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Abstract

The Landau—Pekar equations describe the dynamics of a strongly coupled polaron.
Here, we provide a class of initial data for which the associated effective Hamiltonian
has a uniform spectral gap for all times. For such initial data, this allows us to extend the
results on the adiabatic theorem for the Landau—Pekar equations and their derivation
from the Frohlich model obtained in previous works to larger times.

Keywords Polaron - Dynamics - Schrodinger operator - Quantized field

Mathematics Subject Classification 35Q41 - 35Q40 - 46N50

1 Introduction and main results

The Landau—Pekar equations [5] provide an effective description of the dynamics for a
strongly coupled polaron, modeling an electron moving in an ionic crystal. The strength
of the interaction of the electron with its self-induced polarization field is described by
a coupling parameter « > 0. In this system of coupled differential equations, the time
evolution of the electron wave function v, € H'(R?) is governed by a Schrodinger
equation with respect to an effective Hamiltonian 4, depending on the polarization
field ¢; € L?(R?), which evolves according to a classical field equation. Motivated by
the recent work in [7,8,10], we are interested in initial data for which the Hamiltonian
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hg, possesses a uniform spectral gap (independent of ¢ and «) above the infimum of
its spectrum.
The Landau—Pekar equations are of the form

0 = ho, Vi
iy (M
[0 = @ + oy,
with
hy =—A+V,, Vy(x) =22n)""Re[(-4)"?pl(x),
oy (1) = @2 [ (=) ] . @)

For initial data (Yo, ¢o) € H'(R3) x L2(R?), (1) is well-posed for all times 7 € R
(see [1] or Lemma 1 below).

For (¥, ¢) € H'(R?) x L>(R3) with ||/ |» = 1, the energy functional correspond-
ing to the Landau—Pekar equations is defined as

G, @) = (¥, hy¥r) + lloll3. 3)

One readily checks that for solutions of (1), G(v, ¢;) is independent of 7 [1, Lemma
2.1], and the same holds for ||y, ||>. We also define

EW)y= inf GW,e), Flp)= inf G, 0e). 4
peL2(R3) w\ﬁﬁ] g{f)

These three functionals are known as Pekar functionals and we shall discuss some of
their properties in Sect. 2. It follows from the work in [9] that there exist (Vp, gp) €
H'(R3) x L2(R3) with ||yp|l» = 1, called Pekar minimizers, realizing

j;lgg(l/f, ©) =G(Wp, pp) = E(Yp) = Flpp) =ep <0, Q)

and (Y¥p, pp) is unique up to symmetries (i.e., translations and multiplication of {p by
a constant phase factor). We also note that the Hamiltonian /., has a spectral gap above
its ground state energy, i.e., A(pp) > 0, where we denote for general ¢ € L?>(R?)

A(p) = inf |A —e(p)| with e(p) = inf spec Ay . (6)
Aespec(hy)
r#e(p)

In the following we consider solutions (¥, ¢;) to the Landau—Pekar equations (1)
with initial data (¥, ¢o) such that its energy G(v, o) is sufficiently close to ep,
and show that for such initial data the Hamiltonian 4, possesses a uniform spectral
gap above the infimum of its spectrum for all times # € R and any coupling constant
a > 0. This is the content of the following Theorem.

@ Springer



Persistence of the spectral gap for the Landau-Pekar equations Page 3 0f 19 19

Theorem 1 Forany 0 < A < A(gp) there exists €4 > 0 such that if (U, ¢;) is the
solution of the Landau—Pekar equations (1) with initial data (Yo, go) € H'(R?) x
L*(R?) with |[Yoll2 = 1 and G(o, 90) < ep + &4, then

A(pr) > A forall te€R, a > 0. @)

Theorem 1 is proved in Sect. 3. It provides a class of initial data for the Landau—
Pekar equations for which the Hamiltonian /4, has a uniform spectral gap for all times
t € R. The existence of initial data with this particular property is of relevance for
recent work [7,8,10] on the adiabatic theorem for the Landau—Pekar equations, and
on their derivation from the Frohlich model (where the polarization is described as a
quantum field instead). For this particular initial data, the results obtained there can
then be extended in the following way:

Adiabatic theorem. Due to the separation of time scales in (1), the Landau—Pekar
equations decouple adiabatically for large « (see [8] or also [2] for an analogous one-
dimensional model). To be more precise, in [8] the initial phonon state function is
assumed to satisfy

