume ∂γiLN ¼ 0 for some i. Then, since the {pi} are increasing, ∂γiþ1

LN > 0.
As we have argued above, that would not lead to a maximum, since γi ≥ 0,
and the derivatives of the Γb variables should be negative. Therefore we
conclude that τf > 0.
For i < N, Eq. (58) now reads τnorm=−τfai. Since all of the {ai} are

different, this equation can only be satisfied for a single variable γi. Notice
however that Eq. (58) is a decreasing function in i; therefore, in order to
guarantee that all the non-zero partial derivatives ∂γiLN are negative,
we must have τnorm=−a0τf. That is, γ0∈ Γ0 and γ0<i<N∈ Γb, i.e. γi= 0 for
0 < i < N. Eq. (59) now reads:

i � N : ∂γiLN ¼ ð2� τNÞpi � ðai � a0Þτf � 1: (61)

Since we have two free parameters available (τf and τN), it is possible to
achieve ∂γiLN ¼ 0 for at most two different values of i. Notice that (ai− a0) >
0, and we have shown that τf > 0. Therefore (2− τN) must be positive, or else
all ∂γi�N

LN < 0. Furthermore, since {pi/ai} is strictly decreasing, then Eq. (61) is
also strictly decreasing. Therefore, in order to satisfy Eq. (59) for two different γi
and to have all the rest of the partial derivatives negative, it must hold that
∂γi¼N

LN ¼ 0 and ∂γi¼N
LNþ1 ¼ 0. The conditions cannot be solved for the rest,

so γi>N+1= 0.
Now, we know that Γ0= {γ0, γN, γN+1} are the only non-zero variables. We

can therefore use the original problem constraints to solve for the
unknowns. Namely:

1 ¼ γ0 þ γN þ γNþ1; (62)

cγ ¼ a0γ0 þ aNγN þ aNþ1γNþ1; (63)

α� β ¼ pNγN þ pNþ1γNþ1: (64)

This linear system of equations is then solved. The only difficulty
remaining is that, depending on the values of {ai} and {pi}, it is not at all
clear that the solutions satisfy γi ≥ 0 for a given N. In fact, we will show that
in our prime example, {ai= i}, cγ= μ, and {pi= 1− πi}, only a finite number
of N can satisfy the positivity constraints for γ. We therefore switch to this
concrete example to finish this section. The solution to the linear system of
equations reads

γ0 ¼ 1� γN � γNþ1; (65)

γNþ1 ¼
μ� NγN
N þ 1

; (66)

γN ¼ ðN þ 1Þðα� βÞ � μð1� πNþ1Þ
ðN þ 1Þð1� πNÞ � Nð1� πNþ1Þ : (67)

Note that γN is approaching infinity with increasing N. This means that
only a finite number of values N need to be tested, as for sufficiently large
N we have γN > 1 and the positivity constraints for γN+1 and γ0 cannot be
satisfied. Therefore, the final guessing probability will be the maximum
from the finite number of guessing probabilities of the form:

g�N ¼ 1þ ðα� βÞ � ðα� βÞ þ μðπNþ1 � πNÞ
ðN þ 1Þð1� πNÞ � Nð1� πNþ1Þ : (68)
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