@0 € L*(R®) with e(¢p) = inf spec hy, <0, (®)

which implies that i, has a spectral gap and that there exists a unique positive and
normalized ground state 1/, of hy,. Under this assumption, denoting by (¥, ¢;) the
solution of the Landau—Pekar equations (1) with initial data (v/4,, ¢o), [8, Thm. IL.1
& Rem. I1.3] proves that there exist constants C, T > 0 (depending on ¢g) such that

g — e~ Jodsey 12 < ca™* forall |1 < Ta?, ©)

where ¥, denotes the unique positive and normalized ground state of 4, . The restric-
tion on |z| in (9) is due to the need of ensuring that the spectral gap of the effective
Hamiltonian A, does not become too small for initial data satisfying (8), which is
only proven (in [8, Lemma II.1]) for times |f| < Ta?. Nevertheless, assuming that
there exists A > 0 such that A(¢;) > A for all times r € R, the adiabatic theorem
in [8, Thm. II.1] allows to approximate ¥; by e’ fo d”(%‘)w(p, for all times |¢| < a®.
This raises the question about initial data for which the existence of a spectral gap of
order one holds true for longer times, and Theorem 1 answers this question. In fact,
by suitably adjusting the phase factor, we can prove the following stronger result.

Corollary 1 Let gg € L*>(R?) be such that
Fpo) <ep+e (10)

for sufficiently small ¢ > 0. Then, hy, has a ground state V. Let (\y, ¢;) be the
solution to the Landau—Pekar equations (1) with initial data (y,, o) and define

V() = = Wy, Vimg, R Vimg,Wy,) and 1y = e o @@y, (1)

@ Springer



19 Page4of19 D. Feliciangeli et al.

where Ry = qs(hy, — e(ps)) " Vqs with gs = 1 — [V, ) (W, |. Then, there exists a
C > 0 (independent of ¢o and o) such that

17— Y13 = Coa™ (14 20e]) o, (12)

Our proof in Sect. 3 shows that the smallness condition on ¢ in Corollary 1 can
be made explicit in terms of properties of gp. It also shows that minge(o,2x) e’y —
Yy, ||% < Ce¢ for all times 7, independently of «. The bound (12) improves upon this

—4 . .
for large o as long as o~ *|r]e“® 1!l « «? and hence, in particular, for |¢| < ot

Effective dynamics for the Frohlich Hamiltonian. As already mentioned, the Landau—
Pekar equations provide an effective description of the dynamics for a strongly coupled
polaron. Its true dynamics is described by the Frohlich Hamiltonian [4] H,, acting on
LZ(R3) ® F, the tensor product of the Hilbert space L2(R3) for the electron and the
bosonic Fock space F for the phonons. We refer to [7,8] for a detailed definition. Pekar
product states of the form v; ® W(ozzgat).Q, with (Y, ¢;) a solution of the Landau—
Pekar equations, W the Weyl operator and 2 the Fock space vacuum, were proven
in [8, Thm. I1.2] to approximate the dynamics defined by the Frohlich Hamiltonian
H, for times || < o?. Recently, it was shown in [7] that in order to obtain a norm
approximation valid for times of order a?, one needs to implement correlations among
phonons, which are captured by a suitable Bogoliubov dynamics acting on the Fock
space of the phonons only. In fact, considering initial data satisfying (8), [7, Theorem
1.3] proves that there exist constants C, T > 0 (depending on ¢g) such that

. . rt . . .
le™ ety @ W(a00)2 — e o B0y @ W) Vil 2 @sygr < Ca!
forall |7] < Ta?, (13)

where w(s) = ot2Im(gos, s @s) + |los ||% and 77 is the solution of the dynamics of a
suitable Bogoliubov Hamiltonian on F (see [7, Definition I.2] for a precise definition).
As for the adiabatic theorem discussed above, the restriction to times || < To?
results from the need of a spectral gap of A, of order one (compare with [7, Remark
1.4]), which under the sole assumption (8) is guaranteed by [8, Lemma II.1] only for
|f| < Ta?. Theorem 1 now provides a class of initial data for which the above norm
approximation holds true for all times of order 2, in the following sense.

Corollary 2 Let gg € L*(R?) be such that

F(po) <ep+e (14)
for sufficiently small ¢ > 0. Then, hy, has a ground state V. Let (\;, ¢;) be the
solution to the Landau—Pekar equations (1) with initial data (V. o). Then, there

exists a C > 0 (independent of ¢y and o) such that

. ot _ -2
le™ ety @ W(aPg0) 2 — e 0 B0y @ W@ @) Till 2 sy < Ca e 1
(15)
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Again, the smallness condition on ¢ in Corollary 2 can be made explicit in terms
of properties of gp. Corollary 2 is an immediate consequence of Theorem 1 and the
method of proof in [7], as explained in [7, Remark 1.4].

2 Properties of the spectral gap and the Pekar functionals

Throughout the paper, we use the symbol C for generic constants, and their value
might change from one occurrence to the next.

2.1 Preliminary Lemmas

We begin by stating some preliminary Lemmas we shall need throughout the following
discussion.

Lemma1 (Lemma 2.1 in [1]) For any (Yo, 0) € H'(R?) x L2R3), there is
a unique global solution (Vr;, ¢;) of the Landau—Pekar equations (1). Moreover,

Vol = I1¥ella, G(Wo, wo) = Gy, @) for all t € R and there exists a constant
C > 0 such that

Villm@s) =€, lgilla = C (16)

foralla > Oandallt € R.

The following Lemma collects some properties of V,, and oy, (see also [8, Lemma
1II.2] and [7, Lemma II1.2]).

Lemma 2 There exists C > 0 such that for every ¢ € L*>(R3) and € H'(R?)

Velle = Cligllz, IIVe¥ll2 = Cliell2llY ll a1 w3) 7)

and with the additional assumption | Yr|2 = 1
19121 gy < 200 k) + CllllE + 1), (18)
Moreover; there exists C > 0 such that for all Yy, y» € H'(R3)

loy, —oy,ll2 < C (Y12 + I¥2]2) min lle?®yry — Vall g1 w3y- (19)
0€[0,27)

Proof The first two inequalities in (17) follow immediately from [8, Lemma I1I.2] and
[7, Lemma I1.2]. In order to prove (18), let ¢ > 0, then

1 131 sy = (Vs hgo¥) — (U, VW) + 1
< (W, o) + &V 113 sy + C&llwoll5 + 1. (20)

Hence, choosing ¢ = 1/2, we arrive at (18).
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For (19), we note that oy, = 0,6, for arbitrary 6 € R. Hence, it is enough to prove
the result for 6 = 0. We write the difference

Gy () = Gy k) = K7 (W e ) = (2, e )
= k7 (0 = w2 e )+ (W e = y2) @)

where oy, (k) = Qm)—3/2 f dx e_ik'xow (x) denotes the Fourier transform of oy, .
Thus,

low, = ovall3 = 2/ P (101 = v e g0+ 2 7 1 — w2 2).
22)

For the first term, we write

dk .
fwmm — Y, e Ky ?

dxdy
- Cf TR OO AIOIISIACo} 23)

The Hardy-Littlewood—Sobolev inequality implies that

/Ik|2| — Y. ey

< Cllvn (W = ¥)ligss < Clivn — val3 v ll3. 24)
and we obtain with the Sobolev inequality that
dk —ik - 2 2
FpIW = Y2 e Yl < Cllvn - Vall 31 sy 10113 (25)

The second term of (22) can be bounded in a similar way, and we obtain the desired
estimate. O

We recall the definition of the reduced resolvent

Ry = qy, (hy — @)™ qy,. (26)

where gy, = 1 — |¥4) (Y. In the following Lemma we collect useful estimates on
Ry.

Lemma 3 There exists C > 0 such that
IRyl = A", 11 (=A+D2RY?| < €1+ lloll2l Ry 27)

for any ¢ € L>(R3) with e(¢) < 0.

@ Springer



Persistence of the spectral gap for the Landau-Pekar equations Page 7 of 19 19

Proof The first identity for the norm of the reduced resolvent follows immediately
from the definition of the spectral gap A(¢) in (6). For ¢ € L*>(R?) we have

I(=A+D2RPYI3 = (¥, Ry (—A+ D R)/*y). (28)
It follows from Lemma 2 that there exists C > 0 such that
| (—a+ DRI < € w, RY? (hy + Cligl3) RYw)

= Cllay, w13 +C (Cllel3 +e@) ) IRY*VI3.  (29)
Since e(¢) < 0 this implies the desired estimate. O

2.2 Perturbative properties of ground states and of the spectral gap

Since the essential spectrum of A, is R4, the assumption e(¢) < 0 guarantees the
existence of a ground state (denoted by v/,,) and of a spectral gap A(¢) > Oof i, In the
next two Lemmas we investigate the behavior of A(¢) and v, under L?-perturbations

of ¢.

Lemma4 Let ¢g satisfy (8), and let 0 < A < A(pg). Then, there exists 54 > 0
(depending, besides A, only on the spectrum of hy, and ||¢o||2) such that

Alp) = A forall ¢ € LX®) with [l¢ —¢oll2 <84 (30)

Proof By definition of the spectral gap
Alp) = ei(p) —e(@), (€29)
where e(¢) denotes the ground state energy of &, and ej (¢) its first excited eigenvalue

if it exists, or otherwise e (¢) = 0 (which is the bottom of the essential spectrum). By
the min-max principle we can write

ei(p) = inf  sup (Y, hy). (32)
ACL®>(R%) yeA
dimA=2 ||/ |2=1

For ¥ € H'(R?) with |||» = 1 we find with Lemma 2

(W ho¥) = (W hgo¥) + (W, Voo V)
< (W, hgo¥) + Cllo = 9ol IV 131 oy - (33)

Thus, by (18), we have if ||¢ — @gll2 < 8
(W, ho¥) < (14 CO(W, hyy¥r) + CS(llgoll3 + 1), (34
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and similarly

(W, hor) = (1= COY(Yr, hygy¥r) — C(llgoll5 + 1). (35)

Since e(¢p), e(¢1) < 0, we therefore find

A@) = Algo) = C3 (e(n) + e1(90) +2(lgoll3 + 1)
> Algo) —2C8(llgoll3 + 1) > A (36)

for sufficiently small § = §4 > 0. O

Lemma5 Let ¢ satisfy (8), and let ¢ € L*>(R?) with

lo — @oll < 8y, 37

Sor sufficiently small 8,, > 0. Then, there exists a unique positive and normalized
ground state Yy of hy. Moreover, there exists C > 0 (independent of ) such that

Vo) — Yollgrws) < Clle —¢oll2. (38)

Proof We write

Vo = Yoy = /0 1 dp dupg,, (39)
with ¢, = ¢o + u(e — ¢o). Note that ¥, is well defined for all u € [0, 1], since
o — @oll2 = mlle — goll2 < udyy < 8y, (40)
and therefore Lemma 4 guarantees the existence of a spectral gap
Alpy) > A>0 4D

for sufficiently small §y,, uniformly in u € [0, 1]. First-order perturbation theory
yields

aﬂ w‘l’ﬂ = R‘ﬂu V‘/’O—(/’ w‘ﬂu (42)

and it follows from Lemma 2 that

1
1Ygo — Yollg w3y < /(‘) dp | Rg,, Vo—o Vo, I 1 (w3

1
sc/ dull (=A+ D2 R g — ol 43)
0
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Lemma 3 shows that
I (=A+ D72 Ry Il < C (14 lgullali Ry, ) - (44)

Since [lgull2 < llgoll2 + ille — @oll2 < ll@oll2 4 8¢y, the bound (41) implies that the
right-hand side of (44) is bounded independently of . Hence, the desired estimate
(38) follows. m]

2.3 Pekar functionals

Recall the definition of the Pekar Functionals G, £ and F in (3) and (4), and note that

GW, ) =EW) + llg +oyl3. (45)

As was shown in [9], £ admits a unique strictly positive and radially symmetric
minimizer, which is smooth and will be denoted by p. Moreover, the set of all
minimizers of £ coincides with

Op) = {e"yYp(- — )0 €[0,2m), y e R*}. (46)
This clearly implies that the set of minimizers of F coincides with
2(pp) = {op(- —y) |y € R’} with gp = —oy,. 47)

In the following we prove quadratic lower bounds for the Pekar Functionals £
and F. The key ingredients are the results obtained in [6]. In particular, these results
allow to infer, using standard arguments, the following Lemma 6, which provides the
quadratic lower bounds for £. (We spell out its proof for completeness in the Appendix;
a very similar proof in a slightly different setting is also given in [3]). Based on the
bound for &, it is then quite straightforward to obtain the quadratic lower bound for F
in the subsequent Lemma 7.

Lemma 6 (Quadratic Bounds for £) There exists a positive constant k such that, for
any L*-normalized ¢ € H'(R?),

EW) —ep = min |y - ¢Pp(- = Ml gy = Kdisti g, (¥, O (Yp)).
0e[0,27)

(48)

Lemma 7 (Quadratic Bounds for F) There exists a positive constant T such that, for
any ¢ € L*(R?),

Flg)—ep =7 min ll = gp(- - N3 = tdistysgs (@, 2(p)).  (49)
yE
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Proof Recalling that

F(p)= inf G, ) (50)
v l2=1
yeH! (R3)

our claim trivially follows by showing that for any L>-normalized ¥ € H'(R3) and
g € L*(RY)

G, ) — ep = Tdistys 3 (9, 2(¢p)). (51)
For any such v let y* € R? and 6* € [0, 27r) be such that
I — e (- = ) sy = disth s, (¥, O (W), (52)

and denote ¢'?" Yp(- —y*) by Y. By using the previous Lemma 6, the fact that 1 and
Wi are L?-normalized, (19) and completing the square, we obtain for, some positive
k* >0,

G, @) —ep =EW) —ep + o + oy 115 = kll¥ — Yl s, + llo + oy 113
> i*lloy — oysll + llo + oy 13
= A+ 0y —oy) = A +65)7 (@ +oy0)I3

K*

14+ «*

*

+ lo + oy 115

2 Ko
> e lo —op(- —yHll5 = H_—K*dlsth(Rs)(fp, £2(ep)). (53)

This completes the proof of (51), and hence of the Lemma, with T = «*/(1 4+ «*). O

Remark 1 The two previous quadratic bounds on £ and F clearly imply, together with
(4), that, for any L?-normalized ¥ € H'(R?) and any ¢ € L2(R3), having low energy
guarantees closeness to the surfaces of minimizers @ (yp) and £2(¢p), i.e.

GW.p)<ep+e=EW), Flp) <ep+e
= dist};) (¥, ©(Yp)), disty» (¢, 2(¢p)) < Ce. (54)
Finally, we exploit the previous estimate to obtain the following Lemma. It states
that for couples (¥, ¢) which have low energy v is close to ¥, the ground state of

hy, and ¢ is close to —oy, " in the following sense.

Lemma 8 Lete > 0be sufficiently small, € H'(R3) be L?-normalized, ¢ € L*(R?)
and let (Y, @) be such that

G, @) <ep+e. (55)
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Then, hy has a positive ground state Yy, and there exists C > 0 (independent of
(¥, @) such that

min —et? 2 <Ces, 56
pmin = eyl g, < (56)

lo + oy, 113 < Ce. (57)
Proof Since F(¢) < G(, ) for any L*>-normalized ¢ € H'(R?), Lemma 7 implies
that for any § > O there exists &5 > 0 such that dist;>(¢, £2(¢p)) < & when-
ever G(¥, ) < ep + 5. Moreover, by Lemma 4, there exists 5 > 0 such that if
dist;2 (¢, 2(pp)) < § then Y, exists. We then pick ¢ = ¢5 and this guarantees that
under the hypothesis of the Lemma v, is well defined.

Using Lemmas 6 and 7, the assumption (55) implies that there exist y; and y, such
that

: i0 2 2
pamin Y —eTYp(- =yl s = Ce o —@p(- =y2)l3 < Ce. (38)

Moreover, since
epte=GWp) = EW) + g +oyll3 = ep+llo + oy 3, (59)
we also have
lo +oyl3 <. (60)
In combination, the second bound in (58) and (60) imply
llgp(- = y2) + 0y I3 < Ce. (61)

Moreover, with the aid of (19) and the first bound in (58), we obtain

lop(- = 1) + oy 13 = loye(-—y) — oy 3
< C min —¢l? .- 2 < Cs. 62
=C min 1§72 vp(- =yl < (62)

By putting the second equation in (58), (61) and (62) together, we can hence conclude
that

lo —ep(- —yDll2 < llo —p(- —y2)ll2 +llgp(- — y2) +oyll2 + lloy +ep(- —yDl2
< Cce'2, (63)

Therefore, using Lemma 5, we obtain

Iy — Pl < I — e yp(- — vl + ¥ (- — 1) — Yol
=1y —eYp(- — YDt + 1Wep(-—y) — Yol g
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<y —eYp(- =yl +Cligp(- —y1) —@ll2. (64

This yields (56) after taking the infimum over 6 € [0, 27) and using (63) and the first
bound in (58). To prove (57), we use (60), (19), the normalization of ¥ and v, and
(56) to obtain

lo + oy, ll2 < llg +oyl2+ lloy —oy,ll2

<&e24C min ||y — eyl < CeV2 (65)
0€l[0,2m)

3 Proof of the main results

The conservation of G along solutions of the Landau—Pekar equations allows to apply
the tools developed in Sect. 2 to get results valid for all times. This will in particular
allow us to prove the results stated in Sect. 1. When combined with energy conserva-
tion, Remark 1 shows that we can estimate the distance to the sets of Pekar minimizers
of solutions of the Landau—Pekar equations only in terms of the energy of their initial
data. Since £2(¢p) contains only real-valued functions this yields bounds on the L2-
norm of the imaginary part of ¢;. That is, there exists a C > 0 such that if (v, ¢;)
solves the Landau—Pekar equations (1) with initial data (v, ¢o), then

min [y — e Yp(- = VI3 s, < CGWo, po) — ep),

ye]R3
60¢€[0,2m)

ITm ;|13 < C(G (Yo, 9o) — ep),
min [Reg; — gp(- - I3 < CGWo, 9o) — ep) (66)
YER

for all t € R and @ > 0. It is then straightforward to obtain a proof of Theorem 1.

Proofof Theorem 1 Let 0 < A < A(gp) and let (Y4, ¢;) denote the solution to the
Landau—Pekar equations with initial data (1, o) satisfying G, ¢o) < ep + €4.
From (66) we deduce that for any ¢ € R there exists y; € R3 such that

lge — @p(- — y0)II3 < Cea (67)

for some C > 0. Since the spectrum of /4, (. —y) and [l¢p(- — y)||2 are independent of
y € R3, Theorem 1 now follows immediately from Lemma 4 by taking ey = C~! 5%,
where § 4 is the same as in Lemma 4. O

Conservation of energy also allows to extend the validity of Lemma 8 for all times.
If (¥4, ¢;) solves (1) with initial data (Y, ¢o) satisfying G(¥g, ¢o) < ep + ¢ for a
sufficiently small ¢, then v, is well defined for all times and

. e 2 2
Jmin = Wl oy < e, llgr + o, 15 < Ce. (68)
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Moreover, Theorem 1 implies that for all times A(¢;) > A for a suitable A > 0. It
thus follows from Lemmas 1 and 3 that for some C > 0

IRl <C and [[(—A+ D'2R)/?| <C forall teR, (69)

-1
whereas above Ry, = q; (hy, — (1)) grand g, =1 — p; =1 — |y, ) (Y, |.
With these preparations, we are now ready to prove Corollary 1.

Proof of Corollary 1 The proof follows closely the ideas of the proof of [8, Theorem
IL.1], hence we allow ourselves to be a bit sketchy at some points and refer to [8] for
more details. It follows from the Landau—Pekar equations (1) that

0V = Vimg» @0 Vimg, = —VReg, toy, - (70)
Lemmas 1-3 imply, together with (66), that there exists C > 0 such that

||R(/,IV1m<p,||2 < Ce forall reR. (71)

In the same way, by the triangle inequality, Lemma 2 and (68), there exists C > 0
such that

|Ro Vieg oy, I = € min 1V = I3 + CIRe @ + 0, I3

0€(0,27
< Ce¢ forall reR. (72)
Moreover, it follows from
a?3 Vg, = =Ry, Vimg, Vg, (73)

that

WzatRzp, = Dt Vlmwr Ré, + Ré, Vim o Pt — R(p, (Vlm(p, - (W(p,v Vim (p,l”Wr)) R(pr
(74)

(see [8, Lemma IV.2]) and by the same arguments as above that
I(—=A+D'28,Ry (—A+ D2 < Ce'?a™? forall 1eR. (75)

Recall the definitions of 1% and v in (11). The same computations as in [8, Egs. (58)—
(65)], using

g e BB @y, — i Ry 8, oMo d ey, (76)
and integration by parts, lead to
197 — Y, 113 = 207 2Im (Y1, R Vimg, V) (77a)
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t
+ 2072 / ds v(s)Re(Vs, RS Vimg, Vy,) (77b)
0
t
_ ~ 2
+2a* /O dsTm (s, Ry, (R, Vimg,)™ Vo,) (77¢)
t
+ 207 /O ds Im(s, R2, Ve gytoy, V) (77d)

- 2a—2/tds (ms. (3R2,) Vimp ) + o) I, %) )
0 " o (7; )
€

The difference to the calculations in [8] are the additional terms (77b) and the second
term in (77e) resulting from the phase v. While (77b) is, as we show below, only a sub-
leading error term, the phase in (77e) leads to a crucial cancellation. This cancellation
allows to integrate by parts once more, and finally results in the improved estimate in
Corollary 1.

We shall now estimate the various terms in (77). Since | g; J, I < ||1;t — Yy 2,
we find for the first term using (69) and (71)

|(77a)| < Ca™2e | Y — g, 2 < 8I1Y: — Yy, I3 + C5 a2 (78)

for arbitrary § > 0. Moreover, we have |v(s)| < C a4eforall s € R, and find for the
second term

t
(77b)] < Ca™ %™ / ds |5 — g, 12 (79)
0
For the third term, we integrate by parts using (76) once more, with the result that

_ ~ 2
(77¢) = =22 *Re (Y, R, (R, Vimg,) Vo,

t
_ ~ 2
+ 20t /0 ds v(s) Im (WS,R(%S (Rp Vimg,)™ V)

t
20~ [0 dsRe (G, s (R, (Ry,Vimgs) ¥, ). 0

The first two terms can be bounded in the same way as (77a) and (77b). For the third
term, note that the r.h.s. of the inner product depends on time s through ¢, only,
hence its time derivative leads to another factor of «~2. With (70), (73) and (74)
we compute its time derivative. From the time derivative of the reduced resolvent in
(74), we obtain one term for which the projection p; hits Js on the 1.h.s. of the inner
product, in which case we can only bound || p % Il < 1. For the remaining terms, we
use ||gs 1;3 2 < |l 1/~fs — Yy, |2 instead. With the same arguments as above and (72), we
obtain
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[(770)| <8119 — Vg, I13+C8 B¢

t
+CaS /0 ds [T — Vg In-+Ca~063 2] 81)

for any § > 0. For the fourth term (77d), we first split

t
(77d) = 207" /0 ds (Im (Uss RS Voy, —oy,. Vo) +1Im (U, RS VRe g, oy, wg) :

(82)
Lemmas 1-3 and (69) imply that we can bound IIR(%,A, Vo, —oyy, I < Clvs — Vo, ll2
in the first term. For the second term, we observe that the r.h.s. of the inner product
depends on s again only through ¢, whose time derivative is of order & ~2. We thus

again use (76) and integration by parts, and proceed as above. For the calculation,
we need to bound the time derivative of Oy » which can be done with the aid [7,

Lemma IL.4], with the result that [[d50y,, [l2 < C el/2q72. Altogether, this shows that

t
((77d)| < Ca™* /0 ds |y — Y, I3 + 8110 — g, I3+ C5 ™%
t
+ Ca %'/ / ds |15 — g, ll2 + CaCclt] (83)
0

for any § > 0. For the last term, we compute using (74)

t
(T7e) = —6a~* / ds Im(Js, R3 Vimg, Ps Vimg, Vi)
0
13
+2a / ds (T, (R2 Vimg, Ry, + Ro, Vimg, R2) Vim, ). (34)
0

Note that the phase v(s) cancels the contribution of d; R, projecting onto ¥, (the first
term of (74)). This cancellation is important, since the integration by parts argument
using (76) would not be applicable to this term. It can be applied to all the terms in
(84), however, proceeding as above, with the result that

[(77e)| < 81 — g, 15 4+ C5 La8e?

t
+Ca % f ds |¥s — Yy, lla + Ca™032 1] (85)
0

for any § > 0.
Collecting the bounds in (78), (79), (81), (83) and (85), Eq. (77) shows that
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t
150 = o, I3 < Cae + Ca~66'2 /O ds 155 — Vg, Iz
t
+ Coz_4/ ds | ¥s — Vg, I3 + Ca™Clt|
0

t
<Ca*e+Ca™? / ds T — v I3+ Ca~Selt]  (36)
0

fora 2 1and ¢ < 1. A Gronwall type argument finally yields the desired bound (12).
O
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Appendix: Proof of Lemma 6
In this appendix we give the proof of Lemma 6. As already mentioned, the result
follows from the work in [6] by standard arguments. We follow closely the proof

given in [3] of a corresponding result in the slightly different setting of a confined
polaron.

Proofof Lemma 6 Step 1: For any L*-normalized ¥ € H'(R3), there exists § <
[0, 277) and 7 € R3 such that

€73 =5) = vl = min €4 =) = el (87)

By invariance of £ under translations and changes of phase, it is then sufficient to
show that for any L?-normalized v such that

I = el = min |4 — e“yp(- =, (88)
the inequality

EW) —ep = klly — el gs) (89)
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holds (for some « > 0 independent of ). In fact, this is stronger than the desired
bound (48). We henceforth only work with L?-normalized v satisfying (88), and
denote § = ¢ — ¥p. Observe that any ¥ satisfying (88) also satisfies

(Wlvp) =0, (Y|diyp) =0fori =1,2,3. (90)

Step 2: We first prove the quadratic lower bound (89) locally around yp for any
L?-normalized v satisfying (88). By straightforward computations, using that

18113 =2 — 2(yp| ¥) = —2(yp| ) oD
since both vp and ¥ are L2-normalized, we obtain
E(Y) — ep = Hessy,, () + 0(I|5||§,1(R3)), 92)
with

Hessy, (8) = (Im8|QL_Q[Im8) + (Re 8| QL Q[Res),

0 =1—|yp){¥pl,
L_ = hy, — e(gp),
L, =L_—4X,

X = Qn)yp(—A) " yp, (93)

where in the last formula for X, ¥p has to be understood as a multiplication operator.

The Euler-Lagrange equation for the minimization of £ reads L_vyp = 0, and
since L_ is a Schrodinger operator and ¥p is strictly positive, L_ has 0 as its lowest
eigenvalue, and a gap above. Therefore, we have

QL Q=>k1Q (94)
for some k1 > 0. Moreover, it was shown in [6] that the kernel of L coincides with
span;_; 5 3{d;¥p} and from this we can infer the existence of a k2 > 0 such that

3
QL Q> k0" with Q"= Q=Y " |19;¥pll; | e} (3 Yp- 95)
i=1

Recall that Q'8 = Q8 by assumption on ¥ and orthogonality of ¥p to its partial
derivatives. With ¥’ = min{«x1, x>} we thus have

Hessy, (8) > 11| QIm 85 + k2[| Q'Re 85 > «/[| Q83 (96)

Using again (91) we see that
2 2 2 2 [ 1o
198115 = lI18ll2 — (¥pl )" =18l5 | 1 — ZIISIIZ > EIISIIZ, o7
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which finally implies that
k'
Hessy,, (8) > 3”8”2' (98)

We now want to improve this bound to include the full H'-norm of 8. Using the
regularity of ¥p it is rather straightforward to show that

L_ = QL_QE_A_C’
QL. Q>-A—-C (99)

which implies that
Hessy, (8) = (1813, — Cl18113. (100)

By interpolating between (98) and (100), we finally obtain
Hessy, (8) > LT RITI (101)
P T k20T H
In combination with (92), we conclude that

E@p) —ep = k18113, — ClIS13,, (102)

for any L?-normalized v satisfying (88), which shows that (89) holds for |[§]| 41
sufficiently small.

Step 3: We now extend the previous local bound to show that (89) holds globally.
Suppose by contradiction that there does not exist a universal « such that (89) holds.
Then, there exists a sequence v/, of L?-normalized functions satisfying (88) such that

1 2
EWn) < er+ v = Vellf < Sl +C. (103)

One readily checks that

1
EWm) = Sl = C, (104)

hence ¥, must be bounded in H 1 (R3). Again using (103), we conclude that 1/,, must
be a minimizing sequence for £. It was proven in [9] that any minimizing sequence
converges in H 1(R3) to a minimizer of £, i.e., an element of @ (Y¥p) in (46), and since

1
Y, satisfies (88) this implies that v, i) Yp. This yields a contradiction, since we
already know by (102) that locally the bound (89) holds. O
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